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Preface

This text is intended to provide a student’s first encounter with the

concepts of measure theory and functional analysis. Its structure

and content were greatly influenced by my belief that good pedagogy

dictates introducing difficult concepts in their simplest and most con-

crete forms. For example, the study of abstract metric spaces should

come after the study of the metric and topological properties of Rn.

Multidimensional calculus should not be introduced in Banach spaces

even if the proofs are identical to the proofs for Rn. And a course in

linear algebra should precede the study of abstract algebra.

Hence, despite the use of the word “terse” in the title, this text

might also have been called “A (Gentle) Introduction to Lebesgue

Integration”. It is terse in the sense that it treats only a subset of

those concepts typically found in a substantive graduate level analy-

sis course. I have emphasized the motivation of these concepts and

attempted to treat them in their simplest and most concrete form.

In particular, little mention is made of general measures other than

Lebesgue until the final chapter. Indeed, we restrict our attention

to Lebesgue measure on R and no treatment of measures on Rn for

n > 1 is given. The emphasis is on real-valued functions but com-

plex functions are considered in the chapter on Fourier series and in

the final chapter on ergodic transformations. I consider the narrow

selection of topics to be an approach at one end of a spectrum whose

xi

                

                                                                                                               



xii Preface

other end is represented, for example, by the excellent graduate text

[Ru] by Rudin which introduces Lebesgue measure as a corollary of

the Riesz representation theorem. That is a sophisticated and elegant

approach, but, in my opinion, not one which is suited to a student’s

first encounter with Lebesgue integration.

In this text the less elegant, and more technical, classical con-

struction of Lebesgue measure due to Caratheodory is presented, but

is relegated to an appendix. The intent is to introduce the Lebesgue

integral as a tool. The hope is to present it in a quick and intuitive

way, and then go on to investigate the standard convergence theorems

and a brief introduction to the Hilbert space of L2 functions on the

interval.

This text should provide a good basis for a one semester course

at the advanced undergraduate level. It might also be appropriate

for the beginning part of a graduate level course if Appendices B

and C are covered. It could also serve well as a text for graduate

level study in a discipline other than mathematics which has serious

mathematical prerequisites.

The text presupposes a background which a student should pos-

sess after a standard undergraduate course in real analysis. It is terse

in the sense that the density of definition-theorem-proof content is

quite high. There is little hand holding and not a great number of

examples. Proofs are complete but sometimes tersely written. On

the other hand, some effort is made to motivate the definitions and

concepts.

Chapter 1 provides a treatment of the “regulated integral” (as

found in Dieudonné [D]) and of the Riemann integral. These are

treated briefly, but with the intent of drawing parallels between their

definition and the presentation of the Lebesgue integral in subsequent

chapters.

As mentioned above the actual construction of Lebesgue measure

and proofs of its key properties are left for an appendix. Instead the

text introduces Lebesgue measure as a generalization of the concept of

length and motivates its key properties: monotonicity, countable ad-

ditivity, and translation invariance. This also motivates the concept

                

                                                                                                               



Preface xiii

of σ-algebra. If a generalization of length has these three key prop-

erties, then it needs to be defined on a σ-algebra for these properties

to make sense.

In Chapter 2 the text introduces null sets and shows that any

generalization of length satisfying monotonicity and countable addi-

tivity must assign zero to them. We then define Lebesgue measurable

sets to be sets in the σ-algebra generated by open sets and null sets.

At this point we state a theorem which asserts that Lebesgue

measure exists and is unique, i.e., there is a function µ defined for

measurable subsets of a closed interval which satisfies monotonicity,

countable additivity, and translation invariance.

The proof of this theorem (Theorem 2.4.2) is included in an ap-

pendix where it is also shown that the more common definition of

measurable sets (using outer measure) is equivalent to being in the

σ-algebra generated by open sets and null sets.

Chapter 3 discusses bounded Lebesgue measurable functions and

their Lebesgue integral. The last section of this chapter, and some of

the exercises following it, focus somewhat pedantically on the concept

of “almost everywhere.” The hope is to develop sufficient facility with

the concept that it can be treated more glibly in subsequent chapters.

Chapter 4 considers unbounded functions and some of the stan-

dard convergence theorems. In Chapter 5 we introduce the Hilbert

space of L2 functions on an interval and show several elementary

properties leading up to a definition of Fourier series.

Chapter 6 discusses classical real and complex Fourier series for

L2 functions on the interval and shows that the Fourier series of an

L2 function converges in L2 to that function. The proof is based on

the Stone-Weierstrass theorem which is stated but not proved.

Chapter 7 introduces some concepts from measurable dynamics.

The Birkhoff ergodic theorem is stated without proof and results on

Fourier series from Chapter 6 are used to prove that an irrational

rotation of the circle is ergodic and the squaring map z �→ z2 on the

complex numbers of modulus 1 is ergodic.

Appendix A summarizes the needed prerequisites providing many

proofs and some exercises. There is some emphasis in this section

                

                                                                                                               



xiv Preface

on the concept of countability, to which I would urge students and

instructors to devote some time, as countability plays an very crucial

role in the study of measure theory.

In Appendix B we construct Lebesgue measure and prove it has

the properties cited in Chapter 2. In Appendix C we construct a

non-measurable set.

Finally, at the website http://www.ams.org/bookpages/stml-48

we provide solutions to a few of the more challenging exercises. These

exercises are marked with a (�) when they occur in the text.

This text grew out of notes I have used in teaching a one quarter

course on integration at the advanced undergraduate level. With

some selectivity of topics and well prepared students it should be

possible to cover all key concepts in a one semester course.

                

                                                                                                               



Chapter 1

The Regulated and
Riemann Integrals

1.1. Introduction

This text is devoted to exploring the definition and properties of the

definite integral. We will consider several different approaches to

defining the definite integral∫ b

a

f(x) dx

of a function f : [a, b] → R. These definitions will all assign the

same value to the definite integral, but they differ in the size of the

collection of functions to which they apply. For example, we might try

to evaluate the Riemann integral (the ordinary integral of beginning

calculus) of the function

f(x) =

{
0, if x is rational;

1, otherwise.

The Riemann integral
∫ 1

0
f(x) dx is, as we will see, undefined; but

the Lebesgue integral, which we will develop, has no difficulty with f

and indeed
∫ 1

0
f(x) dx = 1.

1

                                     

                

                                                                                                               



2 1. The Regulated and Riemann Integrals

There are several properties which we want an integral to satisfy

no matter how we define it. It is worth enumerating them at the be-

ginning. We will need to check them and refine them for our different

definitions.

1.2. Basic Properties of an Integral

We will consider the value of the integral of functions in various col-

lections. These collections all have a common domain which, for our

purposes, is a closed interval. They are also closed under the opera-

tions of addition and scalar multiplication. Such a collection is a vec-
tor space of real-valued functions (see, for example, Definition A.9.1).

More formally, recall that a non-empty set of real-valued functions

V defined on a fixed closed interval is a vector space of functions

provided:

(1) If f, g ∈ V , then f + g ∈ V .

(2) If f ∈ V and c ∈ R, then cf ∈ V .

Notice that this implies that the constant function 0 is in V . All of the

vector spaces we consider will contain all of the constant functions.

Three simple examples of vector spaces of functions defined on

some closed interval I are the constant functions, the polynomial

functions, and the continuous functions.

An “integral” defined on a vector space of functions V is a way

to assign a real number to each function in V and each subinterval

of I. For the function f ∈ V and the subinterval [a, b] we denote this

value by
∫ b

a
f(x) dx and call it “the integral of f from a to b.”

All the integrals we consider will satisfy five basic properties

which we now enumerate.

I. Linearity: For any functions f, g ∈ V , any a, b ∈ I, and

any real numbers c1, c2,∫ b

a

c1f(x) + c2g(x) dx = c1

∫ b

a

f(x) dx + c2

∫ b

a

g(x) dx.

In particular, this implies that
∫ b

a
0 dx = 0.

                

                                                                                                               



1.2. Basic Properties of an Integral 3

II. Monotonicity: If the functions f, g ∈ V satisfy f(x) ≥
g(x) for all x and a, b ∈ I satisfy a ≤ b, then∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx.

In particular, if f(x) ≥ 0 for all x and a ≤ b, then∫ b

a

f(x) dx ≥ 0.

III. Additivity: For any function f ∈ V , and any a, b, c ∈ I,∫ c

a

f(x) dx =

∫ b

a

f(x) dx +

∫ c

b

f(x) dx.

In particular, we allow a, b and c to occur in any order on the

line and we note that two easy consequences of additivity

are∫ a

a

f(x) dx = 0 and

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

IV. Constant functions: The integral of a constant function

f(x) = C should be given by∫ b

a

C dx = C(b − a).

If C > 0 and a < b, this just says the integral of f is the

area of the rectangle under its graph.

V. Finite sets don’t matter: If f and g are functions in V
with f(x) = g(x) for all x except possibly a finite set, then

for all a, b ∈ I,∫ b

a

f(x) dx =

∫ b

a

g(x) dx.

Properties III, IV and V are not valid for all mathematically in-

teresting theories of integration. Nevertheless, they hold for all the

integrals we will consider, so we include them in our list of basic prop-

erties. It is important to note that these are assumptions, however,

and there are many mathematically interesting theories where they

do not hold.

                

                                                                                                               



4 1. The Regulated and Riemann Integrals

There is one additional property which we will need. It differs

from the earlier ones in that we can prove that it holds whenever the

properties above are satisfied.

Proposition 1.2.1. (Absolute value). Suppose we have defined
the integral

∫ b

a
f(x) dx for all f in some vector space of functions V

and for all a, b ∈ I. Suppose this integral satisfies properties I-III
above and both f and |f | are in V . Then for any a, b ∈ I with a ≤ b,∣∣∣ ∫ b

a

f(x) dx
∣∣∣ ≤ ∫ b

a

|f(x)| dx.

If a > b, then ∣∣∣ ∫ b

a

f(x) dx
∣∣∣ ≤ −

∫ b

a

|f(x)| dx.

Proof. Suppose first that a ≤ b. Since f(x) ≤ |f(x)| for all x we

know that ∫ b

a

f(x) dx ≤
∫ b

a

|f(x)| dx

by monotonicity. Likewise, −f(x) ≤ |f(x)|, so

−
∫ b

a

f(x) dx =

∫ b

a

−f(x) dx ≤
∫ b

a

|f(x)| dx.

But | ∫ b

a
f(x) dx| is either equal to

∫ b

a
f(x) dx or to − ∫ b

a
f(x) dx. In

either case
∫ b

a
|f(x)| dx is greater, so∣∣∣ ∫ b

a

f(x) dx
∣∣∣ ≤ ∫ b

a

|f(x)| dx.

If b < a, then∣∣∣ ∫ b

a

f(x) dx
∣∣∣ =

∣∣∣ ∫ a

b

f(x) dx
∣∣∣ ≤ ∫ a

b

|f(x)| dx = −
∫ b

a

|f(x)| dx.

�

1.3. Step Functions

The easiest functions to integrate are step functions, which we now

define.

                

                                                                                                               



1.3. Step Functions 5

Definition 1.3.1. (Step function). A function f : [a, b] → R is
called a step function provided there are numbers

x0 = a < x1 < x2 < · · · < xn−1 < xn = b

such that f(x) is constant on each of the open intervals (xi−1, xi).

It is not difficult to see that the collection of all step functions

defined on [a, b] is a vector space of real-valued functions (see part (1)

of Exercise 1.3.4).

We will say that the points x0 = a < x1 < · · · < xn−1 < xn = b

define an interval partition for the step function f . Note that the

definition states that on the open intervals (xi−1, xi) of the partition

f has a constant value, say ci, but it says nothing about the values at

the endpoints. The value of f at the points xi−1 and xi may or may

not be equal to ci. Of course when we define the integral this won’t

matter because the endpoints form a finite set.

Since the area under the graph of a positive step function is a

finite union of rectangles, it is fairly obvious what the integral should

be. The ith of these rectangles has width (xi − xi−1) and height ci

so we should sum up the areas ci(xi − xi−1). If some of the ci are

negative then the corresponding ci(xi − xi−1) are also negative, but

that is appropriate since the area between the graph and the x-axis

is below the x-axis on the interval (xi−1, xi).

Definition 1.3.2. (Integral of a step function). Suppose f(x) is a
step function with partition x0 = a < x1 < x2 < · · · < xn−1 < xn = b

and suppose f(x) = ci for xi−1 < x < xi. Then we define∫ b

a

f(x) dx =

n∑
i=1

ci(xi − xi−1).

We made the “obvious” definition for the integral of a step func-

tion, but in fact, we had absolutely no other choice if we want the

integral to satisfy properties I–V above.

Theorem 1.3.3. The integral as given in Definition 1.3.2 is the
unique real-valued function defined on step functions which satisfies
properties I–V of §1.2.

                

                                                                                                               



6 1. The Regulated and Riemann Integrals

Proof. Suppose that there is another “integral” defined on step func-

tions and satisfying I–V. We will denote this alternate integral as∮ b

a

f(x) dx.

What we must show is that for every step function f(x),∮ b

a

f(x) dx =

∫ b

a

f(x) dx.

Suppose that f has partition x0 = a < x1 < · · · < xn−1 < xn = b

and satisfies f(x) = ci for xi−1 < x < xi.

Then, from the additivity property,

(1.3.1)

∮ b

a

f(x) dx =

n∑
i=1

∮ xi

xi−1

f(x) dx.

But on the interval [xi−1, xi] the function f(x) is equal to the constant

function with value ci except at the endpoints. Since functions which

are equal except at a finite set of points have the same integral, the

integral of f is the same as the integral of ci on [xi−1, xi]. Combining

this with the constant function property we get∮ xi

xi−1

f(x) dx =

∮ xi

xi−1

ci dx = ci(xi − xi−1).

If we plug this value into equation (1.3.1) we obtain∮ b

a

f(x) dx =

n∑
i=1

ci(xi − xi−1) =

∫ b

a

f(x) dx.

�

Exercise 1.3.4.

(1) Prove that the collection of all step functions on a closed

interval [a, b] is a vector space of functions which contains

the constant functions.

(2) Prove that if x0 = a < x1 < x2 < · · · < xn−1 < xn = b is a

partition for a step function f with value ci on (xi−1, xi) and

                

                                                                                                               



1.4. Uniform and Pointwise Convergence 7

y0 = a < y1 < y2 < · · · < yn−1 < ym = b is another parti-

tion for the same step function with value dj on (yj−1, yi),

then
n∑

i=1

ci(xi − xi−1) =

m∑
j=1

di(yj − yj−1).

In other words, the value of the integral of a step function

depends only on the function, not on the choice of partition.

Hint: the union of the sets of points defining the two par-

titions defines a third partition and the integral using this

partition is equal to the integral using each of the partitions.

(3) Prove that the integral of step functions as given in Defini-

tion 1.3.2 satisfies properties I–V of §1.2.

1.4. Uniform and Pointwise Convergence

Throughout the text we will be interested in the following question:

If a sequence of functions {fn} “converges” to a limit function f does

the sequence of numbers {∫ b

a
fn(x) dx} converge to a limit equal to

the integral of the limit function? Put another way, we are interested

in when lim and
∫

commute, i.e., when is

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

lim
n→∞ fn(x) dx?

The answer, as we will see, depends on what we mean by the sequence

of functions “converging,” i.e., what does lim fn mean. It turns out

there are many interesting (and very different) choices for what we

might mean. Among the types of convergence that we will consider

the strongest is called uniform convergence. We recall its definition.

Definition 1.4.1. (Uniform convergence). A sequence of func-
tions {fm} is said to converge uniformly on [a, b] to a function f if
for every ε > 0 there is an M (independent of x) such that for all
x ∈ [a, b],

|f(x) − fm(x)| < ε whenever m ≥ M.

We contrast this with the following much weaker notion of con-

vergence.

                

                                                                                                               



8 1. The Regulated and Riemann Integrals

Definition 1.4.2. (Pointwise convergence). A sequence of func-
tions {fm} is said to converge pointwise on [a, b] to a function f if
for each ε > 0 and each x ∈ [a, b] there is an Mx (depending on x)

such that
|f(x) − fm(x)| < ε whenever m ≥ Mx.

On first encountering these two types of convergence of functions

it is difficult to appreciate how different they are and how different

their consequences can be. The point of Examples 1.4.3 and 1.5.4

below and Exercise 1.5.6 parts (6) and (7) is to illustrate some of

the ways these concepts differ and to emphasize the importance of

the distinction. It should be immediately clear that a sequence of

functions which converges uniformly to f also converges pointwise to

f . The following example shows that the converse of this statement

is not true.

Example 1.4.3. For m ∈ N define the functions fm : [0, 1] → R by

fm(x) =

{
0, if x = 1;

xm, otherwise.

Then for any fixed x0 ∈ [0, 1] it is clear that lim
n→∞ fn(x0) = 0. That

is, the sequence {fn} converges pointwise to the constant function 0.

On the other hand, it does not converge uniformly to 0. For

example, if ε = 1/3 we can never have |fm(x)−0| < ε for all x ∈ [0, 1]

since if xm = 1/21/m, then f(xm) = 1/2.

1.5. Regulated Integral

We now want to define the integral of a more general class of func-

tions than just step functions. Since we know how to integrate step

functions it is natural to try to take a sequence of better and better

step function approximations to a more general function f and define

the integral of f to be the limit of the integrals of the approximat-

ing step functions. For this to work we need to know that the limit

of the integrals exists and that it does not depend on the choice of

approximating step functions. It turns out that all of this works if

the more general function f can be uniformly approximated by step

functions, i.e., if there is a sequence of step functions which converges

                

                                                                                                               



1.5. Regulated Integral 9

uniformly to f . As is typical in mathematics when we have a col-

lection of objects which behave in a way we like we make it into a

definition.

Definition 1.5.1. (Regulated function). A function f : [a, b] → R

is called regulated provided there is a sequence {fm} of step functions
which converges uniformly to f .

Another way to state this is to say a regulated function is one

which can be uniformly approximated as closely as we wish by a step

function. We can now prove that the limit of the integrals of the

approximating step functions always exists and does not depend on

the choice of approximating step functions.

Theorem 1.5.2. Suppose {fm} is a sequence of step functions on
[a, b] converging uniformly to a regulated function f. Then the se-
quence of numbers {∫ b

a
fm(x) dx} converges. Moreover, if {gm} is

another sequence of step functions which also converges uniformly to
f then,

lim
m→∞

∫ b

a

fm(x) dx = lim
m→∞

∫ b

a

gm(x) dx.

Proof. Let zm =
∫ b

a
fm(x) dx. We will show that the sequence {zm}

is a Cauchy sequence and hence has a limit. To show this sequence

is Cauchy we must show that for any ε > 0 there is an M such that

|zp − zq| ≤ ε whenever p, q ≥ M.

Since {fm} is a sequence of step functions on [a, b] converging

uniformly to f, if we are given ε > 0, there is an M such that for all

x ∈ [a, b],

|f(x) − fm(x)| <
ε

2(b − a)
whenever m ≥ M.

Hence, whenever p, q ≥ M,

|fp(x) − fq(x)| < |fp(x) − f(x)| + |f(x) − fq(x)|(1.5.1)

<
ε

2(b − a)
+

ε

2(b − a)

=
ε

b − a
.

                

                                                                                                               



10 1. The Regulated and Riemann Integrals

Therefore, whenever p, q ≥ M,

|zp − zq| =

∣∣∣ ∫ b

a

fp(x) − fq(x) dx
∣∣∣

≤
∫ b

a

|fp(x) − fq(x)| dx

≤
∫ b

a

ε

b − a
dx = ε,

where the first inequality comes from the absolute value property

of Proposition 1.2.1 and the second follows from the monotonicity

property and equation (1.5.1). This shows that the sequence {zm} is

Cauchy and hence converges.

Now suppose that {gm} is another sequence of step functions

which also converges uniformly to f. Then for any ε > 0 there is an

M such that for all x,

|f(x) − fm(x)| < ε and |f(x) − gm(x)| < ε

whenever m ≥ M. It follows that

|fm(x) − gm(x)| ≤ |fm(x) − f(x)| + |f(x) − gm(x)| < 2ε.

Hence, using the absolute value and monotonicity properties, we see∣∣∣ ∫ b

a

fm(x) − gm(x) dx
∣∣∣ ≤ ∫ b

a

|fm(x) − gm(x)| dx

≤
∫ b

a

2ε dx = 2ε(b − a),

for all m ≥ M. Since ε is arbitrarily small we may conclude that

lim
m→∞

∣∣∣ ∫ b

a

fm(x) dx −
∫ b

a

gm(x) dx
∣∣∣

= lim
m→∞

∣∣∣ ∫ b

a

fm(x) − gm(x) dx
∣∣∣ = 0.

This implies

lim
m→∞

∫ b

a

fm(x) = lim
m→∞

∫ b

a

gm(x) dx.

�

This result enables us to define the regulated integral.
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Definition 1.5.3. (Regulated integral). If f is a regulated func-
tion on [a, b], we define the regulated integral by∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx

where {fn} is any sequence of step functions converging uniformly to
f.

One might well ask if we can take the same approach and define

an integral for functions which are the limits of pointwise conver-

gent sequences of functions. Unfortunately, this does not work as the

following example shows.

Example 1.5.4. For each n ∈ N define a step function on [0, 1] by

fn(x) =

{
2n2, if x ∈ [ 1

2n , 1
n ];

0, otherwise.

Notice that if x0 ∈ (0, 1] and 1/n < x0, then fn(x0) = 0; so clearly

lim fn(x0) = 0 for every x0. Also, fn(0) = 0 for all n. In other words,

the sequence of functions {fn} converges pointwise to the constant

function f = 0.

However,
∫ 1

0
fn(x) dx = n so the sequence of integrals diverges

while the integral of the limit function f = 0 has the value 0.

This should be contrasted with part (6) of Exercise 1.5.6 which

shows that if a sequence of functions {fn} converges uniformly to a

function f, then under very general hypotheses,

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.

For the definition of regulated integral to be interesting it is im-

portant that there are lots of regulated functions which we might

want to integrate. This is indeed the case since the regulated func-

tions include all continuous functions on a closed interval [a, b].

Theorem 1.5.5. (Continuous functions are regulated). Every
continuous function f : [a, b] → R is a regulated function.
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Proof. A continuous function f(x) defined on a closed interval [a, b] is

uniformly continuous (see Theorem A.8.2). That is, given ε > 0 there

is a corresponding δ > 0 such that |f(x)−f(y)| < ε whenever |x−y| <

δ. Let εn = 1/2n and let δn be the corresponding δ guaranteed by

uniform continuity.

Fix a value of n and choose a partition x0 = a < x1 < x2 < · · · <

xm = b with xi −xi−1 < δn. For example, we could choose m so large

that if we define ∆x = (b − a)/m, then ∆x < δn and then we could

define xi to be a + i∆x. Next we define a step function fn by

fn(x) = f(xi) for all x ∈ [xi−1, xi).

That is, on each half open interval [xi−1, xi) we define fn to be the

constant function whose value is the value of f at the left endpoint

of the interval. The value of fn(b) is defined to be f(b).

Clearly, fn(x) is a step function with the given partition. We

must estimate its distance from f . Let x be an arbitrary point of

[a, b]. It must lie in one of the open intervals of the partition or be

an endpoint of one of them; say x ∈ [xi−1, xi). Then since fn(x) =

fn(xi−1) = f(xi−1) we may conclude that

|f(x) − fn(x)| ≤ |f(x) − f(xi−1)| < εn

because of the uniform continuity of f and the fact that |x− xi−1| <

δn.

Thus we have constructed a step function fn with the property

that for all x ∈ [a, b],

|f(x) − fn(x)| < εn.

So the sequence {fn} converges uniformly to f and f is a regulated

function. �

Exercise 1.5.6.

(1) Show that the continuous function f(x) = 1/x on the open
interval (0, 1) is not regulated, i.e., it cannot be uniformly

approximated by step functions.

(2) Give an example of a bounded continuous function on the

open interval (0, 1) which is not regulated.
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(3) Give an example of a sequence of step functions which con-

verges uniformly to f(x) = x on [0, 1].

(4) Prove that the collection of all regulated functions on a

closed interval I is a vector space which contains the con-

stant functions.

(5) Prove that the regulated integral, as given in (1.5.3), satisfies

properties I–V of §1.2.

(6) Suppose an integral
∫

satisfying properties I–V of §1.2 has

been defined for all functions f : [a, b] → R in some vector

space of functions V . Prove that if {fn} is a sequence of

functions in V which converges uniformly to f ∈ V , then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

(7) Suppose f : [0, 1] → R is continuous on (0, 1). Prove there is

a sequence of step functions {fn} which converge pointwise

to f on [0, 1].

(8) (�) Prove that f is a regulated function on I = [a, b] if and

only if both of the limits

lim
x→c+

f(x) and lim
x→c− f(x)

exist for every c ∈ (a, b). (See section VII.6 of Dieudonné

[D].)

1.6. The Fundamental Theorem of Calculus

The most important theorem of elementary calculus asserts that if f

is a continuous function on [a, b] then its integral
∫ b

a
f(x) dx can be

evaluated by finding an anti-derivative. More precisely, if F (x) is an

anti-derivative of f then∫ b

a

f(x) dx = F (b) − F (a).

We now can present a rigorous proof of this result. We will actually

formulate the result in a slightly different way and show that the

result above follows easily from that formulation.
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Theorem 1.6.1. If f is a continuous function and we define

F (x) =

∫ x

a

f(t) dt,

then F is a differentiable function and F ′(x) = f(x).

Proof. By definition

F ′(x0) = lim
h→0

F (x0 + h) − F (x0)

h
;

so we need to show that

lim
h→0

F (x0 + h) − F (x0)

h
= f(x0),

or, equivalently,

lim
h→0

∣∣∣F (x0 + h) − F (x0)

h
− f(x0)

∣∣∣ = 0.

To do this we note that∣∣∣F (x0 + h) − F (x0)

h
− f(x0)

∣∣∣ =

∣∣∣
∫ x0+h

x0
f(t) dt

h
− f(x0)

∣∣∣(1.6.1)

=

∣∣∣
∫ x0+h

x0
f(t) dt − f(x0)h

h

∣∣∣
=

∣∣ ∫ x0+h

x0
(f(t) − f(x0)) dt

∣∣
|h| .

Proposition 1.2.1 tells us that∣∣∣ ∫ x0+h

x0

(f(t) − f(x0)) dt
∣∣∣ ≤ ∣∣∣ ∫ x0+h

x0

|f(t) − f(x0)| dt
∣∣∣

Combining this with equation (1.6.1) above we obtain

(1.6.2)

∣∣∣F (x0 + h) − F (x0)

h
− f(x0)

∣∣∣ ≤
∣∣ ∫ x0+h

x0
|f(t) − f(x0)| dt

∣∣
|h| .

But the continuity of f implies that given x0 and any ε > 0 there

exists δ > 0 such that whenever |t−x0| < δ we have |f(t)−f(x0)| < ε.

Thus, if |h| < δ, then |f(t)−f(x0)| < ε for all t between x0 and x0+h.

It follows that ∣∣∣ ∫ x0+h

x0

|f(t) − f(x0)| dt
∣∣∣ < ε|h|
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and hence that ∣∣ ∫ x0+h

x0
|f(t) − f(x0)| dt

∣∣
|h| < ε.

Putting this together with the inequality (1.6.2) above we have that∣∣∣F (x0 + h) − F (x0)

h
− f(x0)

∣∣∣ < ε

whenever |h| < δ, which is exactly what we needed to show. �

Corollary 1.6.2. (Fundamental theorem of calculus). If f is a
continuous function on [a, b] and F is any anti-derivative of f, then∫ b

a

f(x) dx = F (b) − F (a).

Proof. Define the function G(x) =
∫ x

a
f(t) dt. By Theorem 1.6.1 the

derivative of G(x) is f(x) which is also the derivative of F . Hence

F and G differ by a constant, say F (x) = G(x) + C (see Corollary

A.8.4).

Then

F (b) − F (a) = (G(b) + C) − (G(a) + C)

= G(b) − G(a)

=

∫ b

a

f(x) dx −
∫ a

a

f(x) dx

=

∫ b

a

f(x) dx.

�

Exercise 1.6.3.

(1) Prove that if f : [a, b] → R is a regulated function and

F : [a, b] → R is defined by F (x) =
∫ x

a
f(t) dt, then F is

continuous.

(2) Let S denote the set of all functions F : [a, b] → R which can

be expressed as F (x) =
∫ x

a
f(t) dt for some step function f.

Prove that S is a vector space of functions, each of which
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has a derivative except at a finite set. Suppose that f, g ∈ S
and g([a, b]) ⊂ [a, b]. Prove that h(x) = f(g(x)) is in S.

(3) Let f : [a, b] → C be a complex-valued function and sup-

pose its real and imaginary parts, u(x) = �(f(x)) and

v(x) = 	(f(x)), are both continuous. We can then define

the derivative (if it exists) by df/dx = du/dx + idv/x and

the integral by∫ b

a

f(x)dx =

∫ b

a

u(x) dx + i

∫ b

a

v(x) dx.

(a) Prove that if F : [a, b] → C has a continuous derivative

f(x) then∫ b

a

f(x) dx = F (b) − F (a),

i.e., the fundamental theorem of calculus holds.

(b) Prove that, if c ∈ C and F (x) = ecx for x ∈ [a, b], then

dF/dx = cecx. Hint: Use Euler’s formula:

eiθ = cos θ + i sin θ

for all θ ∈ R.

(c) Prove that, if c ∈ C is not 0, then∫ b

a

ecx dx =
ecb − eca

c
.

1.7. The Riemann Integral

We can obtain a larger class of functions for which a good integral

can be defined by using a different method of comparison with step

functions.

Suppose that f(x) is a bounded function on the interval I = [a, b]

and that it is an element of a vector space of functions which contains

the step functions and for which there is an integral defined satisfying

properties I–V of §1.2. If u(x) is a step function satisfying f(x) ≤
u(x) for all x ∈ I, then monotonicity implies that if we can define∫ b

a
f(x) dx it must satisfy

∫ b

a
f(x) dx ≤ ∫ b

a
u(x) dx.

This is true for every step function u satisfying f(x) ≤ u(x) for all

x ∈ I. Let U(f) denote the set of all step functions with this property.
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Then if we can define
∫ b

a
f(x) dx in a way that satisfies monotonicity

it must also satisfy

(1.7.1)

∫ b

a

f(x) dx ≤ inf
{ ∫ b

a

u(x) dx
∣∣∣ u ∈ U(f)

}
.

The infimum exists because all of the step functions in U(f) are

bounded below by a lower bound for the function f.

Similarly, we define L(f) to be the set of all step functions v(x)

such that v(x) ≤ f(x) for all x ∈ I. Again, if we can define
∫ b

a
f(x) dx

in such a way that it satisfies monotonicity it must also satisfy

(1.7.2) sup
{ ∫ b

a

v(x) dx
∣∣∣ v ∈ L(f)

}
≤

∫ b

a

f(x) dx.

The supremum exists because an upper bound for the function f is

an upper bound for all of the step functions in U(f).

Putting inequalities (1.7.1) and (1.7.2) together, we see that if

V is any vector space of bounded functions which contains the step

functions and we manage to define the integral of functions in V in a

way that satisfies monotonicity, then this integral must satisfy

sup
{ ∫ b

a

v(x) dx
∣∣∣ v ∈ L(f)

}
≤

∫ b

a

f(x) dx

≤ inf
{ ∫ b

a

u(x) dx
∣∣∣ u ∈ U(f)

}
for every f ∈ V . We next observe that even if we cannot define an

integral for f we still have the inequality relating the expressions at

the ends.

Proposition 1.7.1. Let f be any bounded function on the interval
I = [a.b]. Let U(f) denote the set of all step functions u(x) on I such
that f(x) ≤ u(x) for all x and let L(f) denote the set of all step
functions v(x) such that v(x) ≤ f(x) for all x. Then

sup
{∫ b

a

v(x) dx
∣∣∣ v ∈ L(f)

}
≤ inf

{∫ b

a

u(x) dx
∣∣∣ u ∈ U(f)

}
.

Proof. If v ∈ L(f) and u ∈ U(f), then v(x) ≤ f(x) ≤ u(x) for all

x ∈ I, so monotonicity implies that
∫ b

a
v(x) dx ≤ ∫ b

a
u(x) dx. Hence,

                

                                                                                                               



18 1. The Regulated and Riemann Integrals

if

V =
{∫ b

a

v(x) dx
∣∣∣ v ∈ L(f)

}
and U =

{ ∫ b

a

u(x) dx
∣∣∣ u ∈ U(f)

}
,

then every number in the set V is less than or equal to every number

in the set U . Thus, supV ≤ inf U as claimed. �

It is not difficult to see that sometimes the two sides of this in-

equality are not equal (see Exercise 1.7.7 below); but if it should

happen that

sup
{ ∫ b

a

v(x) dx
∣∣∣ v ∈ L(f)

}
= inf

{∫ b

a

u(x) dx
∣∣∣ u ∈ U(f)

}
,

then we have only one choice for
∫ b

a
f(x) dx; it must be this common

value.

This motivates the definition of the next vector space of functions

that can be integrated. Henceforth, we will use the more compact

notation

sup
v∈L(f)

{∫ b

a

v(x) dx
}

instead of sup
{∫ b

a

v(x) dx
∣∣∣ v ∈ L(f)

}
and

inf
u∈U(f)

{ ∫ b

a

u(x) dx
}

instead of inf
{∫ b

a

u(x) dx
∣∣∣ u ∈ U(f)

}
.

Definition 1.7.2. (Riemann integral). Suppose f is a bounded
function on the interval I = [a, b]. Let U(f) denote the set of all step
functions u(x) on I such that f(x) ≤ u(x) for all x and let L(f)

denote the set of all step functions v(x) such that v(x) ≤ f(x) for all
x. The function f is said to be Riemann integrable provided

sup
v∈L(f)

{∫ b

a

v(x) dx
}

= inf
u∈U(f)

{∫ b

a

u(x) dx
}

.

In this case its Riemann integral
∫ b

a
f(x) dx is defined to be this com-

mon value.

There is a simple test for when a function f is Riemann integrable.

For any ε > 0 we need only find a step function u greater than f and

                

                                                                                                               



1.7. The Riemann Integral 19

a step function v less than f such that the difference of the integrals

of u and v is less than ε.

Theorem 1.7.3. A bounded function f : [a, b] → R is Riemann
integrable if and only if, for every ε > 0 there are step functions v0

and u0 such that v0(x) ≤ f(x) ≤ u0(x) for all x ∈ [a, b] and∫ b

a

u0(x) dx −
∫ b

a

v0(x) dx ≤ ε.

Proof. Suppose the functions v0 ∈ L(f) and u0 ∈ U(f) have integrals

within ε of each other. Then∫ b

a

v0(x) dx ≤ sup
v∈L(f)

{∫ b

a

v(x) dx
}

≤ inf
u∈U(f)

{∫ b

a

u(x) dx
}

≤
∫ b

a

u0(x) dx,

where the second inequality follows from Proposition 1.7.1.

This implies

inf
u∈U(f)

{∫ b

a

u(x) dx
}
− sup

v∈L(f)

{∫ b

a

v(x) dx
}
≤ ε.

Since this is true for all ε > 0, we conclude that f is Riemann inte-

grable.

Conversely, if f is Riemann integrable, then from the properties

of the infimum there exists a step function u0 ∈ U(f) such that∫ b

a

u0(x) dx < inf
u∈U(f)

{∫ b

a

u(x) dx
}

+
ε

2
=

∫ b

a

f(x) dx +
ε

2
.

Thus, ∫ b

a

u0(x) dx −
∫ b

a

f(x) dx <
ε

2
.

Similarly, there exists a step function v0 ∈ L(f) such that∫ b

a

f(x) dx −
∫ b

a

v0(x) dx <
ε

2
.
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Hence, ∫ b

a

u0(x) dx −
∫ b

a

v0(x) dx < ε/2 + ε/2 = ε,

and u0 and v0 are the desired functions. �

There are several facts about the relation with the regulated in-

tegral that must be established. Every regulated function is Riemann

integrable, but there are Riemann integrable functions which have no

regulated integral. Whenever a function has both types of integral

the values agree. We start by giving an example of a function which

is Riemann integrable, but not regulated.

Example 1.7.4. Define the function f : [0, 1] → R by

f(x) =

{
1, if x = 1

n for n ∈ N;

0, otherwise.

Then f(x) is Riemann integrable and
∫ 1

0
f(x) dx = 0, but it is not

regulated.

Proof. We define a step function um(x) by

um(x) =

{
1, if 0 ≤ x ≤ 1

m ;

f(x), otherwise.

A partition for this step function is given by

x0 = 0 < x1 =
1

m
< x2 =

1

m − 1
< · · · < xm−1 =

1

2
< xm = 1.

Note that um(x) ≥ f(x). Also,
∫ 1

0
um(x) dx = 1

m . This is because it

is constant and equal to 1 on the interval [0, 1
m ] and except for a finite

number of points it is constant and equal to 0 on the interval [ 1
m , 1].

Hence,

inf
u∈U(f)

{ ∫ 1

0

u(x) dx
}
≤ inf

m∈N

{∫ 1

0

um(x) dx
}

= inf
m∈N

{ 1

m

}
= 0.

Also, the constant function 0 is ≤ f(x) and its integral is 0, so

0 ≤ sup
v∈L(f)

{∫ 1

0

v(x) dx
}

.
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Putting together the last two inequalities with Proposition 1.7.1 we

obtain

0 ≤ sup
v∈L(f)

{ ∫ 1

0

v(x) dx
}
≤ inf

u∈U(f)

{∫ 1

0

u(x) dx
}
≤ 0.

So all of these inequalities are equalities and by definition, f is Rie-

mann integrable with integral 0.

To see that f is not regulated suppose that g is an approximating

step function with partition x0 = 0 < x1 < · · · < xm = 1 and

satisfying |f(x) − g(x)| ≤ ε for some ε > 0. Then g is constant, say

with value c1 on the open interval (0, x1).

There exist points a1, a2 ∈ (0, x1) with f(a1) = 0 and f(a2) = 1.

So

|c1| = |c1 − 0| = |g(a1) − f(a1)| ≤ ε

and

|1 − c1| = |f(a2) − g(a2)| ≤ ε.

But

|c1| + |1 − c1| ≥ |c1 + 1 − c1| = 1,

so at least one of |c1| and |1 − c1| must be ≥ 1/2. This implies that

ε ≥ 1/2. That is, f cannot be uniformly approximated by any step

function to within ε if ε < 1/2. So f is not regulated. �

Theorem 1.7.5. (Regulated implies Riemann integrable). Ev-
ery regulated function f is Riemann integrable and the regulated in-
tegral of f is equal to its Riemann integral.

Proof. If f is a regulated function on the interval I = [a, b], then,

for any ε > 0, it can be uniformly approximated within ε by a step

function. In particular, if εn = 1/2n, there is a step function gn(x)

such that |f(x) − gn(x)| < εn for all x ∈ I. The regulated integral∫ b

a
f(x) dx was defined to be lim

∫ b

a
gn(x) dx.

We define two other approximating sequences of step functions for

f. Let un(x) = gn(x)+1/2n and vn(x) = gn(x)−1/2n. Then un(x) ≥
f(x) for all x ∈ I because un(x)−f(x) = 1/2n+gn(x)−f(x) ≥ 0 since

|gn(x) − f(x)| < 1/2n. Similarly, vn(x) ≤ f(x) for all x ∈ I because

f(x) − vn(x) = 1/2n + f(x) − gn(x) ≥ 0 since |f(x) − gn(x)| < 1/2n.
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Since

un(x) − vn(x) = gn(x) + 1/2n − (gn(x) − 1/2n) = 1/2n−1,

we have ∫ b

a

un(x) dx −
∫ b

a

vn(x) dx =

∫ b

a

un(x) − vn(x) dx

=

∫ b

a

1

2n−1
dx

=
b − a

2n−1
.

Hence, we may apply Theorem 1.7.3 to conclude that f is Riemann

integrable.

Also,

lim
n→∞

∫ b

a

gn(x) dx = lim
n→∞

∫ b

a

vn(x) +
1

2n
dx = lim

n→∞

∫ b

a

vn(x) dx,

and

lim
n→∞

∫ b

a

gn(x) dx = lim
n→∞

∫ b

a

un(x) − 1

2n
dx = lim

n→∞

∫ b

a

un(x) dx.

Since for all n,∫ b

a

vn(x) dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

un(x) dx,

we conclude that

lim
n→∞

∫ b

a

gn(x) dx =

∫ b

a

f(x) dx.

That is, the regulated integral equals the Riemann integral. �

Theorem 1.7.6. The set R of bounded Riemann integrable functions
on an interval I = [a, b] is a vector space containing the vector space
of regulated functions.

Proof. We have already shown that every regulated function is Rie-

mann integrable. Hence, we need only show that whenever f, g ∈ R
and r ∈ R we also have (f + g) ∈ R and rf ∈ R. We will do only the

sum and leave the product as an exercise.
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Suppose ε > 0 is given. Since f is Riemann integrable there are

step functions uf and vf such that vf (x) ≤ f(x) ≤ uf (x) for x ∈ I

(i.e., uf ∈ U(f) and vf ∈ L(f)) and with the property that∫ b

a

uf (x) dx −
∫ b

a

vf (x) dx < ε.

Similarly, there are ug ∈ U(g) and vg ∈ L(g) with the property that∫ b

a

ug(x) dx −
∫ b

a

vg(x) dx < ε.

This implies that∫ b

a

(uf + ug)(x) dx −
∫ b

a

(vf + vg)(x) dx < 2ε.

Since (uf + ug) ∈ U(f + g) and (vf + vg) ∈ L(f + g), we may

conclude that

inf
u∈U(f+g)

{ ∫ b

a

u(x) dx
}
− sup

v∈L(f+g)

{∫ b

a

v(x) dx
}

< 2ε.

As ε > 0 is arbitrary, we conclude that

inf
u∈U(f+g)

{ ∫ b

a

u(x) dx
}

= sup
v∈L(f+g)

{∫ b

a

v(x) dx
}

and hence (f + g) ∈ R. �

Exercise 1.7.7.

(1) At the beginning of this chapter we mentioned the function

f : [0, 1] → R which has the value f(x) = 0 if x is rational

and 1 otherwise. Prove that for this function

sup
v∈L(f)

{∫ 1

0

v(x) dx
}

= 0

and

inf
u∈U(f)

{∫ 1

0

u(x) dx
}

= 1.

Hence, f is not Riemann integrable.

(2) Prove that the absolute value of a Riemann integrable func-

tion is Riemann integrable.
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(3) Suppose f and g are Riemann integrable functions defined

on [a, b]. Prove that if h(x) = max{f(x), g(x)}, then h is

Riemann integrable. This generalizes to the max of a finite

set of functions, but not of infinitely many. Show there exists

a family {fn}n∈N of step functions such that for each n and

each x ∈ [a, b] the value of fn(x) is either 0 or 1 and yet the

function defined by g(x) = max{fn(x)}n∈N is not Riemann

integrable.

(4) Prove that if f and g are bounded Riemann integrable func-

tions on an interval [a, b], then so is fg. In particular, if

r ∈ R, then rf is a bounded Riemann integrable function

on [a, b].

                

                                                                                                               



Chapter 2

Lebesgue Measure

2.1. Introduction

In the previous section we studied two definitions of integration that

were based on two important facts: (1) There is only one obvious

way to define the integral of step functions assuming we want it to

satisfy certain basic properties, and (2) these properties force the def-

inition for the integral for more general functions which are uniformly

approximated by step functions (regulated integral) or squeezed be-

tween step functions whose integrals are arbitrarily close (Riemann

integral).

To move to a more general class of functions we first find a more

general notion to replace step functions. For a step function f there

is a partition of I = [0, 1] into intervals on each of which f is con-

stant. We now would like to allow functions for which there is a finite

partition of I into sets on each of which f is constant, but with the

sets not necessarily intervals. For example, we will consider functions

such as

(2.1.1) f(x) =

{
3, if x is rational;

2, otherwise.

The interval I is partitioned into two sets, A = I ∩ Q and B =

I ∩Qc, i.e., the rational points of I and the irrational points. Clearly,

25

                                     

                

                                                                                                               



26 2. Lebesgue Measure

the integral of this function should be 3 len(A) + 2 len(B), but only

if we can make sense of len(A) and len(B). That is the problem to

which this chapter is devoted. We want to generalize the concept of

length to include as many subsets of R as we can. We proceed in

much the same way as in previous chapters. We first decide what are

the “obvious” properties this generalized length must satisfy to be of

any use, and then try to define it by approximating with simpler sets

where the definition is clear, namely sets of intervals.

The generalization of length we want is called Lebesgue measure.
Ideally, we would like it to work for any subset of the interval I =

[0, 1], but it turns out that this is not possible to achieve.

There are several properties which we want any notion of “gener-

alized length” to satisfy. These are analogous to the basic properties

we required for a definition of integral in Chapter 1. For each bounded

subset A of R we would like to be able to assign a non-negative real

number µ(A) that satisfies the following:

I. Length: If A = (a, b) or [a, b], then µ(A) = len(A) = b− a,

i.e., the measure of an open or closed interval is its length.

II. Translation invariance: If A ⊂ R is a bounded subset

of R and c ∈ R, then µ(A + c) = µ(A), where A + c denotes

the set {x + c | x ∈ A}.
III. Countable additivity: If {An}∞n=1 is a countable collec-

tion of bounded subsets of R, then

µ(

∞⋃
n=1

An) ≤
∞∑

n=1

µ(An)

and if the sets are pairwise disjoint, then

µ(

∞⋃
n=1

An) =

∞∑
n=1

µ(An).

Note that for a finite collection {An}m
n=1 of bounded sets

the same conclusion applies (just let Ai = ∅ for i > m).

IV. Monotonicity: If A ⊂ B, then µ(A) ≤ µ(B). Actually,

this property is a consequence of additivity since A and B\A
are disjoint and their union is B.

                

                                                                                                               



2.2. Null Sets 27

It should be fairly clear why most of these properties are abso-

lutely necessary for any sensible notion of length. The only exception

is property III, which deserves some comment. We might ask that ad-

ditivity holds only for finite collections of sets, but that is too weak.

For example, if we had a collection of pairwise disjoint intervals of

length 1/2, 1/4, 1/8, . . . 1/2n, . . . , etc., then we would certainly like to

be able say that the measure of their union is the sum
∑

1/2n = 1

which would not follow from finite additivity. Alternatively, one might

wonder why additivity is only for countable collections of pairwise dis-

joint sets. But it is easy to see why it would lead to problems if we

allowed uncountable collections. Suppose Ax = {x} is the set con-

sisting of a single point x ∈ [0, 1]. Then µ(Ax) = 0 by property I. But

[a, b] is an uncountable set and hence an uncountable union of pair-

wise disjoint sets each containing a single point, namely each of the

sets Ax for x ∈ [a, b]. Hence, “uncountable additivity” would imply

that µ([a, b]) = b−a is an uncountable sum of zeroes. This is the main

reason the concept of uncountable sums isn’t very useful. Indeed, we

will see that the concept of countability is intimately related to the

concept of measure.

Unfortunately, as mentioned above, it turns out that it is im-

possible to find a µ which satisfies I–IV and which is defined for all
bounded subsets of the reals; but we can do it for a very large col-

lection which includes all the open sets and all the closed sets. The

measure we are interested in using is called Lebesgue measure. Its

actual construction is slightly technical and we have relegated that

to an appendix. Instead, we will focus on some of the properties of

Lebesgue measure and how it is used.

2.2. Null Sets

One of our axioms for the regulated integral was, “Finite sets don’t

matter.” Now we want to generalize that to say that a set doesn’t

matter if its “generalized length,” or measure, is zero. It is a some-

what surprising fact that even without defining Lebesgue measure in

general we can easily define those sets whose measure must be 0 and

investigate the properties of these sets.
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Definition 2.2.1. (Null set). A set X ⊂ R is called a null set if
for every ε > 0 there is a collection of open intervals {Un}∞n=1 such
that ∞∑

n=1

len(Un) < ε and X ⊂
∞⋃

n=1

Un.

Notice that this definition makes no use of the measure µ. Indeed,

we have not yet defined the measure µ for any set X! However, it is

clear that if we can do so in a way that satisfies properties I-IV above,

then if X is a null set, µ(X) < ε for every positive ε. This, of course,

implies µ(X) = 0.

If X is a null set, we will say that its complement Xc has full
measure.

Exercise 2.2.2.

(1) Prove that a finite set is a null set.

(2) Prove that a countable union of null sets is a null set (and

hence, in particular, countable sets are null sets).

(3) Assuming that a measure µ has been defined and satisfies

properties I-IV above, find the numerical value of the inte-

gral of the function f(x) defined in equation (2.1.1). Prove

that the Riemann integral of this function does not exist.

(4) Prove that if X is a countable compact subset of R, then

for any ε > 0 there is a finite collection of pairwise disjoint

open intervals {Uk}n
k=1 such that

n∑
k=1

len(Uk) < ε and X ⊂
n⋃

k=1

Uk.

Use this to prove that any closed interval [a, b] with b > a is

uncountable.

It is not true that countable sets are the only sets which are null

sets. We give an example in Exercise 2.5.4 below, namely, the Cantor

middle third set, which is an uncountable null set.
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2.3. Sigma Algebras

As mentioned before there does not exist a function µ satisfying prop-

erties I-IV from Section 2.1 and which is defined for every subset of

I = [0, 1]. In this section we want to consider what is the best we

can do. Is there a collection of subsets of I for which we can define a

“generalized length” or measure µ which satisfies properties I–IV and

which is large enough for our purposes? And what properties would

such a collection need to have?

Suppose we have somehow defined µ for all the sets in some col-

lection A of subsets of I and it satisfies properties I–IV. Property I

only makes sense if µ is defined for open and closed intervals, i.e., we

need open and closed intervals to be in A. For property III to make

sense we will need that any countable union of sets in A is also in A.

Finally, it seems reasonable that if A is a set in the collection A, then

the set Ac, its complement in I, should also be in A.

All of this motivates the following definition.

Definition 2.3.1. (Sigma algebra). Suppose X is a set and A is
a collection of subsets of X. A is called a σ-algebra of subsets of X

provided it contains the set X and is closed under taking complements
(with respect to X), countable unions, and countable intersections.

In other words, if A is a σ-algebra of subsets of X, then any com-

plement (with respect to X) of a set in A is also in A, any countable

union of sets in A is in A, and any countable intersection of sets in

A is in A. In fact, the property concerning countable intersections

follows from the other two and Proposition A.5.3 which says that the

intersection of a family of sets is the complement of the union of the

complements of the sets. Also note that, if A, B ∈ A, then their set

difference A \ B = {x ∈ A | x /∈ B} is in A because A \ B = A ∩ Bc.

Since X is in any σ-algebra of subsets of X (by definition), so

is its complement, the empty set. A trivial example of a σ-algebra

of subsets of X is A = {X, ∅}, i.e., it consists of only the whole set

X and the empty set. Another example, at the other extreme, is

A = P(X), the power set of X, i.e., the collection of all subsets of X.

Several more interesting examples are given in the exercises below.

Also, in these exercises we ask you to show that any intersection of
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σ-algebras is a σ-algebra. Thus, for any collection C of subsets of R

there is a smallest σ-algebra of subsets of R which contains all sets

in C, namely the intersection of all σ-algebras containing C (there is

a least one such σ-algebra, namely the power set P(R)).

Definition 2.3.2. (Borel sets). If C is a collection of subsets of R

and A is the the smallest σ-algebra of subsets of R which contains all
the sets of C, then A is called the σ-algebra generated by C. Let B be
the σ-algebra of subsets of R generated by the collection of all open
intervals. B is called the Borel σ-algebra and elements of B are called
Borel sets.

In other words, B is the collection of subsets of R which can

be formed from open intervals by any finite sequence of countable

unions, countable intersections, or complements. The σ-algebra B
can also be described as the σ-algebra generated by open subsets of

R, or by closed intervals, or by closed subsets of R (see part (5) of

Exercise 2.3.3 below).

Exercise 2.3.3.

(1) Let A = {A ⊂ I | A is countable, or Ac is countable}. Prove

that A is a σ-algebra.

(2) Let A = {A ⊂ I | A is a null set, or Ac is a null set}. Prove

that A is a σ-algebra.

(3) Suppose Aλ is a σ-algebra of subsets of X for each λ in some

indexing set Λ. Prove that

A =
⋂
λ∈Λ

Aλ

is a σ-algebra of subsets of X.

(4) Let A be a σ-algebra of subsets of R and suppose I is a

closed interval which is in A. Let A(I) denote the collection

of all subsets of I which are in A. Prove that A(I) is a

σ-algebra of subsets of I.

(5) Suppose C1 is the collection of closed intervals in R, C2 is the

collection of all open subsets of R, and C3 is the collection

of all closed subsets of R. Let Bi be the σ-algebra generated
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by Ci. Prove that B1,B2, and B3 are all equal to the Borel

σ-algebra B.

2.4. Lebesgue Measure

The σ-algebra of primary interest to us is the one generated by

Borel sets and null sets. Alternatively, as a consequence of Exer-

cise 2.3.3 (5), it is the σ-algebra of subsets of R generated by open

intervals, and null sets, or the one generated by closed intervals and

null sets.

Definition 2.4.1. (Lebesgue measurable set). The σ-algebra of
subsets of R generated by open intervals and null sets will be denoted
by M. Sets in M will be called Lebesgue measurable, or measurable
for short. If I is a closed interval, then M(I) will denote the Lebesgue
measurable subsets of I.

For simplicity we will focus on subsets of I = [0, 1] though we

could just as well use any other interval. Notice that it is a conse-

quence of part (4) of Exercise 2.3.3 that M(I) is a σ-algebra of subsets

of I. It is by no means obvious that M is not the σ-algebra of all

subsets of R. However, in Appendix C we will construct a subset of

I which is not in M.

We are now ready to state the main theorem of this chapter.

Theorem 2.4.2. (Existence of Lebesgue measure). There
exists a unique function µ, called Lebesgue measure, from M(I) to
the non-negative real numbers satisfying:

I. Length: If A = (a, b), then µ(A) = len(A) = b−a, i.e., the
measure of an open interval is its length.

II. Translation invariance: Suppose A ∈ M(I), c ∈ R and
A+ c ⊂ I where A+ c denotes the set {x+ c | x ∈ A}. Then
(A + c) ∈ M(I) and µ(A + c) = µ(A).

III. Countable additivity: If {An}∞n=1 is a countable col-
lection of elements of M(I), then

µ(

∞⋃
n=1

An) ≤
∞∑

n=1

µ(An)
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and if the sets are pairwise disjoint, then

µ(

∞⋃
n=1

An) =

∞∑
n=1

µ(An).

IV. Monotonicity: If A, B ∈ M(I) and A ⊂ B, then µ(A) ≤
µ(B).

V. Null sets: If a subset A ⊂ I is a null set, then A ∈ M(I)

and µ(A) = 0. Conversely, if A ∈ M(I) and µ(A) = 0, then
A is a null set.

VI. Regularity: If A ∈ M(I), then

µ(A) = inf{µ(U) |U is open and A ⊂ U}.

Note that the countable additivity of property III implies the

analogous statements about finite additivity. Given a finite collec-

tion {An}m
n=1 of sets just let Ai = ∅ for i > m and the analogous

conclusions follow.

We have relegated the proof of this theorem to Appendix A, be-

cause it is somewhat technical and it is a diversion from our main

task of developing a theory of integration. However, it is worth not-

ing that properties I, III and VI imply the other three and we have

included this as an exercise in this section.

Recall that set difference A \ B = {x ∈ A | x /∈ B}. Since we

are focusing on subsets of I complements are with respect to I, so

Ac = I \ A.

Proposition 2.4.3. If A and B are in M(I), then A\B is in M(I)

and µ(A ∪ B) = µ(A \ B) + µ(B). In particular, if I = [0, 1], then
µ(I) = 1, so µ(Ac) = 1 − µ(A).

Proof. Note that A \ B = A ∩ Bc which is in M(I). Also, A \ B

and B are disjoint and their union is A ∪ B. So additivity implies

that µ(A \ B) + µ(B) = µ(A ∪ B). Since Ac = I \ A this implies

µ(A \ I) + µ(A) = µ(Ac ∪ A) = µ(I) = 1. �

We have already discussed properties I-IV and null sets, but prop-

erty VI is new and it is worth discussing. It is extremely useful be-

cause it allows us to approximate arbitrary measurable sets by sets
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we understand better. In fact, it gives us a way to approximate any

measurable set A “from the outside” by a countable union of pairwise

disjoint open intervals and “from the inside” by a closed set. More

precisely, we have the following:

Proposition 2.4.4. (Regularity). If A ∈ M(I) and ε > 0, then
there is a closed set C ⊂ A such that

µ(C) > µ(A) − ε

and a countable union of pairwise disjoint open intervals U =
⋃

Un

such that
A ⊂ U and µ(U) < µ(A) + ε.

Proof. Given ε > 0 the existence of an open set U with A ⊂ U

and µ(U) < µ(A) + ε is exactly a restatement of property VI. Any

open set U is a countable union of pairwise disjoint open intervals by

Theorem A.6.3.

To see the existence of C let V be an open set containing Ac with

µ(V ) < µ(Ac) + ε. Then C = V c is closed and a subset of A. Also,

µ(C) = 1 − µ(V ) > 1 − µ(Ac) − ε = µ(A) − ε. �

If we have a countable increasing family of measurable sets, then

the measure of the union can be expressed as a limit.

Proposition 2.4.5. If A1 ⊂ A2 ⊂ · · · ⊂ An . . . is an increasing
sequence of measurable subsets of I, then

µ(

∞⋃
n=1

An) = lim
n→∞µ(An).

If B1 ⊃ B2 ⊃ · · · ⊃ Bn . . . is a decreasing sequence of measurable
subsets of I, then

µ(

∞⋂
n=1

Bn) = lim
n→∞µ(Bn).

Proof. Let F1 = A1 and Fn = An \ An−1 for n > 1. Then {Fn}∞n=1

are pairwise disjoint measurable sets, An =
⋃n

i=1 Fi and

∞⋃
i=1

Ai =

∞⋃
i=1

Fi.
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Hence, by countable additivity we have

µ
( ∞⋃

i=1

Ai

)
= µ

( ∞⋃
i=1

Fi

)
=

∞∑
i=1

µ(Fi)

= lim
n→∞

n∑
i=1

µ(Fi) = lim
n→∞ µ

( n⋃
i=1

Fi

)
= lim

n→∞ µ(An).

For the decreasing sequence we define En = Bc
n. Then {En}∞n=1

is an increasing sequence of measurable functions and

( ∞⋂
n=1

Bn

)c
=

∞⋃
n=1

En.

Hence,

µ
( ∞⋂

n=1

Bn

)
= 1 − µ

( ∞⋃
i=1

Ei

)
= 1 − lim

n→∞ µ(En)

= lim
n→∞(1 − µ(En))

= lim
n→∞ µ(Bn).

�

Exercise 2.4.6.

(1) Prove for a, b ∈ I that µ([a, b]) = µ((a, b]) = µ([a, b)) = b−a.

(2) Let X be the subset of irrational numbers in I. Prove

µ(X) = 1. Prove that if Y ⊂ I is a closed set and µ(Y ) = 1,

then Y = I.

(3) If A and B are measurable subsets of [0, 1], prove that

µ(A) + µ(B) = µ(A ∪ B) + µ(A ∩ B).

(4) Prove that if X ⊂ I is measurable, then for any ε > 0 there

is an open set U containing X such that µ(U \X) < ε. This

is sometimes referred to as the first of Littlewood’s three
principles.
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(5) Suppose a < b and let M([a, b]) denote the Lebesgue mea-

surable subsets of [a, b]. Define the function f : [0, 1] → [a, b]

by f(x) = mx + a where m = b − a. Show that the

correspondence A �→ f(A) is a bijection from M([0, 1])

to M([a, b]). Define the function µ0 : M([a, b]) → R by

µ0(A) = mµ(f−1(A)). Prove that Theorem 2.4.2 remains

valid if I is replaced by [a, b] and µ is replaced by µ0.

(6) The symmetric difference between two sets A and B is de-

fined to be (A \B)∪ (B \A). It is denoted A ∆ B. Suppose

An ⊂ [a, b] for n ∈ N is measurable and B is also. Prove

that if lim
n→∞µ(An ∆ B) = 0, then lim

n→∞(µ(An)) = µ(B).

(7) In this exercise we show that properties I, III and VI of

Theorem 2.4.2 actually imply the other three properties.

Let µ be a function from M(I) to the non-negative real

numbers satisfying properties I, III and VI.

(a) Prove that if A, B ∈ M(I) and A ⊂ B, then µ(A) ≤
µ(B), i.e., property IV is satisfied. (This only requires

property III.)

(b) Prove that if X ⊂ I is a null set, then X ∈ M(I) and

µ(X) = 0. (This only requires properties I and III.)

(c) Conversely, prove that if X ∈ M(I) and µ(X) = 0,

then X is a null set.

(d) Prove that µ satisfies property II.

2.5. The Lebesgue Density Theorem

The following theorem asserts that if a subset of an interval I is

“equally distributed” throughout the interval, then it must be a null

set or a set of full measure, i.e., the complement of a null set. For

example, it is not possible to have a set A ⊂ [0, 1] which contains half

of each subinterval, i.e., it is impossible to have

µ(A ∩ [a, b]) = µ([a, b])/2

for all 0 < a < b < 1. There will always be small intervals with a

“high concentration” of points of A and other subintervals with a low

concentration. Put another way, it asserts that given any p < 1 there
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is an interval U such that a point in U has “probability” at least p of

being in A.

Theorem 2.5.1. If A is a Lebesgue measurable set and µ(A) > 0

and if 0 < p < 1, then there is an open interval U = (a, b) such that
µ(A ∩ U) ≥ pµ(U) = p(b − a).

Proof. Let p ∈ (0, 1) be given. We know from Proposition 2.4.4 that

for any ε > 0 there is an open set V which contains A such that

µ(V ) < µ(A) + ε and that we can express V as V =
⋃∞

n=1 Un where

{Un}∞n=1 is a countable collection of pairwise disjoint open intervals.

Then

µ(A) ≤ µ(V ) =

∞∑
n=1

len(Un) < µ(A) + ε.

Choosing ε = (1 − p)µ(A) we get

∞∑
n=1

len(Un) < µ(A) + (1 − p)µ(A)

< µ(A) + (1 − p)

∞∑
n=1

len(Un),

so

(2.5.1) p

∞∑
n=1

len(Un) < µ(A) ≤
∞∑

n=1

µ(A ∩ Un),

where the last inequality follows from subadditivity. Since these

infinite series have finite sums, there is at least one n0 such that

pµ(Un0) ≤ µ(A ∩ Un0). This is because if it were the case that

pµ(Un) > µ(A ∩ Un) for all n, then it would follow that

p

∞∑
n=1

len(Un) >

∞∑
n=1

µ(A ∩ Un),

contradicting equation (2.5.1). The interval Un0 is the U we want. �

We have shown that given p ∈ (0, 1) as close to 1 as we like, there

is an open interval in which the “relative density” of A is at least p.

It is often useful to have these intervals all centered at a particular

point called a density point.
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Definition 2.5.2. (Density point). If A is a Lebesgue measurable
set and x ∈ A, then x is called a Lebesgue density point if

lim
ε→0

µ(A ∩ [x − ε, x + ε])

µ([x − ε, x + ε])
= 1.

There is a much stronger result than Theorem 2.5.1 above, which

we now state, but do not prove. A proof can be found in Section 9.2

of [T].

Theorem 2.5.3. (Lebesgue density theorem). If A is a Lebesgue
measurable set, then there is a subset E ⊂ A with µ(E) = 0 such that
every point of A \ E is a Lebesgue density point.

Exercise 2.5.4.

(1) Prove that if A ⊂ I = [0, 1] has measure µ(A) < 1 and ε > 0,

then there is an interval [a, b] ⊂ I such that µ(A ∩ [a, b]) <

ε(b − a).

(2) Let A be a measurable set with µ(A) > 0 and let

∆ = {x1 − x2 | x1, x2 ∈ A}
be the set of differences of elements of A. Then for some

ε > 0 the set ∆ contains the interval (−ε, ε).

2.6. Lebesgue Measurable Sets – Summary

In this section we provide a summary outline of the key properties

of the collection M of Lebesgue measurable sets which have been

developed in this chapter. If I is a closed interval, then M(I) denotes

the subsets of I which are in M.

(1) The collection of Lebesgue measurable sets M is a σ-algebra,

which means:

• If A ∈ M, then Ac ∈ M.

• If An ∈ M for n ∈ N, then
⋃∞

n=1 An ∈ M.

• If An ∈ M for n ∈ N, then
⋂∞

n=1 An ∈ M.

(2) All open sets and all closed sets are in M. Any null set is

in M.
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(3) If I = [0, 1] and A ∈ M(I), then there is a non-negative real

number µ(A) called its Lebesgue measure which satisfies:

• The Lebesgue measure of an interval is its length.

• Lebesgue measure is translation invariant.

• If A ∈ M(I), then µ(Ac) = 1 − µ(A).

• A set A ∈ M(I) is a null set if and only if µ(A) = 0.

• Countable subadditivity: If An ∈ M(I) for n ∈ N, then

µ
( ∞⋃

n=1

An

) ≤
∞∑

n=1

µ(An).

• Countable additivity: If An ∈ M(I) for n ∈ N are

pairwise disjoint sets, then

µ
( ∞⋃

n=1

An

)
=

∞∑
n=1

µ(An).

• Regularity: If A ∈ M(I), then

µ(A) = inf{µ(U) | U is open and A ⊂ U}.
• Increasing sequences: If An ∈ M(I) for n ∈ N satisfy

An ⊂ An+1, then

µ
( ∞⋃

n=1

An

)
= lim

n→∞ µ(An).

• Decreasing sequences: If An ∈ M(I) for n ∈ N satisfy

An ⊃ An+1, then

µ
( ∞⋂

n=1

An

)
= lim

n→∞ µ(An).

Exercise 2.6.1. (The Cantor middle third set). Recursively

define a nested sequence {Jn}∞n=0 of closed subsets of I = [0, 1]. Each

Jn consists of a finite union of closed intervals. We define J0 to be I

and let Jn be the union of the closed intervals obtained by deleting

the open middle third interval from each of the intervals in Jn−1.
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Thus

J0 = [0, 1],

J1 =
[
0,

1

3

]
∪

[2

3
, 1

]
,

J2 =
[
0,

1

9

]
∪

[2

9
,
1

3

]
∪

[2

3
,
7

9

]
∪

[8

9
, 1

]
, etc.

We define the Cantor middle third set C by

C =

∞⋂
n=0

Jn.

(1) When the open middle thirds of the intervals in Jn−1 are

removed we are left with two sets of closed intervals: the left

thirds of the intervals in Jn−1 and the right thirds of these

intervals. We denote the union of the left thirds by Ln and

the right thirds by Rn, and we note that Jn = Ln∪Rn. Prove

that Ln and Rn each consist of 2n−1 intervals of length 1/3n

and hence Jn contains 2n intervals of length 1/3n.

(2) (Topological properties)
(a) Prove C is compact.

(b) A closed subset of R is called nowhere dense if it con-

tains no non-empty open interval. Prove that C is

nowhere dense.

(c) A closed subset A of R is called perfect if for every

ε > 0 and every x ∈ A there is y ∈ A with x �= y and

|x − y| < ε. Prove that C is perfect.

(3) Let D be the uncountable set of all infinite sequences

d1d2d3 . . . dn . . . ,

where each dn is either 0 or 1 (see part (4) of Exercise A.5.12)

and define a function ψ : C → D by ψ(x) = d1d2d3 . . . dn . . . ,

where each dn = 0 if x ∈ Ln and dn = 1 if x ∈ Rn. Prove

that ψ is surjective and hence by Corollary A.5.7 the set C

is uncountable. Hint: You will need to use Theorem A.7.3.

Prove that ψ is also injective and hence a bijection.

(4) Prove that C is Lebesgue measurable and that µ(C) = 0.

Hint: Consider Cc, the complement of C in I. Show it
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is measurable and calculate µ(Cc). Alternative hint: Show

directly that C is a null set by finding for each ε > 0 a

collection of open intervals {Un}∞n=1 such that

∞∑
n=1

len(Un) < ε and C ⊂
∞⋃

n=1

Un.

(5) Prove that C is the subset of elements of [0, 1] which can

be represented in base three using only the digits 0 and 2.

More precisely, prove that x ∈ C if and only if it can be

expressed in the form

x =

∞∑
n=1

cn

3n

where each cn is either 0 or 2.

                

                                                                                                               



Chapter 3

The Lebesgue Integral

3.1. Measurable Functions

In this chapter we want to define the Lebesgue integral in a fashion

which is analogous to our definitions of regulated integral and Rie-

mann integral from Chapter 1. The difference is that we will no longer

use step functions to approximate a function we want to integrate,

but instead will use a much more general class called simple functions.

Definition 3.1.1. (Characteristic function). If A ⊂ [0, 1], its
characteristic function XA(x) (sometimes called the indicator func-

tion) is defined by

XA(x) =

{
1, if x ∈ A;

0, otherwise.

Definition 3.1.2. (Measurable partition). A finite measurable

partition of [0, 1] is a collection {Ai}n
i=1 of measurable subsets which

are pairwise disjoint and whose union is [0, 1].

We can now define simple functions. Like step functions these

functions have only finitely many values, but unlike step functions

the set on which a simple function assumes a given value is no longer

an interval. Instead, a simple function is constant on each subset of

a finite measurable partition of [0, 1].

41
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Definition 3.1.3. (Simple function). A function f : [0, 1] → R

is called Lebesgue simple or simple, for short, provided there exist a
finite measurable partition of [0, 1], {Ai}n

i=1 and real numbers ri such
that f(x) =

∑n
i=1 riXAi

. The Lebesgue integral of a simple function
is defined by

∫
f dµ =

∑n
i=1 riµ(Ai).

Notice that the statement f(x) =
∑n

i=1 riXAi
just says f(x) = ri

if x ∈ Ai. The definition of the integral of a simple function should

come as no surprise. The fact that
∫

XA(x) dµ is defined to be µ(A)

is the generalization of the fact that the Riemann integral
∫ b

a
1 dx =

len([a, b]). The value of
∫

f dµ for a simple function f is then forced

if we want our integral to have the linearity property.

Lemma 3.1.4. (Properties of simple functions). The set of
simple functions is a vector space and the Lebesgue integral of simple
functions satisfies the following properties:

(1) Linearity: If f and g are simple functions and c1, c2 ∈ R,

then∫
c1f + c2g dµ = c1

∫
f dµ + c2

∫
g dµ.

(2) Monotonicity: If f and g are simple and f(x) ≤ g(x) for
all x, then

∫
f dµ ≤ ∫

g dµ.

(3) Absolute value: If f is simple, then |f | is simple and
| ∫ f dµ| ≤ ∫ |f | dµ.

Proof. If f is simple, then clearly c1f is simple. Hence, to show that

simple functions form a vector space it suffices to show that the sum

of two simple functions is simple.

Suppose {Ai}n
i=1 and {Bj}m

j=1 are measurable partitions of [0, 1]

and that f(x) =
∑n

i=1 riXAi
and g(x) =

∑m
j=1 sjXBj

are simple

functions. We consider the measurable partition {Ci,j} with Ci,j =

Ai ∩ Bj . Then Ai =
⋃m

j=1 Ci,j and Bj =
⋃n

i=1 Ci,j , so

f(x) =

n∑
i=1

riXAi
=

n∑
i=1

ri

m∑
j=1

XCi,j
(x) =

∑
i,j

riXCi,j
.
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Likewise,

g(x) =

m∑
j=1

sjXBj
=

m∑
j=1

sj

n∑
i=1

XCi,j
(x) =

∑
i,j

sjXCi,j
.

Hence, f(x) + g(x) =
∑

i,j(ri + sj)XCi,j
(x) is simple and the set of

simple functions forms a vector space.

It follows immediately from the definition that if f is simple and

a ∈ R, then
∫

af dµ = a
∫

f dµ. So to prove linearity we need only

show that if f and g are simple functions as above, then
∫

(f +g) dµ =∫
f dµ +

∫
g dµ. But this follows because∫
(f + g) dµ =

∑
i,j

(ri + sj)µ(Ci,j)

=
∑
i,j

riµ(Ci,j) +
∑
i,j

sjµ(Ci,j)

=

n∑
i=1

ri

m∑
j=1

µ(Ci,j) +

m∑
j=1

sj

n∑
i=1

µ(Ci,j)

=

n∑
i=1

riµ(Ai) +

m∑
j=1

sjµ(Bj)

=

∫
f dµ +

∫
g dµ.

Monotonicity follows from the fact that if f and g are simple

functions with f(x) ≤ g(x), then g(x) − f(x) is a non-negative sim-

ple function. Clearly, from the definition of the integral of a simple

function, if the function is non-negative, then its integral is ≥ 0. Thus∫
g dµ − ∫

f dµ =
∫

g − f dµ ≥ 0.

If f(x) =
∑

riXAi
, the absolute value property follows from the

fact that∣∣∣ ∫
f dµ

∣∣∣ =

∣∣∣ ∑
riµ(Ai)

∣∣∣ ≤ ∑
|ri|µ(Ai) =

∫
|f | dµ.

�

We would like to consider the measure µ(A) for any set A ∈ M,

not just subsets of I. Mostly this is straightforward, but there is one
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notational issue. Some subsets of R have infinite measure, for exam-

ple, the open interval (0,∞) or R itself. Hence, we cannot describe

µ as a real-valued function defined for any set A ∈ M, because µ(A)

might be infinite. There are other instances also when we want to

allow the value of a function to be +∞ or −∞. The conventional

solution is to introduce the symbols ∞ and −∞ and to agree that a

statement like µ(A) = ∞ means that A contains subsets of arbitrarily

large finite measure.

Definition 3.1.5. (Extended real-valued function). The set R∪
{∞} ∪ {−∞} is called the extended real numbers. We denote it by
[−∞, +∞]. A function f : X → [−∞, +∞] is called an extended

real-valued function.

For a ∈ R we will denote the set (−∞, a]∪{−∞} by [−∞, a] and

the set [a,∞) ∪ {∞} by [a,∞]. We will sometimes want to compare

elements of [−∞, +∞] and write inequalities relating them. Thus, for

example, by convention −∞ ≤ x ≤ ∞ for every x ∈ [−∞, +∞] and

y +∞ = ∞ for every y ∈ R. Likewise, y −∞ = −∞ for every y ∈ R,

but ∞−∞ is undefined.

There is an extremely important class of functions which are well

behaved with respect to Lebesgue measure. Functions in this class

are called measurable functions. Our next task is to characterize them

in several ways. We will then be able to define them as the functions

satisfying any one of these characterizations.

Proposition 3.1.6. (Measurable functions). If X ⊂ R and f :

X → [−∞,∞] is an extended real-valued function, then the following
are equivalent:

(1) For any a ∈ R the set f−1([−∞, a]) is Lebesgue measurable.

(2) For any a ∈ R the set f−1([−∞, a)) is Lebesgue measurable.

(3) For any a ∈ R the set f−1([a,∞]) is Lebesgue measurable.

(4) For any a ∈ R the set f−1((a,∞]) is Lebesgue measurable.

Proof. We will show (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).
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First assume (1), then [−∞, a) =
⋃∞

n=1[−∞, a − 2−n]. So

f−1([−∞, a)) =

∞⋃
n=1

f−1([−∞, a − 2−n]),

which is measurable since it is a countable union of measurable sets.

Hence (2) holds.

Now assume (2), then [a,∞] = [−∞, a)c, so

f−1([a,∞]) = f−1([−∞, a)c) = (f−1([−∞, a)))c.

Hence (3) holds since the complement of a measurable set is measur-

able.

Assuming (3) we note, (a,∞] =
⋃∞

n=1[a + 2−n,∞]. So

f−1((a,∞]) =

∞⋃
n=1

f−1([a + 2−n,∞]),

which is measurable since it is a countable union of measurable sets.

Hence (4) holds.

Finally, assume (4), then [−∞, a] = (a,∞]c, so

f−1([−∞, a]) = f−1((a,∞]c) = (f−1((a,∞]))c.

Hence (1) holds. �

We are now ready for one of the most important definitions in

this chapter.

Definition 3.1.7. (Measurable function). An extended real-
valued function f is called Lebesgue measurable if it satisfies one (and
hence all) of the properties of Proposition 3.1.6.

It is surprising how many functions turn out to be measurable.

Indeed, it is hard to find a non-measurable function! Of course, that

does not relieve us of the task of proving the functions we want to

make use of are measurable.

Proposition 3.1.8. Suppose f and g are extended real-valued func-
tions defined on [a, b].

(1) If there is a null set A ⊂ [a, b] such that f(x) = 0 if x /∈ A,

then f is measurable.
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(2) If f = g except on a null set A, then f is measurable if and
only if g is.

Proof. For part (1) we observe that by hypothesis,

A ⊃ f−1([−∞, 0)) ∪ f−1((0,∞]).

For a < 0 the set Ua = f−1([−∞, a]) is a subset of A so Ua is a null

set and hence measurable. For a ≥ 0 the set Ua = f−1([−∞, a]) is

the complement of the null set f−1((a,∞]) and hence measurable.

In either case Ua is measurable, so f is a measurable function. This

proves (1).

To prove (2) we will assume f is measurable and prove that g is

also. The other case is similar. Suppose a ∈ R. We must show that

the set

g−1([a,∞]) = (g−1([a,∞]) ∩ A) ∪ (g−1([a,∞]) ∩ Ac)

is measurable. Since f(x) = g(x) for all x ∈ Ac the set

g−1([a,∞]) ∩ Ac = f−1([a,∞]) ∩ Ac

which is measurable. Also, the set g−1([a,∞])∩A) ⊂ A is a null set,

so it is measurable. Hence, g−1([a,∞]) is measurable. �

Theorem 3.1.9. Let {fn}∞n=1 be a sequence of measurable functions.
Then the extended real-valued functions

g1(x) = sup
n∈N

fn(x),

g2(x) = inf
n∈N

fn(x),

g3(x) = lim sup
n→∞

fn(x),

g4(x) = lim inf
n→∞ fn(x),

are all measurable. In particular, the max or min of a finite set of
measurable functions is measurable.

Proof. If a ∈ R, then

{x | g1(x) > a} =

∞⋃
n=1

{x | fn(x) > a}.
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Each of the sets on the right is measurable, so {x | g1(x) > a} is

also since it is a countable union of measurable sets. Hence, g1 is

measurable.

Since g2(x) = infn∈N fn(x) = − supn∈N −fn(x) it follows that g2

is also measurable.

Since the limit of a decreasing sequence is the inf of the terms,

g3(x) = lim sup
n→∞

fn(x) = inf
m∈N

sup
n≥m

fn(x).

It follows that g3 is measurable and since

g4(x) = lim inf
n→∞ fn(x) = − lim sup

n→∞
−fn(x),

it follows that g4 is measurable. �

For the following result we need to use honest real-valued func-

tions, i.e., not extended. The reason for this is that there is no way

to define the sum of two extended real-valued functions if one has the

value +∞ at a point and the other has the value −∞ at the same

point.

Theorem 3.1.10. The set of Lebesgue measurable functions from
[0, 1] to R is a vector space. The set of bounded Lebesgue measurable
functions is a vector subspace. Moreover, if f and g are measurable,
then their product fg is measurable.

Proof. It is immediate from the definition that for c ∈ R the function

cf is measurable when f is. Suppose f and g are measurable. We

need to show that f + g is also measurable, i.e., that for any a ∈ R

the set Ua = {x | f(x) + g(x) > a} is measurable.

Let {rn}∞n=1 be an enumeration of the rationals. If x0 ∈ Ua, i.e.,

if f(x0) + g(x0) > a, then f(x0) > a − g(x0). Since the rationals are

dense there is an rm such that f(x0) > rm > a − g(x0). Hence, if we

define

Vm = {x | f(x) > rm} ∩ {x | g(x) > a − rm},
then x0 ∈ Vm. So every point of Ua is in some Vm. Conversely, if y0 ∈
Vm for some m, then f(y0) > rm > a−g(y0), so f(y0)+g(y0) > a and

y0 ∈ Ua. Thus, Ua =
⋃∞

m=1 Vm and since each Vm is measurable, we
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conclude that Ua is measurable. This shows that f +g is a measurable

function and hence the measurable functions form a vector space.

Clearly, if f and g are bounded measurable functions and c ∈ R,

then cf and f + g are bounded. We have just shown that they are

also measurable, so the bounded measurable functions are a vector

subspace.

The proof that the product of measurable functions is measurable

is left as an exercise (see part (5) of Exercise 3.1.11 below). �

Exercise 3.1.11.

(1) Prove that if f and g are simple functions, then so is fg. In

particular, if E ⊂ [0, 1] is measurable, then fXE is a simple

function.

(2) Prove that if f is a continuous function, then f is measur-

able.

(3) Prove that if f is a measurable extended real-valued func-

tion, then f−1(∞) and f−1(−∞) are measurable.

(4) Prove that if f is a measurable function, then so is f2.

(5) Prove that if f and g are measurable functions, then so is

fg. Hint: 2fg = (f + g)2 − f2 − g2.

(6) Suppose that f : I → R is a simple function and ε > 0.

Prove that there is a step function g : I → R such that

µ(E) < ε, where E = {x | f(x) �= g(x)}. Hint: Use part (4)

of Exercise 2.4.6.

3.2. The Lebesgue Integral of Bounded
Functions

In this section we want to define the Lebesgue integral and charac-

terize the bounded integrable functions. In the case of the regulated

integral, the integrable functions are the uniform limits of step func-

tions. In the case of the Riemann integral a function f is integrable if

the infimum of the integrals of step functions larger than f equals the

supremum of the integrals of step functions less than f. It is natural

to alter both of these definitions, replacing step functions with simple
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functions. It turns out that when we do this for bounded functions we

get the same class of integrable functions whether we use the analog

of regulated integral or the analog of Riemann integral. Moreover,

this class is precisely the bounded measurable functions!

Theorem 3.2.1. If f : [0, 1] → R is a bounded function, then the
following are equivalent:

(1) The function f is Lebesgue measurable.

(2) There is a sequence of simple functions {fn}∞n=1 which con-
verges uniformly to f .

(3) If Uµ(f) denotes the set of all simple functions u(x) such
that f(x) ≤ u(x) for all x and if Lµ(f) denotes the set of all
simple functions v(x) such that v(x) ≤ f(x) for all x, then

sup
v∈Lµ(f)

{∫
v dµ

}
= inf

u∈Uµ(f)

{∫
u dµ

}
.

Proof. We will show (1) ⇒ (2) ⇒ (3) ⇒ (1). To show (1) ⇒ (2),

assume f is a bounded measurable function, say a ≤ f(x) ≤ b for all

x ∈ [0, 1].

Let εn = (b − a)/n. We will partition the range [a, b] of f by

intervals as follows: Let ck = a + kεn, so a = c0 < c1 < · · · < cn = b.

Now define a measurable partition of [0, 1] by Ak = f−1([ck−1, ck))

for k < n and An = f−1([cn−1, b]). Then clearly fn(x) =
∑n

i=1 ckXAk

is a simple function. Moreover, we note that for any x ∈ [0, 1] we have

|f(x) − fn(x)| ≤ εn. This is because x must lie in one of the A’s, say

x ∈ Aj . So fn(x) = cj and f(x) ∈ [cj−1, cj [. Hence, |f(x) − fn(x)| ≤
cj − cj−1 = εn. This implies that the sequence of simple functions

{fn}∞n=1 converges uniformly to f .

To show (2) ⇒ (3), assume f is the uniform limit of the sequence

of simple functions {fn}∞n=1. This means if δn = sup
x∈[0,1]

|f(x)−fn(x)|,
then lim δn = 0. We define simple functions vn(x) = fn(x) − δn and

un(x) = fn(x) + δn, so vn(x) ≤ f(x) ≤ un(x).
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Then

inf
u∈Uµ(f)

{∫
u dµ

}
≤ lim inf

n→∞

∫
un dµ

= lim inf
n→∞

∫
(fn + δn) dµ

= lim inf
n→∞

∫
fn dµ

≤ lim sup
n→∞

∫
fn dµ

= lim sup
n→∞

∫
(fn − δn) dµ

≤ lim sup
n→∞

∫
vn dµ

≤ sup
v∈Lµ(f)

{∫
v dµ

}
.

For any v ∈ Lµ(f) and any u ∈ Uµ(f) we have
∫

v dµ ≤ ∫
u dµ,

so

sup
v∈Lµ(f)

{∫
v dµ

}
≤ inf

u∈Uµ(f)

{∫
u dµ

}
.

Combining this with the inequality above we conclude that

sup
v∈Lµ(f)

{∫
v dµ

}
= inf

u∈Uµ(f)

{∫
u dµ

}
.

All that remains is to show that (3) ⇒ (1). For this we note that

if (3) holds, then for any n > 0 there are simple functions vn and un

such that vn(x) ≤ f(x) ≤ un(x) for all x and such that

(3.2.1)

∫
un dµ −

∫
vn dµ < 2−n.

By Theorem 3.1.9 the functions

g1(x) = sup
n∈N

{
vn(x)

}
and g2(x) = inf

n∈N

{
un(x)

}
are measurable. They are also bounded and satisfy g1(x) ≤ f(x) ≤
g2(x). We want to show that g1(x) = g2(x) except on a set of measure
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zero, which we do by contradiction. Let B = {x | g1(x) < g2(x)} and

suppose µ(B) > 0. Then since B =
⋃∞

i=1 Bm where

Bm = {x | g1(x) < g2(x) − 1

m
}

we conclude that µ(Bm0) > 0 for some m0. This implies that for

every n and every x ∈ Bm0 we have vn(x) ≤ g1(x) < g2(x) − 1
m0

≤
un(x) − 1

m0
. So un(x) − vn(x) > 1

m0
for all x ∈ Bm0 and hence

un(x) − vn(x) > 1
m0

XBm0
(x) for all x. But this would mean that∫

un dµ −
∫

vn dµ =

∫
un − vn dµ

≥
∫

1

m0
XBm0

dµ

=
1

m0
µ(Bm0)

for all n which contradicts equation (3.2.1) above.

Hence it must be the case that µ(B) = 0 so g1(x) = g2(x) ex-

cept on a set of measure zero. But since g1(x) ≤ f(x) ≤ g2(x)

this means that if we define h(x) = f(x) − g1(x), then h(x) is zero

except on a subset of B which is a set of measure 0. It then follows

from Proposition 3.1.8 that h is a measurable function. Consequently,

f(x) = g1(x) + h(x) is also measurable and we have completed the

proof that (3) ⇒ (1). �

We can now provide the (long awaited) definition of the Lebesgue

integral, at least for bounded functions.

Definition 3.2.2. (Lebesgue integral of a bounded function).
If f : [0, 1] → R is a bounded measurable function, then we define its

Lebesgue integral by∫
f dµ = sup

v∈Lµ(f)

{∫
v dµ

}
,

or equivalently (by Theorem 3.2.1),∫
f dµ = inf

u∈Uµ(f)

{ ∫
u dµ

}
.

                

                                                                                                               



52 3. The Lebesgue Integral

Alternatively, as the following proposition shows, we could have

defined it to be the limit of the integrals of a sequence of simple

functions converging uniformly to f.

Proposition 3.2.3. If {gn}∞n is any sequence of simple functions
converging uniformly to a bounded measurable function f , then

lim
n→∞

∫
gn dµ =

∫
f dµ.

Proof. If we let δn = supx∈[0,1] |f(x) − gn(x)|, then lim δn = 0 and

gn(x) − δn ≤ f(x) ≤ gn(x) + δn.

So gn − δn ∈ Lµ(f) and gn + δn ∈ Uµ(f). Hence,∫
f dµ = inf

u∈Uµ(f)

∫
u dµ

≤ lim inf
n→∞

∫
(gn + δn) dµ

= lim inf
n→∞

∫
gn dµ

≤ lim sup
n→∞

∫
gn dµ

≤ lim sup
n→∞

∫
(gn − δn) dµ

≤ sup
v∈Lµ(f)

{∫
v dµ

}

=

∫
f dµ.

Hence, these inequalities must be equalities and

lim
n→∞

∫
gn dµ =

∫
f dµ.

�

We proved in Theorem 3.1.10 that the bounded Lebesgue mea-

surable functions are a vector space and we have now defined the

Lebesgue integral as a function from this vector space to the real

numbers. Next we want to check some of the “Basic Properties”

listed in Section 1.2 of Chapter 1 as necessary for any well-behaved
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integral. One difference is that we have improved the “finite sets don’t

matter” property to “null sets don’t matter.”

Theorem 3.2.4. Suppose f and g are bounded Lebesgue measurable
functions defined on [0, 1]. Then the Lebesgue integral satisfies the
following properties:

I. Linearity: If c1, c2 ∈ R, then∫
c1f + c2g dµ = c1

∫
f dµ + c2

∫
g dµ.

II. Monotonicity: If f(x) ≤ g(x) for all x, then
∫

f dµ ≤∫
g dµ.

III. Absolute value: The fact that f is Lebesgue measurable
implies that |f | is also, and | ∫ f dµ| ≤ ∫ |f | dµ.

IV. Null sets: If f(x) = g(x) except on a set of measure zero,
then

∫
f dµ =

∫
g dµ.

Proof. If f and g are measurable, there exist sequences of simple

functions {fn}∞n=1 and {gn}∞n=1 converging uniformly to f and g re-

spectively. This implies that the sequence {c1fn+c2gn}∞n=1 converges

uniformly to the bounded measurable function c1f+c2g. The fact that∫
c1f + c2g dµ = lim

n→∞

∫
(c1fn + c2gn) dµ

= c1 lim
n→∞

∫
fn dµ + c2 lim

n→∞

∫
gn dµ

= c1

∫
f dµ + c2

∫
g dµ

implies the linearity property.

Similarly, the absolute value property follows from Lemma 3.1.4

because∣∣∣ ∫
f dµ

∣∣∣ = lim
n→∞

∣∣∣ ∫
fn dµ

∣∣∣ ≤ lim
n→∞

∫
|fn| dµ =

∫
|f | dµ.

To show monotonicity we use the definition of the Lebesgue in-

tegral. If f(x) ≤ g(x), then∫
f dµ = sup

v∈Lµ(f)

{∫
v dµ

}
≤ inf

u∈Uµ(g)

{∫
u dµ

}
=

∫
g dµ.
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To show the null set property let h(x) = f(x) − g(x). Then h

is a bounded measurable function which is 0 except on a set E with

µ(E) = 0. Hence,∣∣∣ ∫
f dµ −

∫
g dµ

∣∣∣ =

∣∣∣ ∫
h dµ

∣∣∣ ≤ ∫
|h| dµ.

But the function h is bounded, say |h(x)| ≤ M . So |h(x)| ≤ MXE(x)

and by monotonicity∫
|h| dµ ≤

∫
MXE dµ = Mµ(E) = 0.

It follows that | ∫ f dµ − ∫
g dµ| = 0, so

∫
f dµ =

∫
g dµ. �

With the regulated and Riemann integrals we could integrate over

subintervals of [0, 1]. We can do that also with the Lebesgue integral.

Indeed, we can do better and integrate over any measurable subset of

[0, 1].

Definition 3.2.5. If E ⊂ [0, 1] is a measurable set and f is a bounded
measurable function, we define the Lebesgue integral of f over E by∫

E

f dµ =

∫
fXE dµ.

Proposition 3.2.6. (Additivity). Suppose {En}N
n=1 is a collec-

tion of pairwise disjoint measurable subsets of I, and f is a bounded
measurable function. If E =

⋃N
n=1 En, then∫

E

f dµ =

N∑
n=1

∫
En

f dµ.

In fact, this result is true for a countable collection {En}∞n=1, but

we postpone the proof of that until we can do it in the more general

setting of not necessarily bounded functions.

Proof. Note that

XE =

N∑
n=1

XEn
, so fXE =

N∑
n=1

fXEn

and the result follows by linearity of the integral. �
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It should be clear that there are many Lebesgue integrable func-

tions which are not Riemann integrable (for example, if A = Q ∩ I,

then XA is not Riemann integrable). We also need to show that in

passing to the Lebesgue integral we do not lose anything.

Proposition 3.2.7. (Riemann integrable implies Lebesgue in-
tegrable). Every bounded Riemann integrable function f : [0, 1] → R

is measurable and hence Lebesgue integrable. The values of the Rie-
mann and Lebesgue integrals coincide.

Proof. The set U(f) of step functions greater than f is a subset of

the set Uµ(f) of simple functions greater than f . Likewise, the set

L(f) ⊂ Lµ(f). Hence,

sup
v∈L(f)

{ ∫ 1

0

v(t) dt
}
≤ sup

v∈Lµ(f)

{ ∫
v dµ

}

≤ inf
u∈Uµ(f)

{∫
u dµ

}

≤ inf
u∈U(f)

{∫ 1

0

u(t) dt
}

.

The fact that f is Riemann integrable asserts that the first and last

of these values are equal. Hence they are all equal. By Theorem 3.2.1

f is measurable. The fact that the Riemann and Lebesgue integrals

coincide now follows from their definitions and the equality of all the

values in the inequality above. �

Exercise 3.2.8.

(1) Since simple functions are themselves bounded measurable

functions, we have actually given two definitions of their

Lebesgue integral: the one in Definition 3.1.3 and the one

above in Definition 3.2.2. Prove that these definitions give

the same value.

(2) Suppose f and g are measurable functions defined on [0, 1]

and suppose |f(x)| < M and |g(x)| < M for all x. Let E

denote the set of x such that |f(x) − g(x)| ≥ ε. Prove that∫
|f(x) − g(x)| dµ < ε + 2Mµ(E).
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3.3. The Bounded Convergence Theorem

We want to investigate the question, “When does the fact that a

sequence of functions {fn}∞n=1 converges pointwise to a function f

imply that their Lebesgue integrals converge to the integral of f?”

This general question is an important one which will occupy much

of the remainder of this chapter and a substantial part of the next

chapter. It is straightforward to prove that if a sequence of bounded

measurable functions converges uniformly to f, then their integrals

converge to the integral of f . We will not do this now, because we

prove a stronger result later; but first we consider an example which

shows what can go wrong when we only have pointwise convergence.

Example 3.3.1. Let

fn(x) =

{
n, if x ∈ [ 1

n , 2
n ];

0, otherwise.

Then fn is a step function equal to n on an interval of length 1
n and

0 elsewhere. Thus
∫

fn dµ = n 1
n = 1; but, for any x ∈ [0, 1] we have

fn(x) = 0 for all sufficiently large n. Thus, the sequence {fn}∞n=1

converges pointwise to the constant function 0. Hence∫
( lim
n→∞ fn(x)) dµ = 0 and lim

n→∞

∫
fn dµ = 1.

In this example each fn is a bounded step function, but there is

no single bound which works for all fn since the maximum value of

fn is n. It turns out that any example of this sort must be a sequence

of functions which is not uniformly bounded.

Theorem 3.3.2. (Bounded convergence theorem). Let {fn}∞n=1

be a sequence of measurable functions defined on [0, 1] which converges
pointwise to a function f : [0, 1] → R. Suppose there is a constant
M > 0 such that |fn(x)| ≤ M for all n and all x ∈ [0, 1]. Then f is a
bounded measurable function and

lim
n→∞

∫
fn dµ =

∫
f dµ.
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Proof. For each x ∈ [0, 1] we know that lim
m→∞ fm(x) = f(x). This

implies that |f(x)| ≤ M. Since f is a limit of measurable functions,

it is measurable by Theorem 3.1.9.

We must show that

lim
n→∞

∣∣∣ ∫
fn dµ −

∫
f dµ

∣∣∣ = 0,

but

lim
n→∞

∣∣∣ ∫
fn dµ −

∫
f dµ

∣∣∣ = lim
n→∞

∣∣∣ ∫
(fn − f) dµ

∣∣∣(3.3.1)

≤ lim
n→∞

∫
|fn − f | dµ.

So we need to estimate the integral of |fn − f |.
Given ε > 0, define

En =
{
x

∣∣ |fm(x) − f(x)| < ε/2 for all m ≥ n
}
.

Notice that if for some n the set En were all of [0, 1] we would be

able to estimate
∫ |fm − f | dµ ≤ ∫

ε/2 dµ = ε/2 for all m ≥ n;

but we don’t know that. Instead, we know that for any x the limit

lim
m→∞ fm(x) = f(x), which means that each x is in some En (where

n depends on x). In other words,
⋃∞

n=1 En = [0, 1].

Since En ⊂ En+1 we know that lim
n→∞µ(En) = µ([0, 1]) = 1 by

Proposition 2.4.5. Thus, there is an n0 such that

µ(En0) > 1 − ε

4M
, and hence µ(Ec

n0
) <

ε

4M
.

Now for any n > n0 we have∫
|fn − f | dµ =

∫
En0

|fn − f | dµ +

∫
Ec

n0

|fn − f | dµ

≤
∫

En0

ε

2
dµ +

∫
Ec

n0

2M dµ

≤ ε

2
µ(En0) + 2Mµ(Ec

n0
)

≤ ε

2
+ 2M

ε

4M
= ε.
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Thus, we have shown lim
n→∞

∫
|fn − f | dµ = 0. Putting this together

with the inequality from equation (3.3.1) we see that

lim
n→∞

∣∣∣ ∫
fn dµ −

∫
f dµ

∣∣∣ = 0,

as desired. �

Definition 3.3.3. (Almost everywhere). If a property holds for
all x except for a set of measure zero, we say that it holds almost

everywhere or for almost all values of x.

For example, we say that two functions f and g defined on [0, 1]

are equal almost everywhere if the set of x with f(x) �= g(x) has

measure zero. The last part of Theorem 3.2.4 asserted that if f(x) =

g(x) almost everywhere, then
∫

f dµ =
∫

g dµ. As another example,

we say lim
n→∞ fn(x) = f(x) for almost all x if the set of x, where the

limit does not exist or is not equal to f(x), is a set of measure zero.

We can now state an improved version of Theorem 3.3.2, the

bounded convergence theorem. In this version the hypotheses are

weaker in that we require them to hold only almost everywhere. It is

important to understand both when and why “almost everywhere” is

as good as everywhere. In the following theorem we provide all the

details in this transition, but through most of the remainder of the

text we will assume the reader is facile in justifying why a hypothesis

of almost everywhere is sufficient.

Theorem 3.3.4. (Better bounded convergence theorem). Sup-
pose {fn}∞n=1 is a sequence of bounded measurable functions defined
on [0, 1] and f : [0, 1] → R is a bounded function such that

lim
n→∞ fn(x) = f(x)

for almost all x. Suppose also there is a constant M > 0 such that for
each n > 0, |fn(x)| ≤ M almost everywhere. Then f is a measurable
function and

lim
n→∞

∫
fn dµ =

∫
f dµ.
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Proof. Let A = {x | lim
n→∞ fn(x) �= f(x)}, then µ(A) = 0. Define the

set Dn = {x | |fn(x)| > M}. Then µ(Dn) = 0, so if

E = A ∪
∞⋃

n=1

Dn,

then µ(E) = 0. Let

gn(x) = fn(x)XEc(x)

=

{
fn(x), if x /∈ E;

0, if x ∈ E.

The function gn is a product of measurable functions, so by Theo-

rem 3.1.10 it is measurable.

Define the function g by g(x) = f(x)XEc(x). Note that |gn(x)| ≤
M for all x ∈ [0, 1] and lim

n→∞ gn(x) = g(x) for all x ∈ [0, 1]. This is

true because if x ∈ E, both gn(x) and g(x) are 0 and if x ∈ Ec, then

lim
n→∞ gn(x) = lim

n→∞ fn(x) = f(x) = g(x).

We conclude that |g(x)| ≤ M since |gn(x)| ≤ M . Since g is a limit of

measurable functions it is measurable by Theorem 3.1.9.

Finally, note from their definitions that g(x) = f(x) almost ev-

erywhere and gn(x) = fn(x) almost everywhere. It follows that f

is measurable by Proposition 3.1.8. By the null set property from

Theorem 3.2.4∫
f dµ =

∫
g dµ and

∫
fn dµ =

∫
gn dµ.

Hence, it will suffice to show that

lim
n→∞

∫
gn dµ =

∫
g dµ,

but this is true by the bounded convergence theorem, Theorem 3.3.2.

�

Exercise 3.3.5.

(1) Suppose {fn} is a sequence of measurable functions and

lim
n→∞ fn(x) = f(x) almost everywhere. Prove that f is mea-

surable.
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(2) A function f is called essentially bounded provided there

exists M > 0 such that |f(x)| ≤ M almost everywhere.

The number M is called an essential bound. Prove that

essentially bounded measurable functions are a vector space.

Prove that the product of essentially bounded functions is

essentially bounded.

(3) Formulate a definition of the Lebesgue integral of an essen-

tially bounded function in terms of the integral of a bounded

function. Prove that Theorem 3.2.4 remains valid for essen-

tially bounded functions with your definition.

Hint: Show that if M is an essential bound for f and

fM (x) =

⎧⎪⎪⎨
⎪⎪⎩

M, if f(x) > M ;

f(x), if − M ≤ f(x) ≤ M ;

−M if f(x) < −M,

then
∫

fM dµ is independent of M .

(4) A sequence {fn} with the property that

lim
n→∞

∫
|f − fn| dµ = 0

is said to converge in the mean to the function f. Sup-

pose {fn} is a sequence of measurable functions satisfying

|fn(x)| < M for all n and all x ∈ [0, 1] and suppose that this

sequence converges pointwise to the function f. Prove that

the sequence converges in the mean to f.

(5) In the previous exercise we showed that a uniformly bounded

sequence of measurable functions which converges pointwise

to f also converges in the mean to f . This exercise is in-

tended to show that the converse of this statement is not

true.

Let P be the countable set {(p, q) | p, q ∈ N, p < q} and

define the function

f(p,q)(x) =

{
1, if x ∈ [p−1

q , p+1
q ];

0, otherwise.

Let φ : N → P be a bijection and define gn = fφ(n) for

n ∈ N.
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(a) Prove that

lim
n→∞

∫
|gn| dµ = 0.

Hence, the sequence {gn} converges in the mean to the

constant function 0.

(b) Prove that for any x ∈ [0, 1] there is a subsequence

{ni}∞i=1 of the natural numbers such that gni
(x) = 1.

Hence there is no x ∈ [0, 1] for which

lim
n→∞ gn(x) = 0.

Therefore, {gn} clearly fails to converge pointwise to 0.

(c) Prove there is a subsequence of {gn} which does con-

verge pointwise to 0.

                

                                                                                                               



Chapter 4

The Integral of
Unbounded Functions

In this section we wish to define and investigate the Lebesgue integral

of functions which are not necessarily bounded and even the integral

of extended real-valued functions. In fact, henceforth, we will use the

term “measurable function” to refer to extended real-valued measur-

able functions. If a function is unbounded both above and below it

is more complicated than if it is only unbounded above. Hence, we

first focus our attention on the simpler case.

4.1. Non-negative Functions

Definition 4.1.1. (Integrable function). If f : [0, 1] → [0,∞] is
a non-negative Lebesgue measurable function, we let

fn(x) = min{f(x), n}.
Then fn is a bounded measurable function and we define∫

f dµ = lim
n→∞

∫
fn dµ.

If
∫

f dµ < ∞, we say f is integrable.

63
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Notice that the sequence {∫ fn dµ}∞n=1 is a monotonic increasing

sequence of numbers, so the limit lim
n→∞

∫
fn dµ either exists or is

+∞.

Proposition 4.1.2. If f is a non-negative integrable function and
A = {x | f(x) = +∞}, then µ(A) = 0.

Proof. For x ∈ A we observe that fn(x) = n and hence fn(x) ≥
nXA(x) for all x. Thus,

∫
fn dµ ≥ ∫

nXA dµ = nµ(A). If µ(A) > 0,

then ∫
f dµ = lim

n→∞

∫
fn dµ ≥ lim

n→∞nµ(A) = +∞.

�

Example 4.1.3. Let f(x) = 1/
√

x for x ∈ (0, 1] and let f(0) = +∞,

so f is a non-negative measurable function. Then the function

fn(x) =

{
n, if 0 ≤ x < 1

n2 ;

1√
x
, if 1

n2 ≤ x ≤ 1.

Hence, if En = [0, 1/n2), then∫
fn dµ =

∫
En

fn dµ +

∫
Ec

n

fn dµ

=

∫
nXEn

dµ +

∫ 1

1
n2

1√
x

dx

= nµ(En) +
(
2 − 2

n

)
=

n

n2
+ 2 − 2

n
= 2 − 1

n
.

Hence, ∫
f dµ = lim

n→∞

∫
fn dµ = 2.

So f is integrable.

Proposition 4.1.4. Suppose f and g are non-negative measurable
functions with g(x) ≤ f(x) for almost all x. If f is integrable, then
g is integrable and

∫
g dµ ≤ ∫

f dµ. In particular, if g = 0 almost
everywhere, then

∫
g dµ = 0.
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Proof. If fn(x) = min{f(x), n} and gn(x) = min{g(x), n}, then fn

and gn are bounded measurable functions and satisfy gn(x) ≤ fn(x)

for almost all x. It follows that
∫

gn dµ ≤ ∫
fn dµ ≤ ∫

f dµ. Since

the sequence of numbers {∫ gn dµ}∞n=1 is monotonic increasing and

bounded above by
∫

f dµ it has a finite limit. By definition this limit

is
∫

g dµ. Since for each n we have
∫

gn dµ ≤ ∫
f dµ, the limit is also

bounded by
∫

f dµ. That is,∫
g dµ = lim

n→∞

∫
gn dµ ≤

∫
f dµ.

If g = 0 almost everywhere, then 0 ≤ g(x) ≤ 0 for almost all x, so we

have
∫

g dµ = 0. �

Corollary 4.1.5. If f : [0, 1] → [0,∞] is a non-negative integrable
function and

∫
f dµ = 0, then f(x) = 0 for almost all x.

Proof. Let En = {x | f(x) ≥ 1/n}. Then f(x) ≥ 1
nXEn

(x), so

1

n
µ(En) =

∫
1

n
XEn

dµ ≤
∫

f dµ = 0.

Hence, µ(En) = 0, but if E = {x | f(x) > 0}, then E =
⋃∞

n=1 En, so

µ(E) = 0. �

For a fixed non-negative integrable function f the Lebesgue inte-

gral
∫

E
f dµ assigns a number to each measurable subset E of [0, 1].

This assignment satisfies a strong continuity property which we will

need in the next section.

Theorem 4.1.6. (Absolute continuity). If f is a non-negative
integrable function, then for any ε > 0 there exists a δ > 0 such that∫

A
f dµ < ε for every measurable A ⊂ [0, 1] with µ(A) < δ.

Proof. Let fn(x) = min{f(x), n} so lim
∫

fn dµ =
∫

f dµ. Let

En = {x ∈ [0, 1] | f(x) ≥ n}
so

fn(x) =

{
n, if x ∈ En;

f(x), if x ∈ Ec
n.
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Therefore

f(x) − fn(x) =

{
f(x) − n, if x ∈ En;

0, if x ∈ Ec
n.

Consequently,∫
f dµ −

∫
fn dµ =

∫
f − fn dµ =

∫
En

(f − n) dµ.

Integrability of f implies

lim
n→∞

( ∫
f dµ −

∫
fn dµ

)
= 0,

so

lim
n→∞

∫
En

(f − n) dµ = 0.

Hence, we may choose N such that
∫

EN
(f − N) dµ < ε/2. Now

pick δ < ε/2N. Then if µ(A) < δ, we have∫
A

f dµ =

∫
A∩EN

f dµ +

∫
A∩Ec

N

f dµ

≤
∫

A∩EN

(f − N) dµ +

∫
A∩EN

N dµ +

∫
A∩Ec

N

N dµ

≤
∫

EN

(f − N) dµ +

∫
A

N dµ

<
ε

2
+ Nµ(A) <

ε

2
+ Nδ < ε.

�

Theorem 4.1.6 is labeled “Absolute Continuity” for reasons that

will become clear later in Section 4.3. But as a nearly immediate

consequence we have the following continuity result which is a gener-

alization of a result from Exercise 1.6.3 about regulated functions.

Corollary 4.1.7. (Continuity of the integral). If f : [0, 1] →
[0,∞] is a non-negative integrable function and we define F (x) =∫
[0,x]

f dµ, then F (x) is continuous.
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Proof. Given ε > 0 let δ > 0 be the corresponding value guaranteed

by Theorem 4.1.6. Now suppose x < y and |y − x| < δ. Then

µ([x, y]) < δ, so∣∣F (y) − F (x)
∣∣ =

∣∣∣ ∫
[0,y]

f dµ −
∫

[0,x]

f dµ
∣∣∣ =

∣∣∣ ∫
[x,y]

f dµ
∣∣∣ < ε

by Theorem 4.1.6. In fact, we have proven that F is uniformly con-

tinuous. �

Exercise 4.1.8.

(1) Define fp(x) = 1
xp for x ∈ (0, 1] and fp(0) = +∞. Prove

that f is integrable if and only if p < 1. For p < 1 calculate

the value of
∫

fp dµ.

(2) Give an example of a non-negative extended real-valued

function g : [0, 1] → [0,∞] which is integrable and which

has the value +∞ at infinitely many points of [0, 1].

(3) Suppose f and g are non-negative integrable functions on

[0, 1]. Suppose that for every measurable E ⊂ [0, 1] the in-

tegrals
∫

E
f dµ and

∫
E

g dµ are equal. Prove f and g are

equal almost everywhere.

4.2. Convergence Theorems

The following result is very similar to the bounded convergence the-

orem (see Theorem 3.3.2 and Theorem 3.3.4). The difference is that

instead of having a constant bound on the functions fn we have them

bounded by an integrable function g. This is enough to make essen-

tially the same proof work.

Theorem 4.2.1. (Non -negative Lebesgue convergence theo-
rem). Suppose fn is a sequence of non-negative measurable func-
tions defined on [0, 1] and g is a non-negative integrable function such
that fn(x) ≤ g(x) for all n and almost all x. If lim fn(x) = f(x) for
almost all x, then f is integrable and∫

f dµ = lim
n→∞

∫
fn dµ.
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Proof. If we let hn = fnXE and h = fXE , where

E = {x | lim fn(x) = f(x)},
then f = h almost everywhere and fn = hn almost everywhere. So it

suffices to prove ∫
h dµ = lim

n→∞

∫
hn dµ,

and we now have the stronger property that limhn(x) = h(x) for

all x, instead of almost all. Since hn(x) = fn(x)XE(x) ≤ g(x) for

almost all x we know that h(x) ≤ g(x) for almost all x and hence by

Proposition 4.1.4 that h is integrable.

The remainder of the proof is very similar to the proof of Theo-

rem 3.3.2. We must show that

lim
n→∞

∣∣∣ ∫
hn dµ −

∫
h dµ

∣∣∣ = 0;

but ∣∣∣ ∫
hn dµ −

∫
h dµ

∣∣∣ =

∣∣∣ ∫
(hn − h) dµ

∣∣∣(4.2.1)

≤
∫

|hn − h| dµ.

So we need to estimate the integral of |hn − h|.
Given ε > 0 define En = {x | |hm(x)−h(x)| < ε/2 for all m ≥ n}.

We know by Theorem 4.1.6 that there is a δ > 0 such that
∫

A
g dµ <

ε/4 whenever µ(A) < δ.

We also know that for any x the limit lim
m→∞hm(x) = h(x), which

means that each x is in some En (where n depends on x). In other

words,
⋃∞

n=1 En = [0, 1]. Since En ⊂ En+1 by Proposition 2.4.5 we

know that lim
n→∞µ(En) = µ([0, 1]) = 1. Thus, there is an n0 such that

µ(En0) > 1 − δ, so µ(Ec
n0

) < δ.

Now

|hn(x) − h(x)| ≤ |hn(x)| + |h(x)| ≤ 2g(x)
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for almost all x, so for any n > n0 we have∫
|hn − h| dµ =

∫
En0

|hn − h| dµ +

∫
Ec

n0

|hn − h| dµ

≤
∫

En0

ε

2
dµ +

∫
Ec

n0

2g dµ

≤ ε

2
µ(En0) + 2

∫
Ec

n0

g dµ

≤ ε

2
+ 2

ε

4
= ε.

Thus, we have shown lim
n→∞

∫
|hn − h| dµ = 0. Putting this together

with equation (4.2.1) we see that

lim
n→∞

∣∣∣ ∫
hn dµ −

∫
h dµ

∣∣∣ = 0

as desired. �

Theorem 4.2.2. (Fatou’s lemma). Suppose gn is a sequence of
non-negative measurable functions defined on [0, 1]. If lim gn(x) =

f(x) for almost all x, then∫
f dµ ≤ lim inf

n→∞

∫
gn dµ.

In particular, if lim inf
∫

gn dµ < +∞, then f is integrable.

Proof. The function f(x) is measurable by Theorem 3.1.9. Let h(x)

be a bounded measurable function with h(x) ≤ f(x) for all x and

define hn(x) = min{h(x), gn(x)}, so hn is bounded and measurable

and lim
n→∞hn(x) = h(x). Then∫

h dµ = lim
n→∞

∫
hn dµ ≤ lim inf

n→∞

∫
gn dµ

where the equality follows from the bounded convergence theorem,

Theorem 3.3.4, and the inequality comes from the fact that hn(x) ≤
gn(x) for all x.

Since this inequality holds for any bounded measurable h which

is less than f, it holds when h is fm(x) = min{f(x), m}, so for all
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m ∈ N we have ∫
fm dµ ≤ lim inf

n→∞

∫
gn dµ.

Taking the limit as m tends to infinity and recalling the definition of

the integral of f we get∫
f dµ = lim

m→∞

∫
fm dµ ≤ lim inf

n→∞

∫
gn dµ.

�

In the case of a monotone sequence of measurable functions the

inequality of the previous result can be strengthened to an equality.

Theorem 4.2.3. (Monotone convergence theorem). Suppose
gn is an increasing sequence of non-negative measurable functions
defined on [0, 1]. If lim gn(x) = f(x) for almost all x, then∫

f dµ = lim
n→∞

∫
gn dµ.

In particular, f is integrable if and only if lim
∫

gn dµ < +∞.

Proof. The function f is measurable by Theorem 3.1.9. If it is inte-

grable, then the fact that f(x) ≥ gn(x) for almost all x allows us to

apply the Lebesgue convergence theorem, Theorem 4.2.1, to conclude

the desired result.

Hence, we need only show that if
∫

f dµ = +∞, then

lim
n→∞

∫
gn dµ = +∞.

This follows immediately from Fatou’s lemma. �
Corollary 4.2.4. (Integral of infinite series). Suppose un is a
non-negative measurable function and f is a non-negative function
such that

∑∞
n=1 un(x) = f(x) for almost all x. Then∫

f dµ =

∞∑
n=1

∫
un dµ.

Proof. Define

fN (x) =

N∑
n=1

un(x).

Now the result follows from Theorem 4.2.3. �
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Corollary 4.2.5. (Countable additivity of the Lebesgue inte-
gral). Suppose {En}∞n=1 is a countable collection of pairwise disjoint
measurable subsets of I, and f is a non-negative integrable function.
If

E =

∞⋃
n=1

En then
∫

E

f dµ =

∞∑
n=1

∫
En

f dµ.

Proof. Note that

XE =

∞∑
n=1

XEn
.

Define un(x) = fXEn
. Then

fXE = f
∞∑

n=1

XEn
=

∞∑
n=1

un.

Now the result follows from the previous corollary. �

Exercise 4.2.6.

(1) Give an example to show the inequality in Fatou’s lemma

can be strict.

(2) Give an example of a a decreasing sequence of non-negative

measurable functions which are defined on the interval [0, 1]

and which converge pointwise to a bounded function f such

that ∫
fn dµ = +∞ and

∫
f dµ = 0.

This shows that the monotone convergence theorem does

not hold for decreasing sequences.

(3) Suppose gn is a sequence of non-negative measurable func-

tions defined on [0, 1]. Prove the following slightly stronger

version of Fatou’s Lemma:∫
lim inf
n→∞ gn dµ ≤ lim inf

n→∞

∫
gn dµ.

(4) Let f be a non-negative integrable extended real-valued

function defined on [0, 1] and let Lµ(f) denote the set of sim-

ple functions which are less than or equal to f. Let Uµ(f) be
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the set of simple functions greater than or equal to f . Prove

that ∫
f dµ = sup

v∈Lµ(f)

∫
v dµ.

Give an example of non-negative (non-extended) real-valued

function f for which∫
f dµ �= inf

u∈Uµ(f)

∫
u dµ.

Hint: The function f can be integrable and have Uµ(f) = ∅.
(5) (�) Egorov’s theorem: If {fn : I → R} is a sequence of

measurable functions converging pointwise to f : [0, 1] → R

prove that for any ε > 0 there is a set A ⊂ I with µ(A) <

ε such that {fn} converges uniformly to f on Ac. This

is sometimes referred to as the third of Littlewood’s three
principles.
Hint: Consider the sets

E(n, m) =

∞⋃
k=n

{
x

∣∣∣ |fk(x) − f(x)| ≥ 1

m

}
.

For each m show there is nm such that µ(E(nm, m)) <
ε

2m
.

Then take A =
⋃∞

m=1 E(nm, m).

4.3. Other Measures

There are other measures besides Lebesgue and indeed measures on

other spaces besides [0, 1] or R. We will mostly limit our attention

to measures defined on I = [0, 1], for simplicity, but it is worth for-

mulating some definitions for a general σ-algebra of subsets of a set

X.

Recall from Definition 2.3.1 that a collection A of subsets of a

set X is called a σ-algebra provided it contains the set X and is

closed under taking complements, countable unions, and countable

intersections.

Examples 4.3.1. The following are examples of σ-algebras of subsets

of I = [0, 1]:
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(1) The trivial σ-algebra. A = {∅, I}.
(2) A = {A ⊂ I | A is countable, or Ac is countable}.
(3) A = M(I) the Lebesgue measurable sets.

(4) A is the algebra of Borel subsets of I, the smallest σ-algebra

containing the open intervals.

Definition 4.3.2. (Measure, measurable). If A is a σ-algebra of
subsets of a set X, then a function ν : A → [0,∞] is called a measure

provided

• ν(A) ≥ 0 for every A ∈ A,

• ν(∅) = 0, and

• ν is countably additive, i.e., if {An}∞n=1 are pairwise disjoint
sets in A, then

ν(

∞⋃
n=1

An) =

∞∑
n=1

ν(An).

A measure ν is finite if ν(X) < ∞. An extended real-valued function
f defined on X is called measurable with respect to the σ-algebra A if
for any a ∈ R the set f−1([−∞, a]) is in A.

Proposition 4.3.3. Suppose µ and ν are finite measures defined for
sets in the σ-algebra A and a and b are non-negative numbers, not
both 0. If we define ρ(A) = aµ(A) + bν(A) for all A ∈ M(I), then ρ

is a finite measure.

The (easy) proof is left as an exercise (see Exercise 4.3.9 prob-

lem (1) below).

The integral of a measurable function with respect to a measure

ν is defined analogously to Lebesgue measure. The concept of sim-

ple function is the same and we let Lµ(g) denote the set of simple

functions v : X → R such that v(x) ≤ g(x) for all x ∈ X.

Definition 4.3.4. (Integrable function). Let ν be a finite mea-
sure defined on the σ-algebra A. If f(x) =

∑n
i=1 riXAi

is a simple
function, then its integral with respect to ν is defined by

∫
f dν =∑n

i=1 riν(Ai). If g : [0, 1] → R is a bounded measurable function, then
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we define its integral with respect to ν by∫
g dν = sup

v∈Lµ(g)

{ ∫
v dν

}
.

If h is a non-negative extended measurable function we define∫
h dν = lim

n→∞

∫
min{h, n} dν.

We will now turn our attention back to measures defined on the

σ-algebra of Lebesgue measurable sets.

Definition 4.3.5. (Absolutely continuous measure). If ν is a
measure defined on M(I), the Lebesgue measurable subsets of I, then
we say ν is absolutely continuous with respect to Lebesgue measure µ

if µ(A) = 0 implies ν(A) = 0. We write ν � µ.

The following result motivates the name “absolute continuity.”

Theorem 4.3.6. If ν is a measure defined on M(I) which is abso-
lutely continuous with respect to Lebesgue measure, then for any ε > 0

there is a δ > 0 such that ν(A) < ε whenever µ(A) = δ.

Proof. We assume there is a counterexample and show this leads to

a contradiction. If the measure ν does not satisfy the conclusion of

the theorem, then there is an ε > 0 for which it fails, i.e., there is no

δ > 0 which works for this ε. In particular, for any positive integer m

there is a set Bm such that ν(Bm) ≥ ε and µ(Bm) < 1/2m. Hence, if

we define An =
⋃∞

m=n+1 Bm, then

µ(An) ≤
∞∑

m=n+1

µ(Bm) ≤
∞∑

m=n+1

1

2m
=

1

2n.

The sets An are nested, i.e., An ⊃ An+1. Let

C =

∞⋂
n

An.

It follows from Proposition 2.4.5 that

(4.3.1) µ(C) = µ(

∞⋂
n=1

An) = lim
n→∞µ(An) ≤ lim

n→∞
1

2n
= 0.
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The proof of Proposition 2.4.5 made use only of the countable

additivity of the measure. Hence, it is also valid for ν, i.e.,

ν(C) = ν(

∞⋂
n=1

An) = lim
n→∞ ν(An) ≥ ε

since ν(An) ≥ ν(Bn+1) ≥ ε for every n. This contradicts the absolute

continuity of ν with respect to µ. We have proven the contrapositive

of the result we desire. �

Proposition 4.3.7. If f is a non-negative integrable function on I

and we define

νf (A) =

∫
A

f dµ,

then νf is a measure with σ-algebra M(I) which is absolutely contin-
uous with respect to Lebesgue measure µ.

Proof. Clearly, νf (A) =
∫

A
f dµ ≥ 0 for all A ∈ M since f is non-

negative. Also, νf (∅) = 0. We need to check countable additivity.

Suppose {An}∞n=1 is a sequence of pairwise disjoint measurable

subsets of [0, 1] and A is their union. Then for all x ∈ [0, 1],

f(x)XA(x) =

∞∑
n=1

f(x)XAn
(x).

Hence, by Theorem 4.2.4∫
fXA dµ =

∞∑
n=1

∫
fXAn

dµ,

and so

νf (A) =

∞∑
n=1

νf (An).

Thus, ν is a measure.

If µ(A) = 0, then by Proposition 4.1.4

νf (A) =

∫
fXA dµ = 0,

so ν is absolutely continuous with respect to µ. �
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The converse to Proposition 4.3.7 is called the Radon-Nikodym

theorem. Its proof is beyond the scope of this text. A proof can be

found in Chapter 11, Section 6 of Royden’s book [Ro] or in Chapter

11, Section 2 of [L].

Theorem 4.3.8. (Radon-Nikodym). Suppose that ν is a finite
measure with σ-algebra M(I) and that ν is absolutely continuous with
respect to Lebesgue measure µ. Then there is a non-negative integrable
function f on [0, 1] such that

ν(A) =

∫
A

f dµ.

The function f is unique up to measure 0, i.e., if g is another function
with these properties, then f = g almost everywhere.

The function f is called the Radon-Nikodym derivative of ν with

respect to µ. In fact, the Radon-Nikodym Theorem is more general

than we have stated, since it applies to any two finite measures ν and

µ defined on a σ-algebra A with the property that ν is absolutely

continuous with respect to µ.

Exercise 4.3.9.

(1) Suppose µ and ν are finite measures defined for sets in the

σ-algebra M(I) and a and b are non-negative numbers, not

both 0. If we define ρ(A) = aµ(A)+bν(A) for all A ∈ M(I),

prove that ρ is a finite measure.

(2) Let X be a countable set and let A be the σ-algebra of all

subsets of X. Prove there is no finite measure on X other

than the trivial measure which assigns measure 0 to every

set.

(3) Define the function ν : M → [0,∞] by ν(A) = ∞ if 0 is in

the closure of A and ν(A) = 0 otherwise. Prove that ν is

finitely additive but not countably additive.

(4) Show that Fatou’s lemma and the monotone convergence

theorem are valid for an arbitrary finite measure ν defined

on a σ-algebra A.
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(5) Given a point x0 ∈ [0, 1] define the function δx0 : M(I) → R

by δx0(A) = 1 if x0 ∈ A and δx0(A) = 0 if x0 /∈ A. Let

ν(A) = δx0(A).

(a) Prove that ν is a measure on the σ-algebra M(I).

(b) Prove that if f is a measurable function
∫

f dν = f(x0).

(c) Give examples of three other σ-algebras on which ν

defines a measure. The measure ν is called the Dirac
δ-measure.

(6) If {νn}, n ∈ N is a sequence of finite measures defined on

the σ-algebra M(I), then we say that this sequence con-
verges weakly to the finite measure ν if for every continuous

function f : [0, 1] → R,

lim
n→∞

∫
f dνn =

∫
f dν.

Let

νn =
1

n

n∑
k=1

δk

where δk is the Dirac δ-measure, δx0 , with x0 = k
n (with

σ-algebra the Lebesgue measurable sets). Prove that {νn}
converges weakly to Lebesgue measure µ. with respect to µ.

4.4. General Measurable Functions

In this section we return to Lebesgue measure µ on the interval

[0, 1] but, consider extended measurable functions which may be un-

bounded both above and below. We define

f+(x) = max{f(x), 0}
and

f−(x) = −min{f(x), 0}.
These are both non-negative measurable functions and

f(x) = f+(x) − f−(x).

Definition 4.4.1. (Lebesgue integrable). If f : [0, 1] → [−∞,∞]

is a measurable function, then we say f is Lebesgue integrable pro-
vided both f+ and f− are integrable (as non-negative functions). If
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f is integrable, we define∫
f dµ =

∫
f+ dµ −

∫
f− dµ.

Proposition 4.4.2. Suppose f and g are measurable functions on
[0, 1] and f = g almost everywhere. Then if f is integrable, so is
g and

∫
f dµ =

∫
g dµ. In particular, if f = 0 almost everywhere,∫

f dµ = 0.

Proof. If f and g are measurable functions on [0, 1] and f = g al-

most everywhere, then f+ = g+ almost everywhere, f− = g− al-

most everywhere, and f+ and f− are integrable. It then follows from

Proposition 4.1.4 that g+ and g− are integrable and that
∫

f+ dµ ≥∫
g+ dµ and

∫
f− dµ ≥ ∫

g− dµ. Switching the roles of f and

g this same proposition gives the reverse inequalities, so we have∫
f+ dµ =

∫
g+ dµ and

∫
f− dµ =

∫
g− dµ. �

Proposition 4.4.3. A measurable function f : [0, 1] → [−∞,∞] is
integrable if and only if the the function |f | is integrable.

Proof. Notice that |f(x)| = f+(x) + f−(x) so |f(x)| ≥ f+(x) and

|f(x)| ≥ f−(x). Thus, if |f | is integrable, it follows from Proposi-

tion 4.1.4 that both f+ and f− are integrable. Conversely, if f+ and

f− are integrable, then so is their sum |f |. �

Theorem 4.4.4. (Lebesgue convergence theorem). Suppose
fn is a sequence of measurable functions defined on [0, 1] and g is an
integrable function such that |fn(x)| ≤ g(x) for all n and almost all
x. If lim fn(x) = f(x) for almost all x, then f is integrable and∫

f dµ = lim
n→∞

∫
fn dµ.

Proof. The functions

f+
n (x) = max{fn(x), 0} and f−

n (x) = −min{fn(x), 0}
satisfy

lim
n→∞ f+

n (x) = f+(x) and lim
n→∞ f−

n (x) = f−(x)
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for almost all x. Also, g(x) ≥ f+
n (x) and g(x) ≥ f−

n (x) for almost all

x. Hence, by Theorem 4.2.1∫
f+ dµ = lim

n→∞

∫
f+

n dµ and

∫
f− dµ = lim

n→∞

∫
f−

n dµ.

Thus, f = f+ − f− is integrable and∫
f dµ =

∫
f+ dµ −

∫
f− dµ

= lim
n→∞

∫
f+

n dµ − lim
n→∞

∫
f−

n dµ

= lim
n→∞

∫
f+

n − f−
n dµ

= lim
n→∞

∫
fn dµ.

�

The following theorem says that for any ε > 0 any integrable

function can be approximated within ε by a step function if we are

allowed to exclude a set of measure ε.

Theorem 4.4.5. If f : [0, 1] → [−∞,∞] is an integrable function,
then given ε > 0 there is a step function g : [0, 1] → R and a measur-
able subset A ⊂ [0, 1] such that µ(A) < ε and

|f(x) − g(x)| < ε for all x /∈ A.

Moreover, if |f(x)| ≤ M for all x, then we may choose g with this
same bound.

Proof. We first prove the result for the special case of f(x) = XE(x)

for some measurable set E. This follows because there is a countable

cover of E by open intervals {Ui}∞i=1 such that

µ(E) ≤
∞∑

i=1

len(Ui) ≤ µ(E) +
ε

2
,

and hence

(4.4.1) µ
(( ∞⋃

i=1

Ui

) \ E
)

<
ε

2
.
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Also, we may choose N > 0 such that

(4.4.2) µ
( ∞⋃

i=N

Ui

)
≤

∞∑
i=N

len(Ui) <
ε

2
.

Let VN =
⋃N

i=1 Ui. It is a finite union of intervals, so the function

g(x) = XVN
is a step function and if A = {x | f(x) �= g(x)}, then

A ⊂
(
VN \ E

)
∪

(
E \ VN

)
⊂

(( ∞⋃
i=1

Ui

) \ E
)
∪

( ∞⋃
i=N

Ui

)
,

so it follows from equations (4.4.1) and (4.4.2) that µ(A) < ε. This

proves the result for f = XE .

From this the result follows for simple functions f =
∑

riXEi

because if gi is the approximating step function for XEi
, then g =∑

rigi approximates f (with a suitably adjusted ε).

If f is a bounded measurable function by Theorem 3.2.1 there

is a simple function h such that |f(x) − h(x)| < ε/2 for all x. Let g

be a step function such that |h(x) − g(x)| < ε/2 for all x /∈ A with

µ(A) < ε. Then

|f(x) − g(x)| ≤ |f(x) − h(x)| + |h(x) − g(x)| <
ε

2
+

ε

2
= ε,

for all x /∈ A. That is, the result is true if f is a bounded measurable

function.

Suppose f is a non-negative integrable function and let An =

{x | f(x) > n}. Then

nµ(An) =

∫
nXAn

dµ ≤
∫

f dµ < ∞.

It follows that

lim
n→∞µ(An) = lim

n→∞
1

n

∫
f dµ = 0.

Hence, there is an N > 0 such that µ(AN ) < ε/2.

If fN = min{f, N}, then fN is a bounded measurable function.

So we may choose a step function g such that |fN (x) − g(x)| < ε/2

for all x /∈ B with µ(B) < ε/2. It follows that if A = AN ∪ B, then
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µ(A) < ε. Also, if x /∈ A, then f(x) = fN (x), so

|f(x) − g(x)| ≤ |f(x) − fN (x)| + |fN (x) − g(x)|
= |fN (x) − g(x)| < ε.

Hence, the result holds for non-negative f .

For a general integrable f we have f = f+ − f−. The fact that

the result holds for f+ and f− easily implies it holds for f.

Suppose now that f is bounded, say |f(x)| ≤ M for all x, and g

satisfies the conclusion of our theorem, then we define

g1(x) =

⎧⎪⎪⎨
⎪⎪⎩

M, if g(x) > M ;

g(x), if − M ≤ g(x) ≤ M ;

−M, if g(x) < −M.

The function g1 is a step function with |g1(x)| ≤ M and g1(x) = g(x)

except when |g(x)| > M. Note that if g(x) > M and x /∈ A, then

f(x) ≤ M = g1(x) < g(x),

so |g1(x) − f(x)| < ε. The case g(x) < −M is similar. �

We can now generalize Theorem 3.2.4 to cover Lebesgue inte-

grable functions and not just bounded functions. The proof is left as

an exercise.

Theorem 4.4.6. The Lebesgue integral satisfies the following prop-
erties:

I. Linearity: If f and g are Lebesgue integrable functions and
c1, c2 ∈ R, then∫

c1f + c2g dµ = c1

∫
f dµ + c2

∫
g dµ.

II. Monotonicity: If f and g are Lebesgue measurable and
f(x) ≤ g(x) for all x, then

∫
f dµ ≤ ∫

g dµ.

III. Absolute value: If f is Lebesgue integrable, then |f | is
also and | ∫ f dµ| ≤ ∫ |f | dµ.

IV. Null sets: If f and g are equal except on a set of mea-
sure zero and f is integrable, then g is also integrable and∫

f dµ =
∫

g dµ.
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Exercise 4.4.7.

(1) Prove that if f, g, h are measurable functions and f = g

almost everywhere and g = h almost everywhere, then f = h

almost everywhere.

(2) Suppose ν is a finite measure defined on a σ-algebra of

subsets of a set X. Define f : X → [−∞,∞] to be an

integrable function analogously to Definition 4.4.1. Prove

that the Lebesgue convergence theorem remains valid in this

more general setting. Hint: You will need part (4) of Exer-

cise (4.3.9).

(3) Prove that if f : [0, 1] → [−∞,∞] is an integrable func-

tion, then given ε > 0 there exists a continuous function

g : [0, 1] → R and a set A such that µ(A) < ε and |f(x) −
g(x)| < ε for all x /∈ A, and g(0) = g(1). Hint: Use part (6)

of Exercise 3.1.11.

(4) Prove that the, not necessarily bounded, integrable func-

tions from [0, 1] to R form a vector space.

(5) Prove that if g is an integrable function on [0, 1], then there

is a sequence of simple functions {gn} such that gn converges

to g pointwise and |gn(x)| ≤ |g(x)| for all x. Conclude from

the Lebesgue convergence theorem that lim
∫

gn dµ =
∫

g dµ

and lim
∫ |gn| dµ =

∫ |g| dµ.

(6) Suppose {En}∞n=1 is a countable collection of pairwise dis-

joint measurable subsets of I and f is an integrable function.

Prove that if

E =

∞⋃
n=1

En, then

∫
E

f dµ =

∞∑
n=1

∫
En

f dµ.

This was proved in Corollary 4.2.5 with the additional as-

sumption that f is non-negative.

(7) Proposition 4.4.2 proves the null set part of Theorem 4.4.6.

Prove the remaining parts of this theorem, namely linearity,

monotonicity, and the absolute value property. (You may

use Theorem 3.2.4).

                

                                                                                                               



Chapter 5

The Hilbert Space L2

5.1. Square Integrable Functions

In this chapter we will develop the beginnings of a theory of function

spaces with many properties analogous to the basic properties of Rn.

To motivate these developments we first take a look at Rn in a differ-

ent way. We let X = {1, 2, 3, . . . , n}, the first n natural numbers, and

we define a measure ν on X which is called the “counting measure”.

More precisely, we take as σ-algebra the family of all subsets of

X and for any A ⊂ X we define ν(A) to be the number of elements in

the set A. It is easy to see that this is a measure and that any function

f : X → R is measurable. In fact, any function is a simple function.

This is because there is a partition of X given by Ai = {i} and clearly

f is constant on each Ai, so f =
∑n

i=1 riXAi
where ri = f(i).

Consequently, we have∫
f dν =

n∑
i=1

riν(Ai) =

n∑
i=1

f(i).

For reasons that will be clear below we will denote the collection

of all functions from X to R by L2(X). The important thing to note

is that this is just another name for Rn. More formally, L2(X) is

the vector space of all functions from X to R. This vector space can

also be seen as the set of all finite sequences (x1, x2, . . . , xn) with
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the correspondence between the two given by f ←→ (x1, x2, . . . , xn)

where xi = f(i).

It is useful to view the usual inner product on Rn (the “dot”

product given by 〈x, y〉 =
∑n

i=1 xiyi) in light of this correspondence.

If f, g ∈ L2(X) are the functions corresponding to vectors x and y,

respectively, then xi = f(i) and yi = g(i), so

〈x, y〉 =

n∑
i=1

xiyi =

n∑
i=1

f(i)g(i) =

∫
fg dν.

Also, the norm (or length) of a vector is given by

‖x‖2 = 〈x, x〉 =

n∑
i=1

x2
i =

n∑
i=1

f(i)2 =

∫
f2 dν.

It is this way of viewing the inner product and norm on Rn which

generalizes nicely to a space of real-valued functions on the inter-

val. In order to make this generalization work we have to restrict

our attention to functions which are not just integrable, but whose

square is integrable. In fact, if the square of a function is integrable,

then the function is integrable, but the converse is not true. (See

Exercise 5.1.10 below.)

In this chapter it will be convenient to consider functions on the

more general closed interval [a, b] rather than [0, 1]. Of course, all

of our results about measurable functions and their integrals remain

valid on this different interval.

Definition 5.1.1. (Square integrable). A measurable function
f : [a, b] → [−∞,∞] is called square integrable if f2 is integrable.
We denote the set of all square integrable functions by L2[a, b]. We
define the norm of f ∈ L2[a, b] by

‖f‖ =
(∫

f2 dµ
) 1

2
.

Notice that the function ‖ ‖ is not quite a norm in the usual sense

(as defined in Definition A.9.4 and described in Proposition A.9.6).

The one way in which it fails strictly to be a norm is that ‖f‖ = 0

implies f(x) = 0 almost everywhere rather than everywhere. The

pedantic way to overcome this problem is to define L2[a, b] as the vec-

tor space of equivalence classes of square integrable functions, where
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f and g are considered “equivalent” if they are equal almost every-

where. It is customary, however, to overlook this infelicity and simply

consider L2[a, b] as a vector space of functions rather than equivalence

classes of functions. In doing this we should keep in mind that we

are generally considering two functions the same if they agree almost

everywhere.

Proposition 5.1.2. The norm ‖ ‖ on L2[a, b] satisfies ‖cf‖ = |c|‖f‖
for all c ∈ R and all f ∈ L2[a, b]. Moreover, for all f, ‖f‖ ≥ 0 with
equality only if f = 0 almost everywhere.

Proof. We see

‖cf‖ =
( ∫

c2f2 dµ
) 1

2
=

√
c2

( ∫
f2 dµ

) 1
2

= |c|‖f‖.

Since
∫

f2 dµ ≥ 0, clearly ‖f‖ ≥ 0. Also, if

‖f‖ = 0, then

∫
f2 dµ = 0.

So by Corollary 4.1.5 f2 = 0 almost everywhere and hence f = 0

almost everywhere. �

Lemma 5.1.3. If f, g ∈ L2[a, b], then fg is integrable and

2

∫
|fg| dµ ≤ ‖f‖2 + ‖g‖2.

Equality holds if and only if |f | = |g| almost everywhere.

Proof. Since

0 ≤ (|f(x)| − |g(x)|)2 = f(x)2 − 2|f(x)g(x)| + g(x)2

we have 2|f(x)g(x)| ≤ f(x)2 +g(x)2. Hence, by Proposition 4.1.4, we

conclude that |fg| is integrable and that

2

∫
|fg| dµ ≤ ‖f‖2 + ‖g‖2.

Equality holds if and only if
∫
(|f(x)| − |g(x)|)2 dµ = 0 and we

may conclude by Corollary 4.1.5 that this happens if and only if

(|f(x)| − |g(x)|)2 = 0 almost everywhere and hence that |f | = |g|
almost everywhere. �

Theorem 5.1.4. L2[a, b] is a vector space.
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Proof. We must show that if f, g ∈ L2[a, b] and c ∈ R, then cf ∈
L2[a, b] and (f + g) ∈ L2[a, b]. The first of these is clear since f2 is

integrable implies that c2f2 is integrable.

To check the second we observe that

(f + g)2 = f2 + 2fg + g2 ≤ f2 + 2|fg| + g2.

Since f2, g2 and |fg| are all integrable, it follows from Proposi-

tion 4.1.4 that (f + g)2 is also. Hence, (f + g) ∈ L2[a, b]. �

Theorem 5.1.5. (Hölder inequality). If f, g ∈ L2[a, b], then∫
|fg| dµ ≤ ‖f‖ ‖g‖.

Equality holds if and only if there is a constant c such that |f(x)| =

c|g(x)| or |g(x)| = c|f(x)| almost everywhere.

Proof. If either ‖f‖ or ‖g‖ is 0, the result is trivial so assume they are

both non-zero. In that case the functions f0 = f/‖f‖ and g0 = g/‖g‖
satisfy ‖f0‖ = ‖g0‖ = 1.

Then by Lemma 5.1.3

2

∫
|f0g0| dµ ≤ ‖f0‖2 + ‖g0‖2 = 2,

so ∫
|f0g0| dµ ≤ 1,

and equality holds if and only if |f0| = |g0| almost everywhere. So

1

‖f‖ ‖g‖
∫

|fg| dµ =

∫
|f0g0| dµ ≤ 1,

and hence ∫
|fg| dµ ≤ ‖f‖ ‖g‖.

Equality holds if and only if |f0| = |g0| almost everywhere, which

implies there is a constant c with |f(x)| = c|g(x)| almost everywhere.

�

Corollary 5.1.6. (Cauchy-Schwarz). If f, g ∈ L2[a, b], then∣∣∣ ∫
fg dµ

∣∣∣ ≤ ‖f‖ ‖g‖.
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Equality holds if and only if there is a constant c such that f(x) =

cg(x) or g(x) = cf(x) almost everywhere.

Proof. The inequality follows from Hölder’s inequality and the ab-

solute value inequality since∣∣∣ ∫
fg dµ

∣∣∣ ≤ ∫
|fg| dµ ≤ ‖f‖ ‖g‖.

Equality holds when both of these inequalities are equalities. In this

case, suppose first that
∫

fg dµ ≥ 0. Then
∫ |fg| dµ =

∫
fg dµ, so∫ |fg| − fg dµ = 0 and hence |fg| = fg almost everywhere. This

says that f and g have the same sign almost everywhere. Since the

second inequality is an equality we know from Hölder that there is

a constant c such that |f(x)| = c|g(x)| or |g(x)| = c|f(x)| almost

everywhere. This togther with the fact that f and g have the same

sign almost everywhere implies f(x) = cg(x) or g(x) = cf(x) almost

everywhere. For the case that
∫

fg dµ ≤ 0 we can replace f with −f

and conclude that f(x) = −cg(x) or g(x) = −cf(x). Conversely, it is

easy to see that if f(x) = cg(x) or g(x) = cf(x) almost everywhere,

then the inequality above is an equality. �

The following result, called the Minkowski inequality, is the tri-

angle inequality for the normed vector space L2[a, b].

Theorem 5.1.7. (Minkowski’s inequality). If f, g ∈ L2[a, b], then

‖f + g‖ ≤ ‖f‖ + ‖g‖.

Proof. We observe that

‖f + g‖2 =

∫
(f + g)2 dµ

=

∫
(f2 + 2fg + g2) dµ

≤
∫

f2 + 2|fg| + g2 dµ

≤ ‖f‖2 + 2‖f‖ ‖g‖ + ‖g‖2 by Hölder’s inequality

= (‖f‖ + ‖g‖)2.
Taking square roots of both sides of this equality gives the triangle

inequality. �
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Definition 5.1.8. (Inner product on L2[a, b]). If f, g ∈ L2[a, b],

then we define their inner product by

〈f, g〉 =

∫
fg dµ.

Of course, we have to prove that 〈 , 〉 actually satisfies the prop-

erties required of an inner product on a real vector space as defined

in Definition A.9.3.

Theorem 5.1.9. (Inner product on L2[a, b]). For any f1, f2, g ∈
L2[a, b] and any c1, c2 ∈ R the inner product on L2[a, b] satisfies the
following properties:

(1) Commutativity: 〈f1, g〉 = 〈g, f1〉.
(2) Bilinearity: 〈c1f1 + c2f2, g〉 = c1〈f1, g〉 + c2〈f2, g〉.
(3) Positive Definiteness: 〈g, g〉 = ‖g‖2 ≥ 0 with equality if and

only if g = 0 almost everywhere.

(4) The norm associated with the inner product 〈 , 〉 is the norm
‖ ‖ on L2[a, b]. I.e. ‖g‖2 = 〈g, g〉 for every g ∈ L2[a, b].

Proof. Clearly, 〈f, g〉 =
∫

fg dµ =
∫

gf dµ = 〈g, f〉. Bilinearity

holds because of the linearity of the integral. Also, 〈g, g〉 =
∫

g2 dµ ≥
0. Corollary 4.1.5 implies that equality holds only if g2 = 0 almost

everywhere. Finally, from the definitions

‖g‖2 =

∫
g2 dµ = 〈g, g〉.

�

Exercise 5.1.10.

(1) Give an example of a function f : [a, b] → R such that f2 is

integrable but f is not. Hence, not all integrable functions

are in L2[a, b]. (See part (1) of Exercise 4.1.8.)

(2) Prove that if f ∈ L2[a, b], then f is integrable. Together with

(1) this proves L2[a, b] is a proper subset of the integrable

functions on [a, b].
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(3) Prove that if f ∈ L2[a, b], then( ∫
|f | dµ

)2

≤ (b − a)

∫
f2 dµ.

5.2. Convergence in L2

We have discussed uniform convergence and pointwise convergence

and now we wish to discuss convergence in the L2[a, b] norm ‖ ‖. Note

that again we are adopting the customary convention by which ‖ ‖ is

called a norm even though ‖f‖ = 0 implies only that f(x) = 0 almost

everywhere. So again if we were to be pedantic this is a norm on

the vector space of equivalence classes of functions which are equal

almost everywhere. With this caveat the vector space L2[a, b] is a

metric space with distance function given by dist(f, g) = ‖f − g‖.
Definition 5.2.1. (Convergence in L2). If {fn}∞n=1 is a sequence
in L2[a, b], then it is said to converge to f in L2[a, b] if

lim
n→∞ ‖f − fn‖ = 0.

Functions which are bounded form a dense subset of L2[a, b]. In

fact, the following result shows that a good bounded function approx-

imating f ∈ L2[a, b] can be obtained by taking n large and defining

fn(x) to be n if f(x) > n, or −n if f(x) < −n, and f(x) otherwise.

Lemma 5.2.2. (Density of bounded functions). Suppose f ∈
L2[a, b]. If we define

fn(x) =

⎧⎪⎪⎨
⎪⎪⎩

n, if f(x) > n;

f(x), if − n ≤ f(x) ≤ n;

−n if f(x) < −n,

then
lim

n→∞ ‖f − fn‖ = 0.

Proof. We will show that for any ε > 0 there is an n such that

‖f − fn‖2 < ε. First we note that |fn(x)| ≤ |f(x)| so

|f(x) − fn(x)|2 ≤ |f(x)|2 + 2|f(x)| |fn(x)| + |fn(x)|2
≤ 4|f(x)|2.
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Let En = {x | |f(x)| > n} = {x | |f(x)|2 > n2} and let C =∫ |f |2 dµ. Then

C =

∫
|f |2 dµ ≥

∫
En

|f |2 dµ ≥
∫

En

n2 dµ = n2µ(En)

and we conclude that µ(En) ≤ C/n2.

We know from absolute continuity, Theorem 4.1.6, that there

is a δ > 0 such that
∫

A
|f |2 dµ < ε/4 whenever µ(A) < δ. Since

|f(x) − fn(x)| = 0 when x /∈ En, we have

‖f − fn‖2 =

∫
|f − fn|2 dµ

=

∫
En

|f − fn|2 dµ

≤
∫

En

4|f |2 dµ

< 4
ε

4
= ε,

whenever n is sufficiently large that µ(En) ≤ C/n2 < δ. �

In fact, we can do better than approximating a function f ∈
L2[a, b] by bounded functions; we can approximate it by continuous

functions or even step functions. But this is an approximation only

in the L2 norm! That is, we can show ‖f − g‖ is small, but that does

not imply anything about the size of |f(x)− g(x)| for a particular x.

Proposition 5.2.3. (Density of step functions and continuous
functions). The step functions are dense in L2[a, b]. That is, for
any ε > 0 and any f ∈ L2[a, b], there is a step function g : [a, b] → R

such that ‖f − g‖ < ε. Likewise, there is a continuous function h :

[a, b] → R such that ‖f − h‖ < ε. The function h may be chosen so
h(a) = h(b).

Proof. By the preceding result we may choose n so that ‖f−fn‖ < ε
2
.

Note that |fn(x)| ≤ n for all x. Suppose now that δ is any given small

positive number. According to Theorem 4.4.5 there is a step function

g with |g| ≤ n and a measurable set A with µ(A) < δ such that
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|fn(x) − g(x)| < δ if x /∈ A. Hence,

‖fn − g‖2 =

∫
|fn − g|2 dµ

=

∫
A

|fn − g|2 dµ +

∫
Ac

|fn − g|2 dµ

≤
∫

A

4n2 dµ +

∫
Ac

δ2 dµ

≤ 4n2µ(A) + δ2µ(Ac) ≤ 4n2δ + 2δ2.

Clearly, if we choose δ sufficiently small, then

‖fn − g‖ ≤
√

4n2δ + 2δ2 <
ε

2
.

It follows that ‖f − g‖ ≤ ‖f − fn‖ + ‖fn − g‖ < ε.

The proof for continuous functions is the same, except Exer-

cise 4.4.7 3 is used in place of Theorem 4.4.5. The details are left

as an exercise. �

In any vector space with a norm ‖ ‖ we can talk about convergent

sequences. The meaning is precisely what you would expect. As

stated in Definition A.11.1 of our “background” appendix, if {vn} is

a sequence in V , then lim
n→∞ vn = w means lim

n→∞ ‖w − vn‖ = 0.

This is equivalent to the usual definition in R except we use the

norm ‖ ‖ in place of absolute value. Similarly, we can define the

concept of Cauchy sequence in a normed vector space. There are

several items from Definition A.11.2 which we will now make use of.

The reader may wish to review the material of Section A.9

Definition 5.2.4. (Cauchy sequence, complete). Let V be a real
vector space with inner product 〈 , 〉 and associated norm ‖ ‖.

• A sequence {vn} in V is said to converge to w ∈ V provided
lim

n→∞ ‖w − vn‖ = 0.

• A sequence is called Cauchy provided for every ε > 0 there
is an N > 0 such that ‖vn − vm‖ < ε when n, m ≥ N.

• If all Cauchy sequences in V converge, then V is called com-

plete.
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An inner product space with a complete norm is one of the basic

objects of analysis. It is commonly given the name Hilbert space after

the German mathematician David Hilbert.

Definition 5.2.5. (Hilbert space). A Hilbert space is a vector
space with an inner product whose associated norm is complete.

As with R, in a Hilbert space a sequence is a Cauchy sequence if

and only if it converges.

Examples 5.2.6.

(1) The vector space Rn with the usual dot product is a Hilbert

space.

(2) The space of square summable sequences �2 with the inner

product of Exercise A.9.9 is a Hilbert space.

(3) In general, a vector space of functions with an inner prod-

uct may not be complete. Both step functions and continu-

ous functions are vector subspaces of L2[a, b] and inherit its

inner product, but they are not complete. Indeed, Propo-

sition 5.2.3 shows for any f ∈ L2[a, b] which is not con-

tinuous there is a Cauchy sequence of continuous functions

converging to f and hence not converging in the subspace

of continuous functions.

Our next result asserts that L2[a, b] is complete and hence is a

Hilbert space.

Theorem 5.2.7. (L2[a, b] is complete). The vector space L2[a, b]

with inner product 〈 , 〉 is a Hilbert space.

Proof. We have already shown that L2[a, b] is an inner product

space. All that remains is to prove that the norm ‖ ‖ is complete,

i.e., that Cauchy sequences converge (in the L2 norm).

Let {fn}∞n=1 be a Cauchy sequence. Then we may choose positive

integers ni such that

‖fm − fn‖ <
1

2i

whenever m, n ≥ ni. If we define g0 = 0 and gi = fni
for i > 0, then

‖gi+1 − gi‖ <
1

2i
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for i ≥ 1 so, in particular,
∑∞

i=0 ‖gi+1 − gi‖ converges, say to S.

Consider the function hn(x) defined by

hn(x) =

n−1∑
i=0

|gi+1(x) − gi(x)|.

For any fixed x the sequence {hn(x)} is monotone increasing so we

may define the extended real-valued function h by h(x) = lim
n→∞ hn(x).

Note that by the Minkowski inequality

‖hn‖ ≤
n−1∑
i=0

‖gi+1 − gi‖ ≤ S.

Hence,
∫

h2
n dµ = ‖hn‖2 ≤ S2. Since hn(x)2 is a monotonic in-

creasing sequence of non-negative measurable functions converging

to h2, we conclude from the Monotone convergence theorem (Theo-

rem 4.2.3) that

∫
h2 dµ = lim

n→∞

∫
h2

n dµ ≤ S2, so h2 is integrable.

Since h2 is integrable, h(x) is finite almost everywhere. For each

x with finite h(x) the series of real numbers
∑∞

i=0(gi+1(x) − gi(x))

converges absolutely and hence converges (see Theorem A.3.7). We

denote its sum by g(x). For x in the set of measure 0 where h(x) = +∞
we define g(x) = 0.

Notice that

gn(x) =

n−1∑
i=0

(gi+1(x) − gi(x))

because it is a telescoping series. Hence,

lim
n→∞ gn(x) = lim

n→∞

n−1∑
i=0

(gi+1(x) − gi(x)) = g(x)

for almost all x. Moreover,

|g(x)| = lim
n→∞ |gn(x)|

≤ lim
n→∞

n−1∑
i=0

|gi+1(x) − gi(x)|

= lim
n→∞ hn(x) = h(x)
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for almost all x, so |g(x)|2 ≤ h(x)2 and hence |g(x)|2 is integrable and

g ∈ L2[a, b].

We also observe that

|g(x) − gn(x)|2 ≤ (|g(x)| + |gn(x)|)2 ≤ (2h(x))2.

Since lim
n→∞ |g(x) − gn(x)|2 = 0 for almost all x the Lebesgue conver-

gence theorem, Theorem 4.4.4, tells us lim
n→∞

∫
|g(x) − gn(x)|2 dµ = 0.

This implies lim
n→∞ ‖g − gn‖ = 0.

Hence, given ε > 0 there is an i such that ‖g − gi‖ < ε/2 and

1/2i < ε/2. Recalling that gi = fni
we see that whenever m ≥ ni we

have

‖g − fm‖ ≤ ‖g − gi‖ + ‖gi − fm‖
< ε/2 + ε/2 = ε.

Hence lim
m→∞ ‖g − fm‖ = 0. �

We have shown that if {fn} is a Cauchy sequence in L2[a, b], then

there is a function g ∈ L2[a, b] such that lim
m→∞ ‖g − fm‖ = 0. This,

however, does not immediately tell us for any particular x ∈ [a, b] that

lim
m→∞ |g(x) − fm(x)| = 0, i.e., it implies nothing about pointwise con-

vergence. On the other hand, our proof of convergence in L2[a, b] does

imply the existence of a subsequence {fni
} which converges pointwise

almost everywhere. We formalize this as follows

Corollary 5.2.8. If the sequence {fn} converges in L2[a, b] to f, then
there exists a subsequence {fni

}∞i=0 such that

lim
i→∞

fni
(x) = f(x)

for almost all x ∈ [a, b].

Proof. Since {fn} converges in L2[a, b] it is Cauchy (see part (1)

of Exercise A.11.3). In the proof of Theorem 5.2.7 we constructed

a function g, associated to the Cauchy sequence {fn}, and a subse-

quence gi = fni
with the property that lim

i→∞
‖g − gi‖ = 0 in L2[a, b]

and

lim
i→∞

gi(x) = g(x)
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for almost all x ∈ [a, b]. Since {gi} converges to f and to g in L2[a, b]

we conclude that f(x) = g(x) for almost all x. �

5.3. Hilbert Space

In any Hilbert space we can, of course, talk about convergent series as

well as sequences. The meaning is precisely what you would expect.

In particular, if H is a Hilbert space and {un} is a sequence in H,

then ∞∑
m=1

um = s

means lim sn = s where

sn =

n∑
m=1

um.

We will say a series
∑∞

m=1 um converges absolutely provided the se-

quence
∑∞

m=1 ‖um‖ converges.

Proposition 5.3.1. (Absolutely convergent series). If a series
in a Hilbert space converges absolutely, then it converges.

Proof. Given ε > 0 there is an N > 0 such that whenever n > m ≥
N,

n∑
i=m

‖um‖ ≤
∞∑

i=m

‖um‖ < ε.

Let sn =
∑n

i=1 ui, then ‖sn − sm‖ ≤ ∑n
i=m ‖um‖ < ε. It follows that

{sn} is a Cauchy sequence. Hence it converges. �

We will also talk about perpendicularity in H. We say x, y ∈ H
are perpendicular (written x ⊥ y) if 〈x, y〉 = 0.

Theorem 5.3.2. (Pythagorean theorem). If x1, x2, . . . , xn are
mutually perpendicular elements of a Hilbert space, then∥∥∥ n∑

i=1

xi

∥∥∥2

=

n∑
i=1

‖xi‖2.
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Proof. Consider the case n = 2. If x ⊥ y, then

‖x + y‖2 = 〈x + y, x + y〉 = 〈x, x〉 + 2〈x, y〉 + 〈y, y〉 = ‖x‖2 + ‖y‖2

since 〈x, y〉 = 0. The general case follows by induction on n. �

Definition 5.3.3. (Bounded linear functional). A bounded lin-

ear functional on a Hilbert space H is a function L : H → R such
that for all v, w ∈ H and c1, c2 ∈ R, L(c1v + c2w) = c1L(u)+ c2L(w)

and such that there is a constant M satisfying |L(v)| ≤ M‖v‖ for all
v ∈ H.

The Cauchy-Schwarz inequality is a standard result for any real

vector space with an inner product. A proof has been provided in

Proposition A.9.5 of Appendix A. In the case of the Hilbert space

L2[a, b] this is just the corollary to Hölder’s inequality, given in Corol-

lary 5.1.6.

Proposition 5.3.4. (Cauchy-Schwarz inequality). If (H, 〈 , 〉)
is a Hilbert space and v, w ∈ H, then

|〈v, w〉| ≤ ‖v‖ ‖w‖,
with equality if and only if v and w are multiples of a single vector.

For any fixed x ∈ H we may define L : H → R by L(v) = 〈v, x〉.
Then L is a linear function and as a consequence of the Cauchy-

Schwarz inequality it is bounded. Indeed, ‖L(v)‖ ≤ M‖v‖ where

M = ‖x‖. Our next goal is to prove that these are the only bounded

linear functionals on H.

Lemma 5.3.5. Suppose H is a Hilbert space and L : H → R is a
bounded linear functional which is not identically 0. If V = L−1(1),

then there is a unique x ∈ V such that

‖x‖ = inf
v∈V

‖v‖.
That is, there is a unique vector in V closest to 0. Moreover, the
vector x is perpendicular to every element of L−1(0), i.e., if v ∈ H
and L(v) = 0 then 〈x, v〉 = 0.

Proof. We first observe that V is closed, i.e., that any convergent

sequence in V has its limit in V . To see this suppose lim xn = x and
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xn ∈ V . Then |L(x) − L(xn)| = |L(x − xn)| ≤ M‖x − xn‖ for some

M . Hence since L(xn) = 1 for all n, we have

|L(x) − 1| ≤ lim
n→∞M‖x − xn‖ = 0.

Therefore, L(x) = 1 and x ∈ V .

Now let d = inf
v∈V

‖v‖ and choose a sequence {xn}∞n=1 in V such

that lim ‖xn‖ = d. We will show that this sequence is Cauchy and

hence converges.

Notice that (xn + xm)/2 is in V , so

‖(xn + xm)/2‖ ≥ d and ‖xn + xm‖ ≥ 2d.

By the parallelogram law (Proposition A.9.6)

‖xn − xm‖2 + ‖xn + xm‖2 = 2‖xn‖2 + 2‖xm‖2.

Hence,

‖xn − xm‖2 = 2‖xn‖2 + 2‖xm‖2 − ‖xn + xm‖2

≤ 2‖xn‖2 + 2‖xm‖2 − 4d2.

As m and n tend to infinity the right side of this inequality goes to

0. Hence the left side does also and lim ‖xn − xm‖ = 0. That is, the

sequence {xn}∞n=1 is Cauchy. Let x ∈ V be the limit of this sequence.

Since ‖x‖ ≤ ‖x − xn‖ + ‖xn‖ for all n, we have

‖x‖ ≤ lim
n→∞ ‖x − xn‖ + lim

n→∞ ‖xn‖ = d;

but x ∈ V implies ‖x‖ ≥ d, so ‖x‖ = d.

To see that x is unique suppose that y is another element of V
and ‖y‖ = d. Then (x+ y)/2 is in V so ‖x+ y‖ ≥ 2d. Hence using the

parallelogram law again,

‖x − y‖2 = 2‖x‖2 + 2‖y‖2 − ‖x + y‖2 ≤ 4d2 − 4d2 = 0.

We conclude that x = y.

Suppose that v ∈ L−1(0). We wish to show it is perpendicular to

x. Note that for all t ∈ R the vector x + tv ∈ L−1(1), so ‖x + tv‖2 ≥
‖x‖2. Hence

‖x‖2 + 2t〈x, v〉 + t2‖v‖2 ≥ ‖x‖2, so
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2t〈x, v〉 + t2‖v‖2 ≥ 0 for all t ∈ R. This is possible only if 〈x, v〉 =

0. �

In the following theorem we characterize all the bounded linear

functionals on a Hilbert space. Each of them is obtained by taking

the inner product with some fixed vector.

Theorem 5.3.6. If H is a Hilbert space and L : H → R is a bounded
linear functional, then there is a unique x ∈ H such that L(v) = 〈v, x〉.

Proof. If L(v) = 0 for all v, then x = 0 has the property we want,

so suppose L is not identically 0. Let x0 ∈ H be the unique point in

L−1(1) with smallest norm, guaranteed by Lemma 5.3.5.

Suppose first that v ∈ H and L(v) = 1. Then L(v−x0) = L(v)−
L(x0) = 1−1 = 0, so by Lemma 5.3.5 〈v−x0, x0〉 = 0. It follows that

the vector x = x0/‖x0‖2 is also perpendicular to v − x0, so

〈v, x〉 = 〈v,
x0

‖x0‖2
〉 = 〈v − x0,

x0

‖x0‖2
〉 + 〈x0,

x0

‖x0‖2
〉 = 1 = L(v).

Hence, for any v with L(v) = 1 we have L(v) = 〈v, x〉. Also, for any

v with L(v) = 0 we have L(v) = 0 = 〈v, x〉 by Lemma 5.3.5.

Finally, for an arbitrary w ∈ H with L(w) = c �= 0 we define

v = w/c, so L(v) = L(w)/c = 1. Hence,

L(w) = L(cv) = cL(v) = c〈v, x〉 = 〈cv, x〉 = 〈w, x〉.
To see that x is unique, suppose that y ∈ H has the same prop-

erties. Then for every v ∈ H we have 〈v, x〉 = L(v) = 〈v, y〉. Thus,

〈v, x− y〉 = 0 for all v and, in particular, for v = x − y. We conclude

that ‖x − y‖2 = 〈x − y, x − y〉 = 0, so x = y. �

Exercise 5.3.7. If V1 and V2 are Hilbert spaces, we say a function

f : V1 → V2 is linear if for every x, y ∈ V1 and every a, b ∈ R,

f(ax + by) = af(x) + bf(y).

The function f is continuous at x0 if for every ε > 0 there is a δ > 0

such that ‖f(x) − f(x0)‖ < ε for all x with ‖x − x0‖ < δ.
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(1) Prove that a linear function f : V1 → V2 is continuous (i.e.,

continuous at every x0 ∈ V1) if and only if it is continuous

at x0 = 0 ∈ V1.

(2) Prove that a linear function f : V1 → V2 is continuous if

and only if there is an M > 0 such that for all x ∈ V1,

‖f(x)‖ ≤ M‖x‖.
(3) The kernel of a continuous linear function f : V1 → V2 is

defined to be

K = {v ∈ V1 | f(v) = 0}.
Prove that K is a vector subspace of H. Prove K is closed;

i.e., if vn ∈ K and lim vn = w, then w ∈ K.

(4) Suppose H is a Hilbert space, L : H → R is a bounded linear

functional, and V = L−1(0). Prove there is a linear function

P : H → V such that P (P (x)) = P (x) for all x ∈ H and

such that x − P (x) is perpendicular to v for all x ∈ H and

all v ∈ V . The function P is called an orthogonal projection
onto V .

5.4. Fourier Series

As always we would like to reproduce for a Hilbert space as many

properties of Rn with its usual “dot product” as possible. In Rn it

is very useful to have an orthonormal basis, i.e., a set of n unit vec-

tors {ui}n
i=1 which are pairwise perpendicular (and which necessarily

then span Rn and are necessarily linearly independent). If we have

such an orthonormal basis then it is not difficult to show (see Propo-

sition A.9.8) that if we denote the dot product of u and v by 〈u, v〉,
then for any v ∈ Rn,

v =

n∑
i=1

〈v, ui〉ui.

Moreover, this expression is unique, i.e., if

v =

n∑
i=1

aiui

for some real numbers ai, then ai = 〈v, ui〉.
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It is these properties we wish to generalize to (infinite dimen-

sional) Hilbert spaces. It is not generally possible to find vectors

{ui}∞i=1 in a Hilbert space H such that any v ∈ H can be expressed

as a finite linear combination of the ui’s. Instead we want to write

v ∈ H as an infinite series

v =

∞∑
i=1

aiui,

by which, of course, we will mean the series
∑

aiui converges in H to

v.

Definition 5.4.1. (Orthonormal family). A family of vectors
{un} in a Hilbert space H is called orthonormal provided for each
n, ‖un‖ = 1 and 〈un, um〉 = 0 if n �= m.

Theorem 5.4.2. If {un}N
n=0 is a finite orthonormal family of vectors

in a Hilbert space H and w ∈ H, then the minimum value of∥∥∥w −
N∑

n=0

cnun

∥∥∥
for all choices of cn ∈ R occurs when cn = 〈w, un〉.

Proof. Let cn be arbitrary real numbers and define an = 〈w, un〉.
Let

u =

N∑
n=0

anun, and v =

N∑
n=0

cnun.

Notice that by the Pythagorean theorem (Theorem 5.3.2),

〈u, u〉 =

N∑
n=0

|an|2 and 〈v, v〉 =

N∑
n=0

|cn|2.

Also,

〈w, v〉 =

N∑
n=0

cn〈w, un〉 =

N∑
n=0

ancn.
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Hence,

‖w − v‖2 = 〈w − v, w − v〉
= ‖w‖2 − 2〈w, v〉 + ‖v‖2

= ‖w‖2 − 2

N∑
n=0

ancn +

N∑
n=0

|cn|2

= ‖w‖2 −
N∑

n=0

|an|2 +

N∑
n=0

(an − cn)2

= ‖w‖2 − ‖u‖2 +

N∑
n=0

|an − cn|2.

It follows that

‖w − v‖2 ≥ ‖w‖2 − ‖u‖2

for any choices of the cn’s and we have equality if and only if cn = an.

That is, for all choices of v, the minimum value of ‖w − v‖2 occurs

precisely when v = u. �

Definition 5.4.3. (Complete orthonormal family). If {un}∞n=0

is an orthonormal family of vectors in a Hilbert space H, it is called
complete if every w ∈ H can be written as an infinite series

w =

∞∑
n=0

cnun

for some choice of the numbers cn ∈ R.

Theorem 5.4.2 suggests that the only reasonable choice for cn is

cn = 〈w, un〉 and we will show that this is the case. These numbers

are sufficiently frequently used that they have a name.

Definition 5.4.4. (Fourier series). The nth Fourier coefficient
of w with respect to an orthonormal family {un}∞n=0 is the number
〈w, un〉. The infinite series

∞∑
n=0

〈w, un〉un

is called the Fourier series of w.
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Theorem 5.4.5. (Bessel’s inequality). If {ui}∞i=0 is an orthonor-
mal family of vectors in a Hilbert space H and w is any element of
H, then

∞∑
i=0

|〈w, ui〉|2 ≤ ‖w‖2.

In particular this series converges.

Proof. Let sn be the partial sum for the Fourier series. That is,

sn =
∑n

i=0〈w, un〉un. Then since the family is orthogonal, we know

by the Pythagorean theorem (Theorem 5.3.2) that

(5.4.1) ‖sn‖2 =

n∑
i=0

‖〈w, ui〉ui‖2 =

n∑
i=0

|〈w, ui〉|2.

This implies that sn ⊥ (w − sn) because

〈w − sn, sn〉 = 〈w, sn〉 − 〈sn, sn〉 =

n∑
i=0

|〈w, un〉|2 − ‖sn‖2 = 0.

Since sn ⊥ (w − sn) we know

(5.4.2) ‖w‖2 = ‖sn‖2 + ‖w − sn‖2

by the Pythagorean theorem again. Hence, by equation (5.4.1),

n∑
i=0

|〈w, un〉|2 = ‖sn‖2 ≤ ‖w‖2.

Since ‖sn‖2 is an increasing sequence it follows that the series

∞∑
i=0

|〈w, un〉|2 = lim
n→∞ ‖sn‖2 ≤ ‖w‖2

converges. �

Proposition 5.4.6. (Fourier series converge). If {un}∞n=0 is an
orthonormal family of vectors in a Hilbert space H and w ∈ H, then
the Fourier series

∑∞
i=0〈w, ui〉ui with respect to {ui}∞i=0 converges. If

the orthonormal family is complete, then it converges to w. Moreover,
it is unique in the sense that if

∑∞
i=0 ciui = w, then ci = 〈w, ui〉.
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Proof. Let sn be the partial sum for the Fourier series. That is,

sn =
∑n

i=0〈w, ui〉ui. So if n > m, sn − sm =
∑n

i=m+1〈w, ui〉ui.

Then since the family is orthogonal, we know by Theorem 5.3.2

that

‖sn − sm‖2 =

n∑
i=m+1

‖〈w, ui〉ui‖2 =

n∑
i=m+1

|〈w, ui〉|2.

Since the series
∑∞

i=0 |〈w, ui〉|2 converges we conclude that given ε >

0, there is an N > 0 such that ‖sn − sm‖2 < ε2 whenever n, m ≥ N.

In other words, the sequence {sn} is Cauchy, so it converges.

If the family {un}∞n=0 is complete there exist numbers ci such

that the series
∑∞

i=0 ciui converges to w. So the partial sums Sn =∑n
i=0 ciui satisfy

w = lim
n→∞ Sn.

Hence, since the linear functional L(x) = 〈x, uj〉 is continuous

〈w, uj〉 = 〈 lim
n→∞Sn, uj〉 = lim

n→∞〈Sn, uj〉 = cj .

Thus, the sequence
∑∞

i=0 ciui which converges to w is the Fourier

series of w. �

If Bessel’s inequality is actually an equality, then the Fourier se-

ries for w must converge to w in H. This result is called Parseval’s

theorem.

Theorem 5.4.7. (Parseval’s theorem). If {un}∞n=0 is an or-
thonormal family of vectors in a Hilbert space H and w ∈ H, then

∞∑
i=0

|〈w, ui〉|2 = ‖w‖2

if and only if the Fourier series with respect to {un}∞n=0 converges to
w, i.e.,

∞∑
i=0

〈w, ui〉ui = w.

Proof. As above let sn be the partial sum for the Fourier series.

We showed in equation (5.4.2) that ‖w‖2 = ‖sn‖2 + ‖w − sn‖2.
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Clearly, lim ‖w − sn‖ = 0 if and only if lim ‖sn‖2 = ‖w‖2. Equiv-

alently (using equation (5.4.1)),
∑∞

n=0〈w, un〉un = w if and only if∑∞
n=0 |〈w, un〉|2 = ‖w‖2. �

Exercise 5.4.8. Suppose H is a Hilbert space and {ui}∞i=0 is an

orthonormal family. Define P : H → H by

P (w) =

∞∑
i=0

〈w, ui〉ui,

which we know converges by Proposition 5.4.6.

(1) Prove that P and (I − P ) are continuous and linear, where

I : H → H is the identity function. (See Exercise 5.3.7.)

(2) The kernel of P is defined to be K = {u ∈ H | P (u) = 0}.
Prove that K and P (H) are closed subspaces of H. (See

Exercise 5.3.7.)

(3) Prove that every element w ∈ H can be written uniquely as

w = u + v with u ∈ K and v ∈ P (H).

5.5. Complex Hilbert Space

Up until now we have focused on real vector spaces and real-valued

functions. However, much of modern mathematics and physics (es-

pecially quantum mechanics) is based on the study of complex vector

spaces and, in particular, complex Hilbert spaces which we now inves-

tigate. In Section 6.2 we will discuss the integration of complex-valued

functions and then in Section 6.3 we will consider a very important

complex Hilbert space of square integrable functions.

However, our first task is to replicate the results of the previous

section for complex vector spaces instead of real vector spaces. We

must replace the inner product with a Hermitian form whose defini-

tion is repeated here from Definition A.10.3. The reader unfamiliar

with complex vector spaces may wish to consult Section A.10.

Definition 5.5.1. (Hermitian form, associated norm). A Her-

mitian form on a complex vector space V is a function 〈 , 〉 : V×V →
C which satisfies:
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(1) Conjugate symmetry: 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .

(2) Sesquilinearity:

〈c1v1 + c2v2, w〉 = c1〈v1, w〉 + c2〈v2, w〉 and

〈v, c1w1 + c2w2, 〉 = c̄1〈v, w1〉 + c̄2〈v, w2〉
for all v1, v2, w1, w2 ∈ V and all c1, c2 ∈ C.

(3) Positive definiteness: For all w ∈ V , 〈w, w〉 is real and
≥ 0 with equality only if w = 0.

The norm ‖ ‖ associated to 〈 , 〉 is defined by ‖v‖2 = 〈v, v〉.

Note that, as is customary, we will use the same notation, namely

〈 , 〉, for a Hermitian form on a complex vector space and an inner

product on a real vector space and will also write ‖ ‖ for the associated

norm in both cases. The reader must know which is intended by

the context. This is similar to our use of the same notation | | for

absolute value of real numbers and modulus of complex numbers.

These notational conventions have the useful effect of making the

proofs of some results about real inner product spaces and the proofs

of their complex vector space analogs identical word for word and

symbol for symbol. In other words, the syntax of the two proofs is

identical, but the semantics is different with 〈 , 〉 meaning a real inner

product in one and a Hermitian form in the other. When this occurs

as in Theorem 5.5.11, Proposition 5.5.12, and Theorem 5.5.13 below,

rather than repeat the proof of the real version word for word we will

simply refer the reader to that proof.

We will also need the following results which are analogous to

results with the same names for real vector spaces.

Proposition 5.5.2. If V is a complex vector space with Hermitian
form 〈 , 〉 and associated norm ‖ ‖, then

(1) (Pythagorean theorem). If the vectors x1, x2, . . . , xn are
mutually perpendicular, then∥∥∥ n∑

i=1

xi

∥∥∥2

=

n∑
i=1

‖xi‖2.
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(2) (Cauchy-Schwarz inequality). For all v, w ∈ V ,

|〈v, w〉| ≤ ‖v‖ ‖w‖,
with equality if and only if v and w are multiples of a single
vector.

(3) (Triangle inequality). For all v, w ∈ V , ‖v + w‖ ≤ ‖v‖+

‖w‖.

Proof. This proposition combines the results of Proposition A.10.7,

Proposition A.10.8, and Proposition A.10.9 from the discussion of

complex vector spaces in Appendix A. The proofs can be found in

Section A.10. �

Definition 5.5.3. (Orthonormal family). A family of vectors
{un} in a complex Hilbert space H is called orthonormal provided
for each n, ‖un‖ = 1 and 〈un, um〉 = 0 if n �= m.

As with real vector spaces we have the notion of a complex Hilbert

space in which Cauchy sequences converge.

Definition 5.5.4. (Complex Hilbert space). If H is a complex
vector space with Hermitian form 〈 , 〉 and associated norm ‖ ‖,
then it is called a complex Hilbert space provided it is complete, i.e.,
sequences which are Cauchy with respect to the norm ‖ ‖ converge.

In a complex Hilbert space linear functionals take values in the

complex numbers.

Definition 5.5.5. (Bounded linear functional). If H is a com-
plex Hilbert space, a bounded linear functional on H is a function
L : H → C such that for all v, w ∈ H and c1, c2 ∈ C, L(c1v + c2w) =

c1L(u) + c2L(w) and such that there is a real constant M ≥ 0 satis-
fying |L(v)| ≤ M‖v‖ for all v ∈ H.

The following theorem is the complex version of Theorem 5.3.6.

The proof is very similar and is left as an exercise.

Theorem 5.5.6. If H is a complex Hilbert space and L : H → C is
a bounded linear functional, then there is a unique x ∈ H such that
L(v) = 〈v, x〉.
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Exercise 5.5.7.

(1) If {un}∞n=1 are elements of a complex Hilbert space H, we

say the series
∑∞

n=1 un converges absolutely if
∑∞

n=1 ‖un‖
converges. Prove that if a series converges absolutely, then

it converges in H.

(2) State an analog of Lemma 5.3.5 for complex Hilbert spaces

and give its proof.

(3) Give the proof of Theorem 5.5.6.

(4) Suppose H is a complex Hilbert space, L : H → C is a

bounded linear functional, and V = L−1(0). Prove there is

a linear function P : H → V such that P (P (x)) = P (x) for

all x ∈ H and such that x−P (x) is perpendicular to v for all

x ∈ H and all v ∈ V . The function P is called an orthogonal
projection onto V .

Theorem 5.5.8. If {un}N
n=0 is a finite orthonormal family of vectors

in a complex Hilbert space H and w ∈ H, then the minimum value of∥∥∥w −
N∑

n=0

cnun

∥∥∥
for all choices of cn ∈ C occurs when cn = 〈w, un〉.

Proof. Let cn be arbitrary complex numbers and define an = 〈w, un〉.
Let

u =

N∑
n=0

anun and v =

N∑
n=0

cnun.

Notice that the Pythagorean theorem and Proposition 5.5.2 imply

that

〈u, u〉 =

N∑
n=0

|an|2 and 〈v, v〉 =

N∑
n=0

|cn|2.

Also,

〈w, v〉 =

N∑
n=0

c̄n〈w, un〉

=

N∑
n=0

anc̄n.
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Hence,

‖w − v‖2 = 〈w − v, w − v〉
= ‖w‖2 − 〈w, v〉 − 〈v, w〉 + ‖v‖2

= ‖w‖2 −
N∑

n=0

anc̄n −
N∑

n=0

āncn +

N∑
n=0

|cn|2

= ‖w‖2 −
N∑

n=0

|an|2 +

N∑
n=0

〈an − cn, an − cn〉

= ‖w‖2 − ‖u‖2 +

N∑
n=0

|an − cn|2.

It follows that

‖w − v‖2 ≥ ‖w‖2 − ‖u‖2

for any choices of the cn’s and we have equality if only if cn = an.

That is, for all choices of v, the minimum value of ‖w − v‖2 occurs

precisely when v = u. �

Definition 5.5.9. (Complete orthonormal family). If {un}∞n=0

is an orthonormal family of vectors in a complex Hilbert space H, it
is called complete if every w ∈ H can be written as an infinite series

w =

∞∑
n=0

cnun

for some choice of the numbers cn ∈ C.

Theorem 5.5.8 suggests that the only reasonable choice for cn is

cn = 〈w, un〉 and we will show that this is the case. As in the real

case these numbers are called Fourier coefficients.

Definition 5.5.10. (Complex Fourier series). If H is a complex
Hilbert space, the complex Fourier coefficient of w ∈ H with respect to
an orthonormal family {un}∞n=0 is the number 〈w, un〉. The infinite
series ∞∑

n=0

〈w, un〉un

is called the Fourier series.
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Theorem 5.5.11. (Bessel’s inequality). If {ui}∞i=0 is an orthonor-
mal family of vectors in a complex Hilbert space H and w is any
element of H, then

∞∑
i=0

|〈w, ui〉|2 ≤ ‖w‖2.

In particular, this series converges.

Proof. The proof is identical to that of Theorem 5.4.5 when 〈 , 〉 is

interpreted as the Hermitian form on H rather than an inner product.

�

Proposition 5.5.12. (Fourier series converge). If {un}∞n=0 is
an orthonormal family of vectors in a complex Hilbert space H and
w ∈ H, then the Fourier series

∑∞
i=0〈w, ui〉ui with respect to {ui}∞i=0

converges. If the orthonormal family is complete, then it converges
to w. Moreover, it is unique in the sense that if

∑∞
i=0 ciui = w, then

ci = 〈w, ui〉.

Proof. The proof is identical to the proof of Proposition 5.4.6. �

As in the real case, if Bessel’s inequality is actually an equality,

then the Fourier series for w must converge to w in H.

Theorem 5.5.13. (Parseval’s theorem). Suppose {un}∞n=0 is an
orthonormal family of vectors in a complex Hilbert space H and w ∈
H, then

∞∑
i=0

〈w, ui〉2 = ‖w‖2

if and only if the Fourier series with respect to {un}∞n=0 converges to
w, i.e.,

∞∑
i=0

〈w, ui〉ui = w.

Proof. The proof is identical to the proof of Theorem 5.4.7. �

                

                                                                                                               



Chapter 6

Classical Fourier Series

In this chapter we describe the classical expansion of a square inte-

grable function as a trigonometric series and then its analogue for

square integrable complex-valued functions. We will work on the in-

terval [a, b] = [−π, π] because it greatly simplifies the formulas.

6.1. Real Fourier Series

In addition to using the domain [−π, π] for our functions it simplifies

notation to alter the definition of the inner product by a factor of

1/π.

Definition 6.1.1. (Inner product on L2[−π, π]). We define the
inner product 〈 , 〉 on L2[−π, π], the vector space of square integrable
functions on [−π, π], by

〈f, g〉 =
1

π

∫ π

−π

fg dµ.

Clearly, the factor 1/π does not alter the property of 〈 , 〉 being an

inner product or of the associated norm being a norm. The advantage

of this definition is we have a fairly simple orthonormal family for the

Hilbert space L2[−π, π].

111

                                     

                

                                                                                                               



112 6. Classical Fourier Series

Theorem 6.1.2. The family of functions

F =
{ 1√

2
, cos nx, sin nx

}∞

n=1

is an orthonormal family in L2[−π, π].

Proof. Recall that Euler’s formula says eiθ = cos θ+i sin θ and hence

einx = cos nx + i sin nx

and

e−inx = cos nx − i sin nx.

From this it is straightforward to calculate

cos nx =
einx + e−inx

2
and sin nx =

einx − e−inx

2i
.

Multiplying the expressions for cosnx and cosmx we see

cos nx cos mx =(6.1.1)

ei(n+m)x + ei(n−m)x + ei(m−n)x + e−i(n+m)x

4
.

According to part (3) of Exercise1.6.3 for any integer k �= 0,∫ π

−π

eikx dx =
eikπ − e−ikπ

ik
= 0.

Therefore, since n, m > 0, the expression (6.1.1) for cosnx cosmx

implies that when n �= m,

〈cosnx, cosmx〉 =
1

π

∫ π

−π

cos nx cosmx dx = 0.

Also, when n = m we conclude

‖ cosnx‖2 = 〈cosnx, cos nx〉

=
1

π

∫ π

−π

cos2 nx dx

=
1

π

∫ π

−π

e2inx + 2 + e−2inx

4
dx

= 1.
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A similar argument shows 〈sin nx, cos mx〉 = 0 and also that

〈sin nx, sin mx〉 = 1 if n = m and 0 otherwise.

Finally, it is clear that ‖ 1√
2
‖ = 1 and

〈 1√
2
, sin nx〉 = 〈 1√

2
, cos nx〉 = 0.

�

We can now define the classical Fourier coefficients. With one

exception these are just the special case for the orthonormal family

F of the general Fourier coefficients defined in Definition 5.4.4. The

one exception is the Fourier coefficient A0, corresponding to the el-

ement 1√
2

in the orthonormal family F . It is not the one given by

Definition 5.4.4. According to that definition the value should be

〈f,
1√
2
〉 =

1

π
√

2

∫
f dµ.

However, in the Fourier series that coefficient should be multiplied by

the (constant) function 1√
2

giving the value

1

2π

∫
f dµ.

For simplicity it is conventional to combine the coefficient and the

constant function 1√
2

in this way and define A0 as below, simplifying

the expression of the Fourier series.

Definition 6.1.3. (Classical Fourier coefficients). If f is an
element of L2[−π, π], then its classical Fourier coefficients are

A0 =
1

2π

∫
f(x) dµ,

An =
1

π

∫
f(x) cosnx dµ,

Bn =
1

π

∫
f(x) sin nx dµ,

for n > 0. The Fourier series of f is

A0 +

∞∑
n=1

An cos nx +

∞∑
n=1

Bn sin nx.
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The goal of the remainder of this section is to show that this

Fourier series with respect to the orthonormal family

F =
{ 1√

2
, cos nx, sin nx

}∞

n=1

converges to f in L2[−π, π]. Hence, the orthonormal family F is com-

plete.

Definition 6.1.4. (Algebra of functions). An algebra of functions

is a vector space A of real-valued functions defined on some set X with
the additional property that if f, g ∈ A, then fg ∈ A.

We will be particularly interested in the set which is the unit circle

in R2 and which we denote by T.1 Note that T = {(cos θ, sin θ) | −π ≤
θ ≤ π}. We will identify points in T by the parameter θ noting that

θ = −π and θ = π correspond to the same point of T. The vector space

of all real-valued continuous functions defined on T will be denoted

C(T). Note that C(T) is an algebra of functions. We will sometimes

abuse notation slightly and consider C(T) as the set of continuous

functions h : [−π, π] → R which satisfy h(−π) = h(π).

Theorem 6.1.5. (Stone-Weierstrass). Suppose A ⊂ C(T) is an
algebra satisfying

(1) the constant function 1 is in A, and

(2) A separates points; i.e., for any distinct θ0 and θ1 in T there
is p ∈ A such that p(θ0) �= p(θ1).

Then given any ε > 0 and any f ∈ C(T) there is p ∈ A such that
|f(θ) − p(θ)| < ε for all θ ∈ T.

A proof can be found in Chapter III of [L] or in Chapter 9, Sec-

tion 9 of [Ro]. This result is usually stated in greater generality than

we do here. For example, the set T can be replaced by any compact

metric space, but the special case above suffices for our purposes.

Indeed, what we will use is the fact that any f ∈ C(T) can be ap-

proximated by a so-called “trigonometric polynomial”. The following

corollary to the Stone-Weierstrass theorem makes this precise.

1It is denoted by T because it is the one-dimensional torus T1.
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Corollary 6.1.6. Suppose that g is a continuous function defined on
[−π, π] such that g(−π) = g(π). If ε > 0, then there are N > 0 and
an, bn ∈ R, 1 ≤ n ≤ N such that |g(x) − p(x)| < ε, for all x, where

p(x) = a0 +

N∑
n=1

an cos nx +

N∑
n=1

bn sin nx.

Proof. Let A be the collection of all functions on T of the form

q(θ) = a0 +

N∑
n=1

an cos nθ +

N∑
n=1

bn sin nθ

for some choices of N, an, and bn and −π ≤ θ ≤ π. Then A is a

vector space and contains the constant function 1. It is an algebra as

a consequence of the following trigonometric identities (see part (1)

of Exercise 6.1.10):

sin(θ1) cos(θ2) =
1

2

(
sin(θ1 + θ2) + sin(θ1 − θ2)

)
,

cos(θ1) cos(θ2) =
1

2

(
cos(θ1 + θ2) + cos(θ1 − θ2)

)
,

sin(θ1) sin(θ2) =
1

2

(
cos(θ1 + θ2) − cos(θ1 − θ2)

)
.

It is also the case that A separates points of T. To see this, note

that if −π < θ1, θ2 ≤ π are real numbers with sin θ1 = sin θ2 and

cos θ1 = cos θ2 then θ1 = θ2. Therefore, if θ1 �= θ2, then either sin θ1 �=
sin θ2 or cos θ1 �= cos θ2.

We may consider the function g given in the hypothesis as a

function g : T → R. It is well defined and continuous at the point

of T where θ = π (which is also the point where θ = −π) because

g(−π) = g(π).

Given ε > 0, we apply the Stone-Weierstrass theorem to the

function g and the algebra A. We conclude that there is an N > 0

and real numbers an and bn, 1 ≤ n ≤ N such that the function

p(θ) = a0 +

N∑
n=1

an cos nθ +

N∑
n=1

bn sin nθ
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satisfies |g(θ)− p(θ)| < ε for all θ ∈ [−π, π]. Note that p(−π) = p(π).

The function p(x) for x ∈ [−π, π] then satisfies the conclusion of the

theorem. �

Theorem 6.1.7. (Fourier series converge in L2). Suppose that
f ∈ L2[−π, π]. Then the Fourier series for f with respect to the or-
thonormal family F converges to f in L2[−π, π]. In particular, the
orthonormal family F is complete.

Proof. Given ε > 0, we know by Proposition 5.2.3 there is a continu-

ous function g ∈ L2[−π, π] such that g(−π) = g(π) and ‖f−g‖ < ε/2.

By Corollary 6.1.6 to the Stone-Weierstrass theorem there is a

function

p(x) = a0 +

N∑
n=1

an cos nx +

N∑
n=1

bn sin nx

with |g(x) − p(x)| <
√

ε/2 for all x. So ‖g − p‖2 =
∫

(g − p)2 dµ ≤∫
ε/4 dµ = ε/2π. Hence, ‖f−p‖ ≤ ‖f−g‖+‖g−p‖ < ε/2+ε/2π < ε.

Let

SN (x) = A0 +

N∑
n=1

An cos nx +

N∑
n=1

Bn sin nx

where An and Bn are the Fourier coefficients for f with respect to F .

Then SN (x) is the partial sum of the Fourier series of f . According to

Theorem 5.4.2 for every m ≥ N, ‖f−Sm‖ ≤ ‖f−p‖, so ‖f−Sm‖ < ε.

This proves lim
n→∞ ‖f − Sm‖ = 0. �

It is important to note that while we have proved that the Fourier

series of a function f ∈ L2[−π, π] converges to f in the Hilbert space

L2[−π, π] this is not at all the same thing as saying that for a fixed

x0 the Fourier series

A0 +

∞∑
n=1

An cos nx0 +

∞∑
n=1

Bn sin nx0

converges to f(x0). However, if we define the partial sum

Sm = A0 +

m∑
n=1

An cos nx0, +

m∑
n=1

Bn sin nx0
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then according to Corollary 5.2.8 the fact that Sm converges to f in

L2[−π, π] implies there is a subsequence {ni} such that lim
i→∞

Sni
(x) =

f(x) for almost all x ∈ [−π, π].

It turns out, however, it is not necessary to take a subsequence!

In what is considered one of the most remarkable achievements of

twentieth century mathematics Lennart Carleson proved the following

result in [C].

Theorem 6.1.8. (Carleson’s theorem). Suppose f ∈ L2[−π, π]

and

A0 +

∞∑
n=1

An cos nx +

∞∑
n=1

Bn sin nx

is its classical Fourier series. Then this series converges to f(x) for
almost all values of x ∈ [−π, π].

The proof is considered difficult and delicate and is well beyond

the scope of this text. In fact, Carleson proved the more general

analog of this result for complex Fourier series (see Theorem 6.3.5

below).

In general, if a function f is continuous, its Fourier series may

not converge pointwise to f at every point. But if a function f is

differentiable the situation is better.

Theorem 6.1.9. If f : [−π, π] → R is differentiable at x0 ∈ (−π, π),

then the Fourier series of f at x0,

A0 +

∞∑
n=1

An cos nx0 +

∞∑
n=1

Bn sin nx0,

converges to f(x0). If the right and left derivatives of f exist at −π

and π respectively, then the Fourier series evaluated at either −π or
π converges to

f(−π) + f(π)

2
.

Again the proof of this result is outside the scope of this text. A

more general result (with proof) can be found as Theorem 1.2.24 of

the text [P] by Pinsky.
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Exercise 6.1.10.

(1) Use Euler’s formula which says eiθ = cos θ + i sin θ to derive

the trigonometric identities:

sin θ1 cos θ2 =
1

2

(
sin(θ1 + θ2) + sin(θ1 − θ2)

)
,

cos θ1 cos θ2 =
1

2

(
cos(θ1 + θ2) + cos(θ1 − θ2)

)
,

sin θ1 sin θ2 =
1

2

(
cos(θ1 + θ2) − cos(θ1 − θ2)

)
.

(2) A function f is called even provided f(−x) = f(x) for all

x. If f ∈ L2[−π, π] is even, prove that its classical Fourier

coefficients Bn are 0 for all n > 0.

(3) If f ∈ L2[−π, π], prove that for each n ∈ N,(∫ π

−π

|xnf(x)| dµ
)2

≤ 2π2n+1

2n + 1

∫ π

−π

f2 dµ.

(4) Find the Fourier series for the function f(x) = x on [−π, π].

Use it with a suitable value of x to show

π

4
=

∞∑
n=0

(−1)n 1

2n + 1
.

(5) Find the Fourier series for the function f(x) = x2 on [−π, π].

Use it with a suitable value of x to evaluate
∞∑

n=1

1

n2
.

(6) Let P = {c+(x2−1)p(x) | p(x) is a polynomial and c ∈ R}.
Prove that for any ε > 0 and any continuous g : [−1, 1] → R

with g(−1) = g(1) there is a p0 ∈ P such that |g(x) −
p0(x)| < ε for all x ∈ [−1, 1]. You may use the Stone-

Weierstrass theorem.

(7) Give an example of a sequence of functions {fn} which con-

verge in L2[a, b] to a function f, but for which the sequence

{fn(x)} fails to have a limit for every x ∈ [a, b]. Hint: See

part (5) of Exercise 3.3.5.
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6.2. Integrable Complex-Valued Functions

Now we want to consider functions f : [a, b] → C, i.e., functions whose

domain is an interval of reals, but whose values are complex numbers.

Definition 6.2.1. (Integrable complex function). Suppose f :

[a, b] → C is a complex-valued function and u(x) = �(f(x)), the real
part of f , and v(x) = 	(f(x)), the imaginary part of f. Then f is
called measurable if u and v are measurable. We say f is integrable
if u and v are integrable and in that case we define∫ b

a

f dµ =

∫ b

a

u dµ + i

∫ b

a

v dµ.

Proposition 6.2.2. The integral is a complex linear functional, i.e.,
if c1, c2 ∈ C and f, g are integrable, then c1f + c2g is integrable and∫ b

a

c1f + c2g dµ = c1

∫ b

a

f dµ + c2

∫ b

a

g dµ.

It also commutes with complex conjugation, i.e., the function f is
integrable if and only if its complex conjugate f̄ is integrable and∫ b

a

f̄ dµ =

∫ b

a

f dµ.

The proof follows easily from the linearity of the integral of real-

valued functions and the definition of complex multiplication. It is

left as an exercise.

Proposition 6.2.3. Suppose f : [a, b] → C is measurable. Then:

(1) The function f is integrable if and only if the real-valued
function |f(x)| is integrable. Moreover,∣∣∣ ∫ b

a

f dµ
∣∣∣ ≤ ∫ b

a

|f | dµ.

(2) The function |f(x)|2 is integrable if and only if u(x) =

�(f(x)) and v(x) = 	(f(x)) are in L2[a, b].

Proof. To show part (1) we note that since |f(x)| ≥ |u(x)| for all

x, it follows that if |f(x)| is integrable, then |u(x)| is integrable and

hence u(x) is integrable. The same argument applies to v(x).
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Conversely, if u and v are integrable, then so are |u| and |v|. Since

|f(x)| =
√

u(x)2 + v(x)2 ≤
√(

|u(x)| + |v(x)|
)2

= |u(x)| + |v(x)|
for all x, it follows that |f(x)| is integrable.

To prove the inequality from (1) we first show it for simple func-

tions. Suppose

f(x) =

m∑
i=1

ciXAi

where {Ai}m
i=1 is a measurable partition of [a, b] and ci ∈ C. Then∣∣∣ ∫ b

a

f dµ
∣∣∣ =

∣∣∣ m∑
i=1

ciµ(Ai)

∣∣∣
≤

m∑
i=1

|ciµ(Ai)|

=

m∑
i=1

|ci|µ(Ai)

=

∫ b

a

|f | dµ

where the inequality is a consequence of the triangle inequality for C.

To prove the general result we let u and v be the real and complex

parts of f . By part (5) of Exercise 4.4.7 there is a sequence of simple

functions {un} converging pointwise to u such that |un(x)| ≤ |u(x)|
for all x. Likewise, there is a sequence of simple functions {vn}
converging pointwise to v such that |vn(x)| ≤ |v(x)| for all x. Let

fn = un + ivn and observe that

|fn(x)|2 = |un(x)|2 + |vn(x)|2 ≤ |u(x)|2 + |v(x)|2 = |f(x)|2.
Since fn converges pointwise to f, the functions |fn| converge point-

wise to |f |. The Lebesgue convergence theorem applied to the se-

quences {un} and {vn} (which are bounded by |u| and |v| respectively)
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then tells us that

lim
n→∞

∫
fn dµ = lim

n→∞

∫
(un + ivn) dµ

= lim
n→∞

∫
un dµ + i lim

n→∞

∫
vn dµ

=

∫
u dµ + i

∫
v dµ

=

∫
f dµ.

Also applying Lebesgue convergence to {|fn|} which is bounded by

|f | we see

lim
n→∞

∫
|fn| dµ =

∫
|f | dµ.

Since fn is a simple function for which we have proved the desired

inequality we conclude that∣∣∣ ∫
f dµ

∣∣∣ = lim
n→∞

∣∣∣ ∫
fn dµ

∣∣∣
≤ lim

n→∞

∫
|fn| dµ

=

∫
|f | dµ.

To prove (2) we observe that since |f(x)|2 ≥ u(x)2 for all x, it

follows that integrability of |f(x)|2 implies integrability of u(x)2. The

same argument applies to v(x). Conversely, if u2 and v2 are integrable,

then so is |f(x)|2 = u(x)2 + v(x)2. �

Definition 6.2.4. (Square integrable complex functions). The
set of all complex functions f : [a, b] → C such that |f(x)|2 is inte-
grable are called the square integrable complex functions and will be
denoted L2

C
[a, b].

Proposition 6.2.5. The set L2
C
[a, b] is a complex vector space. More-

over, if f, g ∈ L2
C
[a, b], then fḡ is integrable.

Proof. Suppose f, g ∈ L2
C
[a, b], so the four functions u1(x) = �(f(x)),

u2(x) = �(g(x)), v1(x) = 	(f(x)), and v2(x) = 	(g(x)) are all in

L2[a, b]. It follows that (u1 + u2) and (v1 + v2) are in L2[a, b], so
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f + g = (u1 + u2) + i(v1 + v2) is in L2
C
[a, b]. Clearly, if c ∈ C, then

cf ∈ L2
C
[a, b], so L2

C
[a, b] is a complex vector space.

Also, fḡ = (u1u2−v1v2)+i(u1v2+v1u2). Since the product of two

functions in L2[a, b] is integrable it follows that fḡ is integrable. �

Exercise 6.2.6.

(1) Prove Proposition 6.2.2.

(2) Suppose fn : [a, b] → C, n ∈ N is a sequence of measur-

able functions and un(x) = �(fn(x)) and vn(x) = 	(fn(x)).

Prove that lim
n→∞ fn = f in L2

C
[−π, π] if and only if

lim
n→∞un = �(f) and lim

n→∞ vn = 	(f) in L2[−π, π].

6.3. The Complex Hilbert Space L2
C
[−π, π]

As we want to discuss complex Fourier series it is again convenient to

use the interval [a, b] = [−π, π]. Also, we will again scale the Hermitian

form in order to obtain a simple orthonormal family. This time we

scale by a factor of 1/2π.

Proposition 6.3.1. (Hermitian form). The function

〈 , 〉 : L2
C
[−π, π] × L2

C
[−π, π] → C

defined by

〈f, g〉 =
1

2π

∫ π

−π

fḡ dµ

is a Hermitian form.

Proof. The sesquilinearity is straightforward and will be left as an

exercise.

We note

〈f, f〉 =
1

2π

∫ π

−π

|f |2 dµ ≥ 0,

with equality only if |f(x)|2 = 0 almost everywhere. Hence, 〈f, f〉 =

0 only if f(x) = 0 almost everywhere.
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The fact that 〈f, g〉 = 〈g, f〉 follows from the fact that

〈f, g〉 =
1

2π

∫ π

−π

fḡ dµ =
1

2π

∫ π

−π

f̄g dµ =
1

2π

∫ π

−π

gf̄ dµ = 〈g, f〉.

�

In the complex Hilbert space L2
C
[−π, π] there is an even simpler

orthonormal family than the trigonometric polynomials we used for

L2[−π, π].

Theorem 6.3.2. The family of functions FC = {einx}∞n=−∞ is an
orthonormal family in L2

C
[−π, π].

Proof. According to part (3) of Exercise 1.6.3 for any integer k �= 0,∫ π

−π

eikx dx =
eikπ − e−ikπ

ik
= 0,

so it follows that if n �= m,

〈einx, eimx〉 =
1

2π

∫ π

−π

ei(n−m)x dx = 0.

Also,

〈einx, einx〉 =
1

2π

∫ π

−π

1 dx = 1,

so the family FC is an orthonormal family. �

Following Definition 5.5.10 we define the Fourier series with re-

spect to FC.

Definition 6.3.3. (Fourier series). If f ∈ L2
C
[−π, π], its Fourier

coefficients with respect to FC are defined to be

Cn = 〈f, einx〉 =
1

2π

∫ π

−π

f(x)e−inx dx

for each n ∈ Z. The Fourier series of f is defined to be
∞∑

n=−∞
Cneinx.
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Theorem 6.3.4. (Fourier series converge in L2
C
[−π, π]). The

classical Fourier series of f ∈ L2
C
[−π, π] converges to f in L2

C
[−π, π].

Hence,
FC =

{
einx

}∞

n=−∞
is a complete orthonormal family in L2

C
[−π, π].

Proof. To see that the complex Fourier series converges to f we

use the fact that the real classical Fourier series of a real function

u ∈ L2[−π, π] converges to u. Let f be an element of L2
C
[−π, π] and

suppose u(x) and v(x) are its real and imaginary parts, so f(x) =

u(x) + iv(x).

By Theorem 6.1.7 there is a trigonometric polynomial

pm(x) = a0 +

m∑
n=1

an cos nx +

m∑
n=1

bn sin nx

such that in the real Hilbert space L2[−π, π],

lim
m→∞ pm = u.

We recall from the proof of Theorem 6.1.2 that

cos nx =
einx + e−inx

2
and sinnx =

einx − e−inx

2i
.

Hence, there are complex numbers cn, −m ≤ n ≤ m, such that

pm(x) =

m∑
n=−m

cneinx.

Similarly, there are complex numbers dn, −m ≤ n ≤ m, such that

qm(x) =

m∑
n=−m

dneinx

is real and

lim
m→∞ qm = v

in L2[−π, π].

If we now define An = cn + idn and let

Tm(x) = pm(x) + iqm(x) =

m∑
n=−m

Aneinx,
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then Tm ∈ L2
C
[−π, π] and

‖f − Tm‖ = ‖u − pm + i(v − qm)‖ ≤ ‖u − pm‖ + ‖v − qm‖.
So lim ‖f − Tm‖ = 0.

If Sm =
∑m

n=−m Cneinx, then by Theorem 5.5.8 ‖f − Sm‖ ≤
‖f − Tm‖ and hence lim ‖f − Sm‖ = 0 and we conclude lim Sm = f

in L2
C
[−π, π]. �

As in the real case it is important to note that while we have

proved that the Fourier series of a function f ∈ L2
C
[−π, π] converges

to f in the Hilbert space L2
C
[−π, π], this is not at all the same thing

as saying that for a fixed x0 the Fourier series

∞∑
n=−∞

Cneinx0

converges to f(x0). That is, we have not shown anything about point-

wise convergence. In fact, however, the series converges pointwise

almost everywhere. In what is considered one of the most remark-

able achievements of twentieth century mathematics Lennart Car-

leson proved the following result in [C].

Theorem 6.3.5. (Carleson’s theorem). Suppose f ∈ L2
C
[−π, π]

and ∞∑
n=−∞

Cneinx

is its classical Fourier series. Then this series converges to f(x) for
almost all values of x ∈ [−π, π].

The proof is considered difficult and delicate and is well beyond

the scope of this text. One indication of the delicacy is that there is an

example due to Andrey Kolmogorov of a function which is integrable

on [−π, π], but for which the Fourier series does not converge at any

point!

6.4. The Hilbert Space L2
C
[T]

We described the set T as the unit length vectors in R2, but using the

standard correspondence (x, y) ↔ x+iy between R2 and the complex
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plane C we can also consider it to be the complex numbers with

modulus 1, i.e., T = {z ∈ C | |z| = 1} = {x+ iy | x2 + y2 = 1}. There

is then a natural parametrization of T given by exp : [−π, π) → T

where exp(x) = eix = cos x + i sin x. The parametrizing function is

a bijection from [−π, π) to T and maps intervals to arcs preserving

their length. We will say A ⊂ T is Lebesgue measurable if exp−1(A)

is measurable. We also define the Lebesgue measure µ(A) of A to be

µ(exp−1(A)).

Definition 6.4.1. We will denote by L2
C
[T] the set of measurable

functions f : T → C such that
∫

T
|f |2 dµ < ∞.

Proposition 6.4.2. There is a correspondence between elements of
L2

C
[T] and L2

C
[−π, π] given by f �→ f ◦ exp which satisfies:

(1) A function f is in L2
C
[T] if and only if f ◦ exp ∈ L2

C
[−π, π].

(2) The set L2
C
[T] is a Hilbert space with Hermitian form given

by 〈f, g〉 =
∫

T
fḡ dµ.

(3) The function E∗ : L2
C
[T] → L2

C
[−π, π] given by E∗(f) =

f ◦ exp is an isomorphism, i.e., it is an invertible linear
transformation and preserves the Hermitian forms, so

〈E∗(f), E∗(g)〉 = 〈f, g〉.

The proof is straightforward and is left as an exercise. The one

slightly subtle point is that if f ∈ L2
C
[T], then E∗(f) : [−π, π] → C

will always have the same value at π and −π so it might seem that

E∗ is not surjective. However, this is not a problem when we recall

that we consider two functions in L2
C
[−π, π] to be equal if they agree

almost everywhere. More precisely, L2
C
[−π, π] is really the equivalence

classes of almost everywhere equal functions and E∗ is a bijection on

these classes.

It is common to use eix (rather than x) as the independent vari-

able for a function f : T → C. So we might write f(eix) = e2ix rather

than f(z) = z2, which is the same function. This slight notational

abuse is really just identifying f with E∗(f) since f(eix) considered

as a function with independent variable x is just E∗(f).
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With this notational convention our results about Fourier se-

ries carry over nicely to L2
C
[T]. The function einx is easily consid-

ered a function of eix, namely einx = (eix)n. Hence, the family

FC = {einx}∞n=−∞ thought of as functions defined on T is an orthonor-

mal family (as an immediate consequence of Proposition 6.4.2).

Definition 6.4.3. (Fourier series). If f ∈ L2
C
[T], its Fourier coef-

ficients with respect to FC are defined to be

Cn = 〈f, einx〉 =
1

2π

∫ π

−π

f(eix)e−inx dx

for each n ∈ Z. The Fourier series of f is defined to be
∞∑

n=−∞
Cneinx.

Theorem 6.4.4. (Fourier series in L2
C
[T]). The Fourier series of

f ∈ L2
C
[T] converges to f in L2

C
[T]. So FC = {einx}∞n=−∞ is a complete

orthonormal family in L2
C
[T].

Proof. Considering g(eix) = einx as an element of L2
C
[T] we observe

E∗(g)(x) = einx, as a function in L2
C
[−π, π]. Hence, since E∗ preserves

the Hermitian product it preserves Fourier coefficients. Therefore, if

f ∈ L2
C
[T], then E∗ of its Fourier series is the Fourier series of E∗(f).

By Proposition 6.4.2 a series in L2
C
[T] converges to f if and only

if E∗ of that series converges in L2
C
[−π, π] to E∗(f). The result then

follows from Theorem 6.3.4. �

One advantage of L2
C
[T] is that it is sometimes useful in computa-

tion to consider parametrizations by exp(x) = eix on other intervals,

e.g., exp : [0, 2π] → T and it is not difficult to show that integrals∫
T

f dµ can be calculated using a parametrization by exp on any

interval of length 2π (see part (2) of Exercise 6.4.5).

Exercise 6.4.5.

(1) Prove that if f ∈ L2
C
[−π, π], then for all n ∈ Z, n �= 0,∣∣∣ ∫ π

−π

enxf(x) dµ
∣∣∣2 ≤ sinh(2πn)

n

∫ π

−π

|f |2 dµ.

Hint: Recall sinh(x) = (ex − e−x)/2.
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(2) Prove that if f : T → C is integrable, then∫
T

f dµ =

∫ a+2π

a

f(eix) dx

for any a ∈ R.

(3) Prove Proposition 6.4.2.

(4) Prove a complex version of the Stone-Weierstrass theorem

as a consequence of the real version, Theorem 6.1.5. More

precisely, let CC(T) denote the continuous complex-valued

functions f : T → C defined on T, the unit circle. Suppose

A ⊂ CC(T) is an algebra satisfying:

(a) The constant function 1 is in A.

(b) The algebra A separates points.

(c) The function p ∈ A if and only if its complex conjugate

p̄ ∈ A.

Then given any ε > 0 and any f ∈ CC(T) prove there is

p ∈ A such that |f(θ) − p(θ)| < ε for all θ ∈ T.

(5) Use the complex Stone-Weierstrass theorem above to give an

alternate proof that complex Fourier series converge (Theo-

rem 6.3.4). You should adapt the proof of Theorem 6.1.7 to

cover complex functions.

                

                                                                                                               



Chapter 7

Two Ergodic
Transformations

In this final chapter we will apply some of the results on measure

theory and Fourier series to the study of two measurable dynamical

systems. In Section 4.3 we discussed measures other than Lebesgue

and we will frame some of the results in this section in that generality

though the examples we explore will focus on Lebesgue measure.

A measurable dynamical system is a function T : X → X from

a set X of “states” to itself. The set of states X is assumed to have

a measure ν defined on a σ-algebra of its subsets. The function T is

thought of as representing time evolution of the states. So starting

at an initial state x0 ∈ X after one unit of time the system is in state

T (x0), after two it is in state T 2(x0) = T (T (x0)), etc. It is natural

to define T 0(x) = x. Note that here Tn(x) means the result of n

applications of the function T, not the nth power of T (x). The set

{T k(x) | k ≥ 0} is called the forward orbit of x.

There are two general dynamical questions we will address in

special cases. The first question we ask concerns a measurable subset

A of X. We ask if states in A return again and again (infinitely often)

to A. Such states are called recurrent with respect to A. If X has a

notion of distance and we choose A to have small diameter this means

129
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that a recurrent state returns infinitely often to a state close to its

starting point.

The second question is what fraction of the forward orbit of a

state lies in a given measurable set A. More precisely, if we consider

{T k(x) | 0 ≤ k ≤ m− 1}, the first m points in the forward orbit of x,

and let Nm(x) denote the number of those points which lie in A then

we would like to know if the limit

lim
m→∞

Nm(x)

m

exists. If so, how is the value of the limit related to ν(A)?

As we did in the last chapter we will consider functions defined

on the unit circle T in the complex plane. So T = {eiθ | θ ∈ R} =

{cos θ + i sin θ | θ ∈ R}. It is clear that θ and θ + 2πn correspond

to the same point in T so to have a single value for each point we

parameterize T by a half open interval of length 2π. In the last

chapter we used θ ∈ [−π, π). However, in this chapter it is more

convenient to use θ ∈ [0, 2π).

7.1. Measure Preserving Transformations

We will primarily be interested in Lebesgue measure µ on T but many

of the basic definitions and results are valid for any finite measure ν.

When this is the case we will make the definition or state the result

for more general measures than Lebesgue. In particular, we will say

that X is a finite measure space with measure ν if X is a set, A is

a σ-algebra of subsets of X and ν is a finite measure defined for all

A ∈ A. Sets in the σ-algebra A will be called ν-measurable. If some

property holds for all x except a set of ν measure 0, we will say it

holds for ν-almost all x.

Definition 7.1.1. (Measure preserving). Suppose that A is a
σ-algebra of subsets of X and ν is a finite measure defined on A.

• A function T : X → X is called a measure preserving trans-

formation provided for each A ∈ A the set T−1(A) ∈ A and
ν(T−1(A)) = ν(A).

• A function f : X → C which satisfies f(x) = f(T (x)) for
ν-almost all x is called T -invariant.
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• A set A ∈ A is called T -invariant if XA(x) is a T -invariant
function.

It may at first seem strange that we require ν(T−1(A)) = ν(A)

rather than ν(T (A)) = ν(A). These hypotheses are equivalent if T

is a bijection, but otherwise may differ. The reason our choice is the

natural one is that we are interested in integrating the composition

f ◦ T when f is integrable. In particular, we need this composition

to be measurable. Notice that (f ◦ T )−1([a,∞]) = T−1(f−1([a,∞])).

So the hypothesis that T−1(A) is measurable for every measurable A

will imply that f ◦ T is measurable whenever f is. Moreover, we will

see in the proof of the following proposition that ν(T−1(A)) = ν(A)

is exactly what is needed to show that composing with a measure

preserving transformation T does not change the value of the integral

of a function.

Proposition 7.1.2. (Invariance of the integral). Suppose T is a
measure preserving transformation on a finite measure space X with
measure ν. If f : X → C is integrable, then so is f ◦ T : X → C and∫

f dν =

∫
f ◦ T dν.

Proof. It suffices to prove the result for real-valued functions since

then it will hold for both the real and imaginary parts of f, and

hence for f . So assume f is real. The result holds for f = XA, for a

ν-measurable set A, because XA ◦ T = XT−1(A). It follows that the

result holds for simple functions since both sides of the equality are

linear functions of f . If f is a bounded real measurable function, then

it is a uniform limit of a sequence of simple functions {φn}. It is clear

that φ ◦T is the uniform limit of {φn ◦T}. We know that the integral

of a uniform limit of simple functions is the limit of the integrals (see

Proposition 3.2.3), so∫
f dν = lim

n→∞

∫
φn dν = lim

n→∞

∫
φn ◦ T dν =

∫
f ◦ T dν.

Finally, if f is integrable we let f+(x) = max{f(x), 0} and define

f+
n (x) = min{f+(x), n}. Then the definition of the integral of a non-

negative function (Definition 4.3.4) says that the integral of f+ is the

                

                                                                                                               



132 7. Two Ergodic Transformations

limit of the integrals of f+
n and the same holds for f+ ◦T and f+

n ◦T.

Hence,∫
f+ dν = lim

n→∞

∫
f+

n dν = lim
n→∞

∫
f+

n ◦ T dν =

∫
f+ ◦ T dν.

Similarly, if f−(x) = −min{f(x), 0}, then
∫

f− dν =
∫

f− ◦ T dν

and f = f+ − f−, so
∫

f dν =
∫

f ◦ T dν. �

Proposition 7.1.3. Let α be an element of R. The following trans-
formations preserve Lebesgue measure on T :

(1) The function Tα : T → T given by Tα(eix) = ei(x+α).

(2) The function D : T → T given by T (eix) = e2ix.

Proof. We will parameterize T by the interval [0, 2π) with the cor-

respondence x �→ eix. To show (1) we observe that Tα = Tα+2πn for

any integer n, so by altering α by an integer multiple of 2π we may

assume α ∈ [0, 2π). In terms of our parametrization we have

T (x) =

{
x + α, if x + α < 2π;

x + α − 2π, otherwise.

Thus, T is translation by α or by α − 2π. The result now follows be-

cause Lebesgue measure is translation invariant (see Theorem 2.4.2).

For (2) we also parameterize T by x ∈ [0, 2π). Then, if A ⊂ T,

the set D−1(A) will consist of two disjoint pieces

B1 = D−1(A) ∩ [0, π) and B2 = D−1(A) ∩ [π, 2π).

The function D on [0, π) is given (in terms of our parametrization)

by D(x) = 2x, so D(B1) = A. Hence, µ(B1) = 1
2µ(A) (see part (5)

of Exercise 2.4.6). Likewise, on [π, 2π) the function D is given by

D(x) = 2x − π and D(B2) = A. Hence µ(B2) = 1
2µ(A). It follows

that µ(D−1(A)) = µ(B1) + µ(B2) = µ(A). �

Definition 7.1.4. (Recurrent). Suppose T : X → X is a trans-
formation of a finite measure space which preserves the measure ν.

A point x ∈ X is said to be recurrent for T with respect to a ν-
measurable set A provided x ∈ A and the set of return times,

R(x) = {n | Tn(x) ∈ A, n ∈ N},
is infinite.
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Theorem 7.1.5. (Poincaré recurrence). Suppose T : X → X is
a transformation of a finite measure space, preserving the measure ν

and suppose A ⊂ X is ν-measurable. Then ν-almost all x ∈ A are
recurrent for T with respect to A.

Proof. Let Bm be the subset of A consisting of points whose return

times are all less than m, i.e., Bm = {x | Tn(x) /∈ A if n ≥ m}.
We note that T−km(Bm) ∩ Bm = ∅ for k ∈ N because if x is in

this intersection, then x ∈ Bm and T km(x) ∈ Bm, contradicting the

definition of Bm. It follows that the family of sets {T−km(Bm)}∞k=0

are pairwise disjoint, since if j > k and T−km(Bm)∩ T−jm(Bm) �= ∅,
then applying T km would imply Bm ∩ T (k−j)m(Bm) �= ∅.

We note that every set in the family {T−km(Bm)} has ν mea-

sure equal to ν(Bm) because T preserves ν, so ν(T−1(E)) = ν(E) for

any ν-measurable set E. This implies that ν(Bm) = 0, since other-

wise countable additivity implies the set
⋃

k T−km(Bm) has infinite

measure, but ν(X) is finite.

Finally, we note B =
⋃∞

m=1 Bm has ν measure 0 and B is the

subset of A whose points have only finitely many return times. �

Exercise 7.1.6.

(1) Prove that a ν-measurable set A is T -invariant if and only

if ν(A \ T−1(A)) = 0 and ν(T−1(A) \ A) = 0.

(2) Prove that if α/2π is rational, then every point of T is peri-

odic for Tα, i.e., for each x ∈ T there is an n > 0 such that

Tn
α (x) = x.

(3) Prove that there are non-periodic points of D, but the D-

periodic points are dense in T.

(4) Define T : [0, 1] → [0, 1] by

T (x) =

{
2x, if x ∈ [0, 1

2 ];

2 − 2x, if x ∈ ( 1
2
, 1].

Prove that Lebesgue measure is T -invariant.
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(5) Suppose T : [0, 1] → [0, 1] preserves Lebesgue measure.

Prove that for almost all x ∈ [0, 1] there is a sequence of

positive integers {ni} such that

lim
i→∞

Tni(x) = x.

7.2. Ergodicity

We now turn to the second question mentioned in the introduction

to this chapter, namely, what fraction of the forward orbit of a state

x0 lies in a set A. What we would like to show is sometimes phrased

as “the time average equals the space average.” What this means is

that the fraction of the points in a forward orbit that lie in A (i.e.,

the fraction of the “time” spent in A) is equal to the fraction of the

measure of X represented by A (i.e., ν(A)/ν(X)). This certainly does

not hold for all measure preserving transformations. Think about the

identity transformation, for example. Indeed, this property will fail

any time there is a set A with 0 < ν(A) < ν(X) and A = T−1(A)

because then, if x0 ∈ A, the entire forward orbit of x0 lies in A,

but A does not contain 100% of the measure of X. Clearly, the

condition that A = T−1(A) implies that A is T -invariant. In fact,

A is T -invariant if and only if A and T−1(A) differ only by a set

of ν measure 0 (see part (1) of Exercise 7.1.6). We conclude that a

necessary condition for the time average to equal the space average is

that no T -invariant set A has measure strictly between 0 and ν(X).

Remarkably we will see below that this condition is sufficient as well

as necessary. It should be clear that this is a property worthy of a

name (albeit a strange one).

Definition 7.2.1. (Ergodic transformation). Suppose T : X →
X is a measure preserving transformation for the finite measure ν

defined on a σ-algebra A of subsets of X. Then T is called ergodic if
every T -invariant set A ∈ A satisfies either ν(A) = 0 or ν(Ac) = 0.

For an ergodic transformation T the only T -invariant sets are sets

of measure zero or the complements of sets of measure zero. So we

expect T -invariant functions also to be very restricted. This is indeed

the case.
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Proposition 7.2.2. (Invariant functions). Suppose T : X → X

preserves the finite measure ν. Then T is ergodic if and only if every
ν-measurable function f : X → C which is T -invariant is constant
except on a set of ν measure 0.

Proof. Suppose the only T -invariant functions are ν-almost every-

where constant. A set A is T -invariant only if the function XA is

T -invariant. Since XA(x) has only two possible values, 0 and 1, the

function XA must either be equal to 0, except on a set of ν measure 0,

or XA must be 1, except on a set of ν measure 0. Therefore, ν(A) = 0

or ν(Ac) = 0.

Conversely, if f is a T -invariant measurable function that is not

ν-almost everywhere constant, then there is a c ∈ R such that if

A = f−1([0, c)), then ν(A) > 0 and ν(Ac) > 0. The set A is T -

invariant. �

We are now prepared to prove that two interesting transforma-

tions of T that preserve Lebesgue measure are actually ergodic. Our

primary tool in doing this is the Fourier series for functions in L2
C
[T]

which we investigated in Section 6.4.

Proposition 7.2.3. (Ergodicity of Tα). If α/2π is irrational, then
the transformation Tα : T → T given by Tα(eix) = ei(x+α) is ergodic.

Proof. For f ∈ L2
C
[T] and T a measure preserving transformation

define UT (f) = f ◦ T. Proposition 7.1.2 implies∫
T

|f |2 dµ =

∫
T

|UT (f)|2 dµ,

so UT (f) ∈ L2
C
[T] and ‖UT (f)‖ = ‖f‖. Similarly, if g ∈ L2

C
[T], the

same proposition implies that

〈f, g〉 = 〈UT (f), UT (g)〉.
The function UT : L2

C
[T] → L2

C
[T] is also linear.

It follows that if
∑

n∈Z vn is any series which converges in L2
C
[T]

to f, then
∑

n∈Z UT (vn) is a series which converges to UT (f) = f ◦ T

in L2
C
[T].

Suppose f ∈ L2
C
[T] and let

∑
n∈Z Cneinx be its Fourier series. If

f is Tα-invariant, then f = UTα
(f) almost everywhere and by the
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remarks above, the series
∑

n∈Z CnUTα
(einx) converges to f in L2

C
[T].

Since UTα
(einx) = ein(x+α) = einαeinx, we conclude that the series∑

n∈Z einαCneinx converges in L2
C
[−π, π] to f . The uniqueness of the

Fourier series then implies Cn = einαCn. So for each n ∈ Z either

Cn = 0 or einα = 1; but einα = 1 only if nα = 2πm for some integer

m. Since α/2π is irrational this happens only if n = 0. We conclude

that Cn = 0 whenever n �= 0. Thus, the Fourier series for f reduces

to the constant function f(eix) = C0. Hence, the only Tα invariant

functions are constant almost everywhere and Tα is ergodic. �

Proposition 7.2.4. (Ergodicity of D). The transformation D :

T → T given by D(eix) = e2ix is ergodic.

Proof. As in the previous proposition we observe that if UD(f) is

defined by UD(f) = f ◦ D, then UD(f) ∈ L2
C
[T] for all f ∈ L2

C
[T] and

〈f, g〉 = 〈UD(f), UD(g)〉
whenever f, g ∈ L2

C
[T] by Proposition 7.1.2.

Suppose f ∈ L2
C
[T] is D-invariant and let

∑
n∈Z Cneinx be its

Fourier series. Then the series
∑

n∈Z CnUD(einx) converges to UD(f)

which equals f almost everywhere. Since UD(einx) = e2inx we con-

clude
∑

n∈Z Cne2inx converges in L2
C
[T] to f . By the uniqueness of

Fourier series the coefficient of einx must be the same in the two series∑
n∈Z Cneinx and

∑
n∈Z Cne2inx. If n is odd this coefficient is 0 in

the second series and Cn in the first. We conclude that Cn = 0 if n

is odd. Likewise, the coefficient of e2inx is C2n in one series and Cn

in the other. Hence C2n = Cn for all n ∈ Z. It follows that C2n = 0

if n is odd. A simple induction shows that Cn = 0 for all n �= 0.

Thus, again the Fourier series for f reduces to the constant func-

tion f(eix) = C0. �

Exercise 7.2.5.

(1) Suppose α/2π is irrational. Prove that every point of T has

a forward orbit for the transformation Tα which is dense in

T.
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(2) Prove that there exists an x ∈ T whose forward orbit for the

transformation D is dense in T. But give an explicit example

of a point in T whose forward orbit for D is not dense.

(3) Prove that if m ∈ N and m > 1, then the function M : T →
T given by M(eix) = eimx preserves Lebesgue measure and

is ergodic. That is, there is nothing special about the role

of the natural number 2 in the ergodicity of D.

7.3. The Birkhoff Ergodic Theorem

We are now prepared to state (though not prove) what is by far the

most important theorem of measurable dynamics. A proof can be

found in [J], [M] or [Z].

Theorem 7.3.1. (Birkhoff ergodic theorem). Suppose T : X →
X is a transformation of a finite measure space preserving the measure
ν and suppose f : X → C is integrable. Then there is a T -invariant
integrable function f∗ : X → C with the property that for ν-almost
all x ∈ X,

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) = f∗(x)

and
∫

f∗ dν =
∫

f dν.

A particularly important special case is when T is ergodic so the

only T -invariant functions are constants. In that case we conclude

that for almost all x the limit of the sequence of orbit averages

lim
n→∞

1

n

n−1∑
k=0

f(T k(x))

is equal to the constant function whose value is

1

ν(X)

∫
f dν,

the average value of f .

We can now explain why for ergodic transformations we say, “The
time average equals the space average.” If f is an integrable function
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defined on X, its “space average” is

1

ν(X)

∫
f dν.

On the other hand, the “time average” of f over n units of time

starting at an initial state x0 is

1

n

n−1∑
k=0

f(T k(x0)).

So the Birkhoff ergodic theorem says the limit of the time averages

of f as time goes to infinity is equal to the space average of f — at

least for all initial states except a set of ν measure 0.

If in the Birkhoff ergodic theorem we let f be XA for some mea-

surable set A, we can answer the question raised at the beginning of

this chapter, at least in the special case that T is an ergodic trans-

formation.

Corollary 7.3.2. Suppose T : X → X is an ergodic transformation
preserving a finite measure ν on a measure space X and A ⊂ X

is ν-measurable. Let Nm(x) denote the number of points in the set
A∩{fk(x)}m−1

k=0 , i.e., the number of points in A from the orbit segment
of length m starting with x. Then for ν-almost all x ∈ X,

lim
m→∞

Nm(x)

m
=

ν(A)

ν(X)
.

Proof. Let f = XA and observe that

lim
m→∞

Nm(x)

m
= lim

m→∞
1

m

m−1∑
k=0

XA(T k(x)) =
1

ν(X)

∫
XA dν =

ν(A)

ν(X)

where the second equality follows from the Birkhoff ergodic theorem.

�

The Poincaré recurrence theorem (Theorem 7.1.5) asserts that

for ν-almost all points x ∈ A the forward orbit of x for a measure

preserving transformation T returns to A infinitely often. For an

ergodic transformation T we can do much better and consider how

often the forward orbit of a point x not necessarily in A visits the set

A. In fact, if ν(A) > 0, then for ν-almost all x ∈ X the forward orbit

of x visits A infinitely often.
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Corollary 7.3.3. Suppose T : X → X is an ergodic transformation
preserving a finite measure ν on a measure space X and ν(A) > 0 for
a subset A ⊂ X. Then for ν-almost all x ∈ X the set {n | Tn(x) ∈ A}
of times when the forward orbit of x is in A is an infinite set.

Proof. By the previous corollary, for ν-almost all x,

lim
m→∞

Nm(x)

m
=

ν(A)

ν(X)
> 0.

Since the sequence {Nm(x)} is monotonic increasing it cannot be

bounded as that would imply the limit is 0. �

Even this relatively weak corollary of the Birkhoff ergodic the-

orem has some remarkably surprising consequences. Part (2) of the

exercise below illustrates one of them.

Exercise 7.3.4.

(1) Suppose T : [0, 1] → [0, 1] is defined by

T (x) =

{
2x, if x ∈ [0, 1

2
];

2x − 1, if x ∈ ( 1
2 , 1].

Prove that T preserves Lebesgue measure and is ergodic.

Hint: How is T related to D?

(2) Consider your favorite movie M in the digital format of your

choice. So M is a very long (but finite) string of 0’s and 1’s.

Prove that for almost all x ∈ [0, 1] your movie’s encoding M

occurs infinitely often in the digits of the binary expansion

of x. Indeed, the binary expansion of almost all x ∈ [0, 1] will

contain the digital encoding of every movie which has ever

been made or ever will be made. Each will occur infinitely

often. Hint: Find an expression for T (x) in the previous

exercise in terms of the binary expansion of x.

                

                                                                                                               



Appendix A

Background and
Foundations

This appendix gives a very terse summary of the properties of the

real numbers which are used throughout the text. It is intended as a

review and reference for standard facts about the real numbers rather

than an introduction to these concepts.

Notation. (Numbers). We will denote the set of real numbers by
R, the complex numbers by C, the rational numbers by Q, the integers

by Z and the natural numbers by N.

A.1. The Completeness of R

In addition to the standard properties of being an ordered field (i.e.,

the properties of arithmetic) the real numbers R satisfy a property

which makes analysis as opposed to algebra possible.

The Completeness Axiom. Suppose A and B are non-empty sub-
sets of R such that x ≤ y for every x ∈ A and every y ∈ B. Then
there exists at least one real number z such that x ≤ z for all x ∈ A

and z ≤ y for all y ∈ B.

Example A.1.1. The rational numbers, Q, fail to satisfy this prop-

erty. If A = {x | x2 < 2} and B = {y | y > 0 and y2 > 2}, then there

is no z ∈ Q such that x ≤ z for all x ∈ A and z ≤ y for all y ∈ B.
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142 A. Background and Foundations

Definition A.1.2. (Infimum, supremum). If A ⊂ R, then b ∈ R

is called an upper bound for A if b ≥ x for all x ∈ A. The number
β is called the least upper bound or supremum of the set A if β is
an upper bound and β ≤ b for every upper bound b of A. A number
a ∈ R is called a lower bound for A if a ≤ x for all x ∈ A. The
number α is called the greatest lower bound or infimum of the set A

if α is a lower bound and α ≥ a for every lower bound a of A.

Theorem A.1.3. If a non-empty set A ⊂ R has an upper bound,
then it has a unique supremum β. If A has a lower bound, then it has
a unique infimum α.

Proof. Let B denote the non-empty set of upper bounds for A. Then

x ≤ y for every x ∈ A and every y ∈ B. The Completeness Axiom

tells us there is a β such that x ≤ β ≤ y for every x ∈ A and every

y ∈ B. This implies that β is an upper bound of A and that β ≤ y for

every upper bound y. Hence, β is a supremum or least upper bound

of A. It is unique, because any β′ with the same properties must

satisfy β ≤ β′ (since β is a least upper bound) and β′ ≤ β (since β′

is a least upper bound). This, of course implies β = β′.

The proof for the infimum is similar. �

We will denote the supremum of a set A by supA and the infimum
by inf A. If A is not bounded above, we will write sup A = +∞ and

if it is not bounded below we write inf A = −∞. The supremum

of a bounded set A may or may not be in the set A. However, as

the following result shows, there is always an element of A which is

arbitrarily close to the supremum of A.

Proposition A.1.4. If A has an upper bound and β = sup A, then
for any ε > 0 there is an x ∈ A with β − ε < x ≤ β. Moreover, β is
the only upper bound for A with this property. If A has a lower bound
its infimum satisfies the analogous property.

Proof. If β = sup A and there is no x ∈ (β − ε, β], then every x ∈ A

satisfies x ≤ β − ε. It follows that β − ε is an upper bound for A and

is smaller than β contradicting the definition of β as the least upper

bound. Hence there must be an x ∈ A with x ∈ (β − ε, β].
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If β′ �= β is another upper bound for A, then β′ > β. There is no

x ∈ A with x ∈ (β, β′], since such an x would be greater than β and

hence β would not be an upper bound for A.

The proof for the infimum is similar. �

A.2. Functions and Sequences

At the risk of being somewhat pedantic we will give the definition of

a function as a set of ordered pairs and the definition of a sequence as

a function defined on the natural numbers. The reader should note,

however, that after these definitions, when referring to a function φ

we will always opt for the notation b = φ(a) rather than (a, b) ∈ φ and

treat sequences as an indexed set of values rather than a function.

If A and B are sets their Cartesian product, denoted A × B, is

defined to be the set of ordered pairs A×B = {(a, b) | a ∈ A, b ∈ B}.
Definition A.2.1. (Function). Suppose A and B are sets. A
function φ : A → B is a subset of the Cartesian product A × B such
that:

(1) If a ∈ A, there exists b ∈ B such that (a, b) ∈ φ.

(2) If (a, b) ∈ φ and (a, b′) ∈ φ, then b = b′.

It is worth noting that this definition makes sense even if A or

B is the empty set. In that case the set φ is necessarily empty since

A×B = ∅. The set A is called the domain of φ, the set B is called the

codomain of φ, and the set of all b ∈ B such that (a, b) ∈ φ is called

the range or image of φ. As noted above we will almost always use

the notation φ : A → B to indicate that φ is a function with domain

A and codomain B, and write b = φ(a) to indicate (a, b) ∈ φ. We will

denote the range of φ by φ(A).

Definition A.2.2. (Injective, surjective, bijective). Suppose
A and B are sets and φ : A → B is a function. Then

(1) The function φ is called injective (or one-to-one) if φ(x) =

φ(y) implies x = y.
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(2) The function φ is called surjective (or onto) if for every
b ∈ B there exists x ∈ A such that φ(x) = b. Equivalently,
φ is surjective if its codomain equals its range.

(3) The function φ is called bijective if it is both injective and
surjective.

(4) If C ⊂ B, the set inverse φ−1(C) is defined to be {a | a ∈
A and φ(a) ∈ C}. If C consists of a single element c, we
write φ−1(c) instead of the more cumbersome φ−1({c}).

Injective, surjective and bijective as defined above are adjectives

which may be applied to a function φ. The corresponding nouns re-

ferring to a function with the given property are injection, surjection,

and bijection.

Definition A.2.3. (Finite, infinite). A set A is finite if it is empty
or there is an n ∈ N and a bijection from A to {1, 2, . . . , n}. A set is
infinite if it is not finite.

One important special class of functions, called sequences, are

treated in a notationally different way.

Definition A.2.4. (Sequence). A sequence of elements in a set A

is a function φ : N → A.

However, we typically do not name the function defining a se-

quence, but write only the indexed set of values {an}∞n=1 where an =

φ(n).

Exercise A.2.5.

(1) Prove that if f : A → B is injective, then f : A → f(A) is a

bijection.

(2) Suppose A and B are sets. Prove that if A is infinite and

there is an injective function f : A → B, then B is infinite.

Prove that if A is infinite and there is a surjective function

f : B → A, then B is infinite.

(3) (Inverse function)

If f : A → B, then g : B → A is called the inverse function
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of f provided g(f(a)) = a for all a ∈ A and f(g(b)) = b for

all b ∈ B.

(a) Prove that if the inverse function exists it is unique (and

hence it is appropriate to refer to it as the inverse).

(b) Prove that f has an inverse if and only if f is a bijection.

(c) If it exists, we denote the inverse function of f by f−1.

This is a slight abuse of notation since we denote the

set inverse (see part (4) of Definition A.2.2) the same

way. To justify this abuse somewhat prove that if f

has an inverse g, then for each b ∈ B the set inverse

f−1({b}) is the set consisting of the single element g(b).

Conversely, show that if for every b ∈ B the set inverse

f−1({b}) contains a single element, then f has an in-

verse g defined by letting g(b) be that single element.

A.3. Limits

There are a number of equivalent formulations we could have chosen

for the Completeness Axiom. For example, we could have taken the

existence of the supremum for bounded sets (Theorem A.1.3) as an

axiom and then proved the Completeness Axiom as a theorem follow-

ing from this axiom. In this section we prove several more theorems

which we will derive from the Completeness Axiom, but which are

in fact equivalent to it in the sense that, if we assumed any one as

an axiom, we could prove the others as consequences. Results of this

type include Theorem A.3.2, Corollary A.3.3, and Theorem A.3.5.

We recall the definition of limit of a sequence in R.

Definition A.3.1. (Limit, converge). Suppose {xn}∞n=1 is a
sequence in R. We say the sequence converges to L ∈ R and write

lim
n→∞ xn = L

if for every ε > 0 there exists N ∈ N such that

|xm − L| < ε

for all m ≥ N.
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Let {xn}∞n=1 be a sequence in R. We will say it is monotone
increasing if xn+1 ≥ xn for all n and monotone decreasing if xn+1 ≤
xn for all n.

Theorem A.3.2. (Bounded monotone sequences converge).
If {xn}∞n=1 is a bounded monotone sequence, then lim

n→∞xn exists.

Proof. If {xn}∞n=1 is a bounded monotone increasing sequence, let

L = sup{xn}∞n=1. Given any ε > 0 there is an N such that

L − ε < xN ≤ L

by Proposition A.1.4.

For any n > N we have xN ≤ xn ≤ L and hence |L − xn| < ε.

Thus, lim
n→∞ xn = L.

If {xn}∞n=1 is a monotone decreasing sequence, then we note that

the sequence {−xn}∞n=1 is increasing and lim
n→∞xn = − lim

n→∞−xn. �

Corollary A.3.3. If {xn}∞n=1 is a bounded sequence, then

lim
m→∞ sup{xn}∞n=m and lim

m→∞ inf{xn}∞n=m

both exist. The sequence {xn}∞n=1 has limit L, i.e., limxn = L, if and
only if both limits equal L.

Notation. (lim sup and lim inf). We will denote

lim
m→∞ sup{xn}∞n=m by lim sup

n→∞
xn

and
lim

m→∞ inf{xn}∞n=m by lim inf
n→∞ xn

Proof. If ym = sup{xn}∞n=m, then {ym}∞m=1 is a monotone decreas-

ing sequence, so lim
m→∞ ym exists. The proof that lim inf xn exists is

similar.

The fact that inf{xn}∞n=m ≤ xm ≤ sup{xn}∞n=m implies that if

lim inf
n→∞ xn = lim sup

n→∞
xn = L,

then lim
n→∞xn exists and equals L. �
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Definition A.3.4. (Cauchy sequence). A sequence {xn}∞n=1 in
R is called a Cauchy sequence if for every ε > 0 there is an N > 0

(depending on ε) such that |xn − xm| < ε for all n, m ≥ N.

The reason Cauchy sequences are important is that they converge,

which is the content of our next theorem. In fact, the converse is also

true, so convergent sequences are Cauchy sequences (see part (1) of

Exercise A.3.8). Proving that a sequence is Cauchy is an extremely

useful technique for proving convergence.

Theorem A.3.5. (Cauchy sequences converge). If {xn}∞n=1 is
a Cauchy sequence in R, then lim

n→∞ xn exists.

Proof. First we show that if {xn}∞n=1 is a Cauchy sequence, then it

is bounded. For ε = 1 there is an N1 such that |xn − xm| < 1 for all

n, m ≥ N1. Hence, for any n ≥ N1 we have |xn| ≤ |xn−xN1 |+|xN1 | ≤
|xN1 |+ 1. It follows that if M = 1 + max{xn}N1

n=1, then |xn| ≤ M for

all n. Hence lim sup
n→∞

xn exists.

Since the sequence is Cauchy, given ε > 0 there is an N such that

that |xn − xm| < ε/2 for all n, m ≥ N. Let

L = lim sup
n→∞

xn = lim
n→∞ sup{xm}∞m=n.

Then by Proposition A.1.4 there is an M ≥ N such that |xM − L| <

ε/2. It follows that for any n > M we have |xn − L| ≤ |xn − xM | +
|xM − L| < ε/2 + ε/2 = ε. So lim

n→∞ xn = L. �

Definition A.3.6. (Convergent, absolutely convergent). Sup-
pose

∑∞
n=1 xn is an infinite series of real numbers and Sm =

∑m
n=1 xn

is its mth partial sum. The series
∑∞

n=1 xn is said to converge with
limit L provided lim

m→∞ Sm = L. It is said to converge absolutely pro-

vided the series
∑∞

n=1 |xn| converges.

Theorem A.3.7. (Absolutely convergent series). If the series∑∞
n=1 xn converges absolutely, then it converges.

Proof. Let Sm =
∑m

i=1 xi be the partial sum. We must show that

lim
m→∞Sm exists. We will do this by showing it is a Cauchy sequence.
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Since the series
∑∞

i=1 |xi| converges, given ε > 0, there is an N > 0

such that
∑∞

i=N |xi| < ε. Hence, if m > n ≥ N,

|Sm − Sn| =

∣∣∣ m∑
i=n+1

xi

∣∣∣ ≤ m∑
i=n+1

|xi| ≤
∞∑

i=N

|xi| < ε.

Hence, {Sn} is a Cauchy sequence and converges. �

Exercise A.3.8.

(1) Prove that a sequence in R is Cauchy if and only if it con-

verges.

(2) (a) Prove that if |r| < 1, the sequence
∑∞

n=0 arn converges

to a/(1 − r).

(b) Prove that if

lim sup
n→∞

∣∣∣xn+1

xn

∣∣∣ < 1,

then
∑∞

n=0 xn converges.

(3) A sequence {xn} in R is called square summable if
∑∞

n=1 x2
n

converges. The set of all square summable sequences is de-

noted �2 (pronounced “little ell two”). Suppose {xn} and

{yn} are in �2.

(a) Prove that
∑∞

n=1 xnyn converges.

(b) Prove that if zn = xn + yn, then {zn} ∈ �2.

A.4. Complex Limits

We will denote the complex numbers by C, so

C = {a + bi | a, b ∈ R}
where i2 = −1.

Recall the following elementary properties of complex numbers:

(1) The complex conjugate of z = a + bi is denoted by z̄ and is

defined to be a − bi. Note that if z ∈ C, then z ∈ R if and

only if z = z̄.
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(2) The modulus of z = a + bi is denoted |z| and is defined to

be
√

a2 + b2 so |z|2 = zz̄ = a2 + b2. Note that |z| = |z̄| and

|zw| = |z||w|.
(3) We define the real part of z = a + bi to be a and denote it

�(z). Likewise, the imaginary part of z is b and is denoted

	(z), so z = �(z) + i	(z) for all z ∈ C.

(4) Euler’s formula: For every real number x,

eix = cos x + i sin x.

Definition A.4.1. (Complex limit and convergence). Suppose
{zn}∞n=1 is a sequence in C and L ∈ C. We say the sequence converges

to L and write
lim

n→∞ zn = L

if for every ε > 0 there exists N ∈ N such that

|zm − L| < ε

for all m ≥ N.

Note that this definition is identical to the definition in R except

that | | here means modulus instead of absolute value. Notice that

if z is a real number (and hence also a complex number), then its

modulus and its absolute value coincide, so our notation is consistent.

We could have defined complex limits in terms of real limits as the

following proposition shows.

Proposition A.4.2. If {zn}∞n=1 is a sequence in C, then

lim
n→∞ zn = L

if and only if

lim
n→∞�(zn) = �(L) and lim

n→∞	(zn) = 	(L).

Proof. Notice that lim
n→∞ zn = L is equivalent to the real limit

lim
n→∞ |L − zn| = 0.

If un = �(zn), u = �(L), vn = 	(zn), and v = 	(L), then

|L − zn|2 = |u + iv − un − ivn|2 = |u − un|2 + |v − vn|2.
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So lim |L − zn|2 = 0 if and only if

lim
n→∞ |u − un|2 = 0 and lim

n→∞ |v − uv|2 = 0.

�

Definition A.4.3. (Complex Cauchy sequence). A sequence of
complex numbers {zn}∞n=1 is called a Cauchy sequence if for every
ε > 0 there is an N > 0 (depending on ε) such that |xn −xm| < ε for
all n, m ≥ N.

Theorem A.4.4. (Cauchy sequences converge). If {zn}∞n=1 is
a Cauchy sequence in C, then lim

n→∞ zn exists.

Proof. We notice that |zn−zm| ≥ |�(zn−zm)| = |�(zn)−�(zm)|, so

{�(zn)}∞n=1 is a Cauchy sequence in R and hence converges. Similarly,

{	(zn)}∞n=1 converges. Therefore, by Proposition A.4.2 the sequence

{zn}∞n=1 converges. �

Definition A.4.5. (Convergent series, absolutely convergent).
Suppose

∑∞
n=1 zn is an infinite series of complex numbers and Sm =∑m

n=1 zn is its mth partial sum. The series
∑∞

n=1 zn is said to con-

verge with limit L ∈ C provided lim
m→∞Sm = L. It is said to converge

absolutely provided the real series
∑∞

n=1 |zn| converges.

Theorem A.4.6. (Absolutely convergent series). If the series∑∞
n=1 zn in C converges absolutely, then it converges.

Proof. Suppose un = �(zn) and vn = 	(zn). Then |zn| ≥ |un|
and |zn| ≥ |vn|. Hence if

∑∞
n=1 zn converges absolutely, then so do∑∞

n=1 un and
∑∞

n=1 vn. It follows that

∞∑
n=1

zn =

∞∑
n=1

(un + ivn) =

∞∑
n=1

un + i

∞∑
n=1

vn

converges. �
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A.5. Set Theory and Countability

Proposition A.5.1. (Distributivity of ∩ and ∪). If for each j

in some index set J there is a set Bj and A is an arbitrary set, then

A ∩
⋃
j∈J

Bj =
⋃
j∈J

(A ∩ Bj) and A ∪
⋂
j∈J

Bj =
⋂
j∈J

(A ∪ Bj).

The proof is straightforward and is left to the reader.

Definition A.5.2. (Set difference, complement). We define the
set difference of sets A and B by

A \ B = {x | x ∈ A and x /∈ B}.
If all the sets under discussion are subsets of some fixed larger set
E, then we can define the complement of A with respect to E to be
Ac = E \ A.

We will normally just speak of the complement Ac of A when it is

clear what the larger set E is. Note the obvious facts that (Ac)c = A

and that A \ B = A ∩ Bc.

Proposition A.5.3. If for each j in some index set J there is a set
Bj ⊂ E, then⋂

j∈J

Bc
j =

( ⋃
j∈J

Bj

)c and
⋃
j∈J

Bc
j =

( ⋂
j∈J

Bj

)c
.

Again the elementary proof is left to the reader.

Proposition A.5.4. (Well ordering of N). Every non-empty sub-
set A of N has a least element which we will denote min(A).

Proof. Every finite subset of N clearly has a greatest element and a

least element. Suppose A ⊂ N is non-empty. Let B = {n ∈ N | n <

a for all a ∈ A}. Then B is finite since it is a subset of {1, 2, 3, . . . , a0}
for any a0 ∈ A.

If B = ∅, then 1 must be in A since otherwise it would be an

element of B. Clearly, in this case 1 ∈ A is the least element of A.

If B is non-empty, let m be the greatest element of B (which

exists since B is finite). The element m0 = m+1 must be in A (since

otherwise it would be in B and greater than m). Clearly, then m0 is
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the least element of A since m = m0 − 1 is less than every element of

A. �

The notion of countability, which we now define, turns out to be

a crucial ingredient in the concept of measure which is the main focus

of this text.

Definition A.5.5. (Countable, uncountable). A set A is called
countable if it is finite or there is a bijection from A to the natural
numbers N, (i.e., a one-to-one correspondence between elements of A

and elements of N). A set which is not countable is called uncountable.

It should be noted that there is no universal agreement about

whether finite sets should be called countable. Some authors reserve

this term for infinite countable sets. In this text we will follow what

seems to be the most common usage and finite sets will be called

countable. In particular, the empty set will be called countable. It

is a good exercise to understand why the proof of Propostion A.5.8

below remains valid when any of the countable sets in its statement

are empty.

The next three propositions give terse proofs of some standard

properties of countable sets which we will need.

Proposition A.5.6. (Countable sets).

(1) A set A is countable if and only if there is an injective func-
tion f : A → N. Hence, any subset of a countable set is
countable.

(2) A set A is countable if and only if there is a surjective func-
tion f : N → A.

Proof. One direction of part (1) is easy: namely assuming A is count-

able and constructing the injection f . If A is infinite, there is a bi-

jection f : A → N which is, of course, an injection. If A is finite,

there is an n > 0 and a bijection from A to {1, 2, . . . , n} which can

be considered an injection from A to N.

Conversely, if f : A → N is an injection, it is a bijection from A

to f(A) ⊂ N, so it suffices to show any subset of N is countable.
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To prove this suppose B is a subset of N. If B is finite, it is

countable, so assume it is infinite. Define φ : N → B by φ(1) =

min(B), and

φ(k) = min(B \ {φ(1), . . . , φ(k − 1)}).
The function φ is injective and defined for all k ∈ N. Suppose m ∈ B

and let c be the number of elements in the finite set {n ∈ B | n ≤ m}.
Then φ(c) = m and hence φ is surjective. This shows φ is a bijection.

To observe that any subset of a countable set A is countable note that

an injection f : A → N defines an injection from any subset of A by

restriction.

To prove (2) suppose f : N → A is surjective. Define ψ : A → N

by ψ(x) = min(f−1(x)). This is a bijection from A to ψ(A). Since

ψ(A) is a subset of N it is countable by (1). This proves one direction

of (2). The converse is nearly obvious. If A is countably infinite, then

there is a bijection (and hence a surjection) f : N → A. But if A is

finite one can easily define a surjection f : N → A. �

It is sometimes useful to think of the statements of Proposi-

tion A.5.6 in what amounts to their contrapositive form.

Corollary A.5.7. (Uncountable sets). Suppose f : A → B.

(1) If f is injective and A is uncountable, then B is uncountable.

(2) If f is surjective and B is uncountable, then A is uncount-
able.

Proof. The first assertion follows from Proposition A.5.6, since if

B were countable, the set A would also have to be countable. The

second assertion is also a consequence of Proposition A.5.6, since if A

were countable, the set B would also have to be countable. �

Proposition A.5.8. (Countable products and unions).

(1) If A and B are countable, then their Cartesian product A×B

is a countable set.

(2) A countable union of countable sets is countable. That is,
if Ax is countable for each x ∈ B and B is countable, then⋃

x∈B Ax is countable.
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Proof. We first prove part (1) in the case that A = B = N. We define

a function ψ : N × N → N by ψ(m, n) = 2m3n. It is injective since

ψ(m, n) = ψ(p, q) implies 2m3n = 2p3q, or 2m−p = 3n−q. This is only

possible if m− p = 0 and n− q = 0. Hence, ψ is an injective function

from N×N to N, so N×N is countable by part (1) of Proposition A.5.6.

For the general case of part (1) we let fA : N → A and fB : N → B

be surjections onto the countable sets A and B. Then

f : N × N → A × B

defined by f(a, b) = (fA(a), fB(b)) is a surjection and A×B is count-

able by part (2) of Proposition A.5.6.

To prove part (2) note that if Ax is countable, there is a surjection

Ψx : N → Ax by part (2) of Proposition A.5.6. Likewise, there is a

surjection φ : N → B. The function

Φ : N × N →
⋃

x∈B

Ax

given by

Φ(n, m) = Ψφ(n)(m)

is a surjection. Since N × N is countable it follows that
⋃

x∈B Ax is

countable by part (2) of Proposition A.5.6. �

Corollary A.5.9. (Q is countable). The rational numbers Q are
countable.

Proof. The set Z is countable since it is the union of the countable

sets N, −N, and {0}. So Z × N is countable and the function φ :

Z × N → Q given by φ(n, m) = n/m is surjective. Hence, the set of

rationals Q is countable by part (2) of Proposition A.5.6. �

It is not obvious that any uncountable sets exist. Our next task is

to prove that they do, in fact, exist. We will also see in the exercises

below that R is uncountable. For an arbitrary set A we will denote

by P(A) its power set, which is the set of all subsets of A.

Proposition A.5.10. Suppose A is a non-empty set and

f : A → P(A)

is a function from A to its power set. Then f is not surjective.
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Proof. This proof is short and elegant, but slightly tricky. For a ∈ A

either a ∈ f(a) or a /∈ f(a). Let B = {a ∈ A | a /∈ f(a)}.
Let x be any element of A. From the definition of B we observe

that x is in B if and only if x is not in the set f(x). Or, equivalently,

x /∈ B if and only if it is in the set f(x). Hence, the sets B and f(x)

can never be equal since one of them contains x and the other does

not. Therefore, there is no x with f(x) = B, so f is not surjective. �

As an immediate consequence we have the existence of an un-

countable set.

Corollary A.5.11. The set P(N) is uncountable.

Proof. This follows immediately from Proposition A.5.10. Since

there is no surjection from N to P(N) there can be no bijection. �

Later we will give an easy proof using measure theory that the set

of irrationals is not countable (see Corollary B.2.8 and also part (4)

of Exercise 2.2.2). But an elementary proof of this fact is outlined in

the exercises below.

The next axiom asserts that there is a way to pick an element

from each non-empty subset of A.

The Axiom of Choice. For any non-empty set A there is a choice
function

φ : P(A) \ {∅} → A,

i.e., a function such that for every non-empty subset B ⊂ A we have
φ(B) ∈ B.

Exercise A.5.12.

(1) Prove Propositions A.5.1 and A.5.3.

(2) Find an explicit bijection f : Z → N and conclude that Z is

countable. Similarly, find explicit bijections from the even

integers to N and the odd integers to N.

(3) Prove that any infinite set contains a countable infinite sub-

set.
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(4) (Uncountabilitity of R) Let D be the set of all infinite se-

quences d1d2d3 . . . dn . . . where each dn is either 0 or 1.

(a) Prove that D is uncountable. Hint: Consider the

function f : P(N) → D defined as follows. If A ⊂ N,

then f(A) = d1d2d3 . . . dn . . . where dn = 1 if n ∈ A

and 0 otherwise.

(b) Define h : D → [0, 1] by letting h(d1d2d3 . . . dn . . . ) be

the real number whose decimal expansion is

0.d1d2d3 . . . dn . . . .

Prove that h is injective and hence by Corollary A.5.7

the interval [0, 1] is uncountable.

(c) Prove that if a < b, the closed interval [a, b] = {x | a ≤
x ≤ b}, the open interval (a, b) = {x | a < x < b},
the ray [a,∞) = {x | a ≤ x < ∞}, and R are all

uncountable, by exhibiting an injective function from

[0, 1] to each of them. Prove that the set of irrational

numbers in R is uncountable.

(5) Let f : [0, 1] → R be a function such that f(x) > 0 for all

x ∈ [0, 1], but which is otherwise arbitrary. Prove that there

is a sequence {xn}∞n=1 of distinct elements xn ∈ [0, 1] such

that ∞∑
n=1

f(xn) = ∞.

A.6. Open and Closed Sets

We will denote the closed interval {x | a ≤ x ≤ b} by [a, b] and the

open interval {x | a < x < b} by (a, b). We will also have occasion

to refer to the half open intervals (a, b] = {x | a < x ≤ b} and

[a, b) = {x | a ≤ x < b}. Note that the interval [a, a] is the set

consisting of the single point a and (a, a) is the empty set.

Definition A.6.1. (Open, closed, dense). A subset A ⊂ R is
called an open set if for every x ∈ A there is an open interval (a, b) ⊂
A such that x ∈ (a, b). A subset B ⊂ R is called closed if R \ B is
open. A set A ⊂ R is said to be dense in R if every non-empty open
subset contains a point of A.
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Proposition A.6.2. (Q is dense in R). The rational numbers Q

are a dense subset of R.

Proof. Let U be a non-empty open subset of R. By the definition of

open set there is a non-empty interval (a, b) ⊂ U . Choose an integer

n such that 1
n < b−a. Then every point of R is in one of the intervals

[ i−1
n , i

n ). In particular, for some integer i0,
i0−1

n ≤ a < i0
n . Since

1
n < b − a it follows that

i0 − 1

n
≤ a <

i0
n

≤ a +
1

n
< b.

Hence, the rational number i0/n is in (a, b) and therefore in U. �

Theorem A.6.3. (Open sets). A non-empty open set U ⊂ R is a
countable union of pairwise disjoint open intervals

⋃∞
n=1(an, bn).

Proof. Let x ∈ U . Define ax = inf{y | [y, x] ⊂ U} and bx =

sup{y | [x, y] ⊂ U} and let Ux = (ax, bx). Then Ux ⊂ U, but ax /∈ U

since otherwise for some ε > 0, [ax − ε, ax + ε] ⊂ U and hence

[ax−ε, x] ⊂ [ax−ε, ax +ε]∪ [ax +ε, x] ⊂ U and this would contradict

the definition of ax. Similarly, bx /∈ U . It follows that if z ∈ Ux,

then az = ax and bz = bx. Hence, if Uz ∩ Ux �= ∅, then Uz = Ux or

equivalently, if Uz �= Ux, then they are disjoint.

Thus, U is a union of open intervals, namely the set of all the

open intervals Ux for x ∈ U. Any two such intervals are either equal

or disjoint, so the collection of distinct intervals is pairwise disjoint.

To see that this is a countable collection observe that the rationals

Q are countable, so U ∩ Q is countable and the function φ which

assigns to each r ∈ U ∩Q the interval Ur is a surjective map onto this

collection. By Proposition A.5.6 this collection must be countable.

�

Exercise A.6.4.

(1) Prove that the complement of a closed subset of R is open.

(2) Prove that an arbitrary union of open sets is open and an

arbitrary intersection of closed sets is closed.
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(3) Prove that if S is a closed bounded set, then both inf S and

sup S are elements of S.

(4) The set D = {m/2n | m ∈ Z, n ∈ N} is called the dyadic
rationals. Prove that D is dense in R.

(5) A point x is called a limit point of a set S ⊂ R if every

open interval containing x contains points of S other than

x. Prove that a set S ⊂ R is closed if and only if it contains

all of its limit points. Show this implies that if S is closed,

xn ∈ S and limxn = z, then z ∈ S.

A.7. Compact Subsets of R

One of the most important concepts for analysis is the notion of com-

pactness.

Definition A.7.1. (Compact). A set X ⊂ R is called compact

provided every open cover of X has a finite subcover.

Less tersely, X is compact if for every collection V of open sets

with the property that

X ⊂
⋃

U∈V
U

there is a finite collection U1, U2, . . . , Un of open sets in V such that

X ⊂
n⋃

k=1

Uk.

For our purposes the key property is that closed and bounded

subsets of R are compact.

Theorem A.7.2. (The Heine-Borel theorem). A subset X of R

is compact if and only if it is closed and bounded.

Proof. To see that a compact set is bounded observe that if Un =

(−n, n), then {Un} is an open cover of any subset X of R. If this

cover has a finite subcover, then X ⊂ Um for some m and hence X is

bounded. To show a compact set X is closed observe that if y /∈ X,

then

Un = (−∞, y − 1

n
) ∪ (y +

1

n
,∞)
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defines an open cover of R \ {y} and hence of X. Since this cover

of X has a finite subcover there is an m > 0 such that X ⊂ Um. It

follows that (y−1/m, y +1/m) is in the complement of X. Since y is

an arbitrary point of the complement of X, this complement is open

and X is closed.

To show the converse we first consider the special case that X is

the closed interval [a, b]. Let V be an open cover of X and define

Y = {x ∈ [a, b] | the cover V of [a, x] has a finite subcover}.
The set Y is non-empty since a ∈ Y , and bounded since it is a subset

of [a, b]. We define z = sup Y and note that z ∈ [a, b].

Hence, there is an open set U0 ∈ V with z ∈ U0. From the def-

inition of open sets we know there are points z0, z1 ∈ U0 satisfying

z0 < z < z1. From the definition of z the cover V of [a, z0] has a finite

subcover U1, U2, . . . , Un. Then the finite subcover U0, U1, U2, . . . , Un

of V is a cover of [a, x] for any x ∈ [a, z1]. Since z < z1, this contra-

dicts the definition of z unless z1 ≥ b. Hence, we conclude z1 ≥ b and

the finite cover of [a, z1] is also a cover of [a, b].

For an arbitrary closed and bounded set X we choose a, b ∈ R

such that X ⊂ [a, b]. If V is any open cover of X and we define

U0 = R\X, then V ∪{U0} is an open cover of [a, b] which must have a

finite subcover, say U0, U1, U2, . . . , Un. Then U1, U2, . . . , Un must be

a cover of X. �

There is a very important property of nested families of compact

sets which we will use.

Theorem A.7.3. (Nested families of compact sets). If {An}∞n=1

is a nested family of non-empty compact subsets of R, (i.e., An+1 ⊂
An for all n), then

⋂∞
n=1 An is non-empty.

Proof. Let Un = Ac
n be the complement of An. Then each Un is

open and Un ⊂ Un+1. If
⋂∞

n=1 An is empty, then its complement

∪∞
n=1Un is all of R. Therefore, {Un} is an open cover of the compact

set A1, but it has no finite subcover since the union of the sets in any

finite subcover is UN for some N ∈ N and UN does not contain the

non-empty set AN ⊂ A1. We have contradicted the assumption that⋂∞
n=1 An is empty. �
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Exercise A.7.4.

(1) Give an example of a nested family of non-empty open inter-

vals U1 ⊃ U2 ⊃ · · · ⊃ Un . . . , such that
⋂∞

n=1 Un is empty.

(2) A collection F of subsets of R is said to have the finite
intersection property if the intersection of the sets in any

finite subcollection of F is non-empty. Prove that if F is

a collection of compact subsets of R and it has the finite

intersection property, then the intersection of all the sets in

F is non-empty.

(3) Prove that a subset A ⊂ R is compact if and only if it has

the property that every sequence in A has a subsequence

which converges to an element of A.

A.8. Continuous and Differentiable Functions

Definition A.8.1. (Continuity and uniform continuity). Sup-
pose X ⊂ R. A function f : X → R is continuous if for every
x ∈ X and every ε > 0 there is a δ(x) (depending on x) such that
|f(y) − f(x)| < ε whenever y ∈ X and |y − x| < δ(x). A function
f : X → R is uniformly continuous if for every ε > 0 there is a δ (in-
dependent of x and y) such that |f(y)− f(x)| < ε whenever x, y ∈ X

and |y − x| < δ.

Theorem A.8.2. If f is defined and continuous on a compact subset
X ⊂ R, then it is uniformly continuous.

Proof. Suppose ε > 0 is given. For any x ∈ X and any positive

number δ let U(x, δ) = (x−δ, x+δ). From the definition of continuity

it follows that for each x there is a δ(x) > 0 such that for every

y ∈ U(x, δ(x)) ∩ X we have |f(x) − f(y)| < ε/2. Therefore, if y1 and

y2 are both in U(x, δ(x)) ∩ X we note

|f(y1) − f(y2)| ≤ |f(y1) − f(x)| + |f(x) − f(y2)| <
ε

2
+

ε

2
= ε.

The collection {U(x, δ(x)/2) | x ∈ [a, b]} is an open cover of the

compact set X so it has a finite subcover {U(xi, δ(xi)/2) | 1 ≤ i ≤ n}.
Let

δ =
1

2
min{δ(xi) | 1 ≤ i ≤ n}.
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Suppose now y1, y2 ∈ X and |y1 − y2| < δ. Then

y1 ∈ U
(
xj ,

δ(xj)

2

)
for some 1 ≤ j ≤ n and

|y2 − xj | ≤ |y2 − y1| + |y1 − xj | < δ +
δ(xj)

2
≤ δ(xj).

So both y1 and y2 are in U(xj , δ(xj)) and hence

|f(y1) − f(y2)| < ε.

�

We will also make use of the following result from elementary

calculus.

Theorem A.8.3. (Mean value theorem). If f is differentiable on
the interval [a, b], then there is c ∈ (a, b) such that

f ′(c) =
f(b) − f(a)

b − a
.

Corollary A.8.4. If f and g are differentiable functions on [a, b]

and f ′(x) = g′(x) for all x, then there is a constant C such that
f(x) = g(x) + C.

Proof. Let h(x) = f(x)− g(x), then h′(x) = 0 for all x and we wish

to show h is constant. But if a0, b0 ∈ [a, b], then the mean value

theorem says h(b0)−h(a0) = h′(c)(b0−a0) = 0 since h′(c) = 0. Thus,

for arbitrary a0, b0 ∈ [a, b] we have h(b0) = h(a0), so h is constant. �

Exercise A.8.5.

(1) Suppose that f : R → R is a surjective function such that

x ≤ y implies f(x) ≤ f(y) for all x, y ∈ R. Prove that f is

continuous.

(2) (Characterization of continuity) Suppose f is a function f :

R → R.

(a) Prove that f is continuous if and only if the set inverse

f−1(U) is open for every open set U ⊂ R.

(b) Prove that f is continuous if and only if the set inverse

f−1((a, b)) is open for every open interval (a, b).
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(c) Prove that f is continuous if and only if the set inverse

f−1(C) is closed for every closed set C ⊂ R.

(3) (Intermediate value theorem) Prove that if f : [a, b] → R is

continuous with f(a) < 0 and 0 < f(b), then there exists

c ∈ (a, b) such that f(c) = 0.

(4) Prove that if A ⊂ R is compact and f : R → R is continuous,

then f(A) is compact.

(5) (Complex continuous functions) If A ⊂ R and f : A → C,

we define f to be continuous if �(f(x)) and 	(f(x)) are

continuous functions from A to R. Prove that f : R → C is

continuous if and only if for each a ∈ R,

lim
x→a

f(x) = f(a).

A.9. Real Vector Spaces

In this section we describe some basic properties of real vector spaces.

A rigorous definition of a real vector space can be found in any linear

algebra text. However, in this text we will only consider vector spaces

of real-valued functions defined on some fixed domain and these are

much simpler to define. For a discussion of general vector spaces in

greater depth than we present here see [K].

Definition A.9.1. (Vector space of functions). If A is a set, a
non-empty collection V of real-valued functions with domain A is a
vector space of real-valued functions provided:

(1) If f and g are in V , then f + g is in V .

(2) If f ∈ V and c ∈ R, then cf is in V .

Examples A.9.2. The following are examples of vector spaces of

real-valued functions.

(1) The collection of all functions from a set A to R.

(2) The collection of all continuous functions from [a, b] to R.

(3) The collection of all infinite sequences {xn} in R (Recall

these are just the functions from N to R.)
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(4) The collection of all finite sequences {xi}n
i=1 in R (This is

another description of Rn and is also the collection of all

real-valued functions with domain {1, 2, . . . , n}.)

Henceforth, we will use the term real vector space in its standard

linear algebra sense. However, the reader will suffer no great loss of

generality in thinking only of vector spaces of real-valued functions

as defined above.

Definition A.9.3. (Inner product space). An inner product

space is a real vector space V together with a function 〈 , 〉 : V×V → R

which for any v1, v2, w ∈ V and any a, c1, c2 ∈ R satisfies:

(1) Commutativity: 〈v1, v2〉 = 〈v2, v1〉.
(2) Bilinearity: 〈c1v1 + c2v2, w〉 = c1〈v1, w〉 + c2〈v2, w〉.
(3) Positive Definiteness: 〈w, w〉 ≥ 0 with equality only if

w = 0.

Definition A.9.4. (Norm). If V is a real vector space with inner
product 〈 , 〉, we define the associated norm ‖ ‖ by ‖v‖ =

√〈v, v〉.
Proposition A.9.5. (Cauchy-Schwarz inequality). If (V , 〈 , 〉)
is an inner product space and v, w ∈ V , then

|〈v, w〉| ≤ ‖v‖ ‖w‖,
with equality if and only if v and w are multiples of a single vector.

Proof. First assume that ‖v‖ = ‖w‖ = 1. Then

‖〈v, w〉w‖2 + ‖v−〈v, w〉w‖2

= 〈v, w〉2‖w‖2 + 〈v − 〈v, w〉w, v − 〈v, w〉w〉
= 〈v, w〉2‖w‖2 + ‖v‖2 − 2〈v, w〉2 + 〈v, w〉2‖w‖2

= ‖v‖2 = 1,

since ‖v‖2 = ‖w‖2 = 1. Hence,

〈v, w〉2 = ‖〈v, w〉w‖2 ≤ ‖〈v, w〉w‖2 + ‖v − 〈v, w〉w‖2 = 1.

This implies the inequality |〈v, w〉| ≤ 1 = ‖v‖ ‖w‖, when v and w are

unit vectors. Also this inequality is an equality only if ‖v−〈v, w〉w‖ =

0 or v = 〈v, w〉w, i.e., since v and w are unit vectors, only if v = ±w.
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The general result is trivial if either v or w is 0. Hence, we may

assume the vectors are non-zero multiples, v = av0 and w = bw0, of

unit vectors v0 and w0. In this case we have |〈v, w〉| = |〈av0, bw0〉| =

|ab||〈v0, w0〉| ≤ |ab| = ‖av0‖ ‖bw0‖ = ‖v‖ ‖w‖.
Observe that we have equality only if |〈v0, w0〉| = 1, which, as

noted above, only happens if v0 = ±w0, i.e., only if v and w are

multiples of each other. �

Proposition A.9.6. (Normed linear space). If V is an inner
product space and ‖ ‖ is the norm defined by ‖v‖ =

√〈v, v〉, then

(1) For all a ∈ R and v ∈ V , ‖av‖ = |a|‖v‖.
(2) For all v ∈ V , ‖v‖ ≥ 0 with equality only if v = 0.

(3) Triangle Inequality: For all v, w ∈ V , ‖v + w‖ ≤ ‖v‖ +

‖w‖.
(4) Parallelogram Law: For all v, w ∈ V ,

‖v − w‖2 + ‖v + w‖2 = 2‖v‖2 + 2‖w‖2.

Proof. The first two of these properties follow immediately from the

definition of inner product. To prove item (3), the triangle inequality,

observe:

‖v + w‖2 = 〈v + w, v + w〉
= 〈v, v〉 + 2〈v, w〉 + 〈w, w〉
= ‖v‖2 + 2〈v, w〉 + ‖w‖2

≤ ‖v‖2 + 2|〈v, w〉| + ‖w‖2

≤ ‖v‖2 + 2‖v‖ ‖w‖ + ‖w‖2 by Cauchy-Schwarz,

= (‖v‖ + ‖w‖)2.
To prove item (4), the parallelogram law, note

‖v − w‖2 = 〈v − w, v − w〉 = ‖v‖2 − 2〈v, w〉 + ‖w‖2

and

‖v + w‖2 = 〈v + w, v + w〉 = ‖v‖2 + 2〈v, w〉 + ‖w‖2.

Hence, the sum ‖v − w‖2 + ‖v + w‖2 equals 2‖v‖2 + 2‖w‖2. �
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Definition A.9.7. (Orthonormal). A set of vectors {ui}k
i=1 in Rn

is called orthonormal with respect to the inner product 〈 , 〉 provided
〈ui, uj〉 = 0 if i �= j and ‖ui‖2 = 〈ui, ui〉 = 1 for 1 ≤ i ≤ k.

Proposition A.9.8. (Orthonormal basis). Suppose {ui}n
i=1 is an

orthonormal set of in Rn. Then any v ∈ Rn can be uniquely expressed
as

v =

n∑
i=1

〈v, ui〉ui.

Proof. Suppose v ∈ Rn is arbitrary. Let

w =

n∑
i=1

〈v, ui〉ui.

We will show w = v. Note that for each i, 〈w, ui〉 = 〈v, ui〉. It follows

that

〈w − v, ui〉 = 〈w, ui〉 − 〈v, ui〉 = 0

for 1 ≤ i ≤ n.

By part (1) of Exercise A.9.9 below a vector which is perpendic-

ular to each ui must be 0. Hence, w − v = 0.

To show uniqueness suppose that v also equals
∑n

i=1 aiui for some

real numbers ai. Then

〈v, uj〉 = 〈
n∑

i=1

aiui, uj〉 = aj .

for each 1 ≤ j ≤ n. �

Exercise A.9.9.

(1) This exercise requires a knowledge of dimension and/or lin-
ear independence in Rn. Prove there is no orthonormal sub-

set of Rn with more than n elements. Show, in fact, that if

{ui}n
i=1 is an orthonormal set in Rn, then 〈v, ui〉 = 0 for all

1 ≤ i ≤ n only if v = 0.

(2) Consider the set �2 of square summable sequences in R de-

fined in part (3) of Exercise A.3.8. Prove that �2 is a vector

space of real-valued functions.

                

                                                                                                               



166 A. Background and Foundations

(3) If {xn} and {yn} are elements of �2, define a function 〈 , 〉 :

�2 × �2 → R by

〈{xn}, {yn}〉 =

∞∑
n=1

xnyn.

Prove that 〈 , 〉 is an inner product on �2. (See part (3) of

Exercise A.3.8.)

A.10. Complex Vector Spaces

In this section we describe some basic properties of complex vector

spaces. Most of the properties we describe are analogous to properties

of real vector spaces we showed in the previous section and the proofs

are often nearly identical. A rigorous definition of a complex vector

space can be found in most linear algebra texts (see [K], for example).

However, here we will only consider vector spaces of complex-valued

functions defined on some fixed domain and these are much simpler

to define.

Definition A.10.1. (Complex vector space of functions). If A

is a set, a non-empty collection V of complex-valued functions with
domain A is a vector space of complex-valued functions provided:

(1) If f and g are in V , then f + g is in V .

(2) If f ∈ V and c ∈ C, then cf is in V .

Examples A.10.2. The following are examples of vector spaces of

complex-valued functions.

(1) The collection of all functions from a set A to C.

(2) The collection of all continuous functions from [a, b] to C.

(3) The collection of all infinite sequences {xn} in C. (Recall

these are just the functions from N to C.)

(4) The collection of all finite sequences {xi}n
i=1 in C. (This is

another description of Cn and is also the collection of all

complex-valued functions with domain {1, 2, . . . , n}.)

Henceforth, we will use the term complex vector space in its stan-

dard linear algebra sense. However, the reader will suffer no great
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loss of generality in thinking only of vector spaces of complex-valued

functions as defined above. For more details about complex vector

spaces and the properties summarized below see [K].

Definition A.10.3. (Hermitian form). A Hermitian form on a
complex vector space V is a function 〈 , 〉 : V×V → C which satisfies:

(1) Conjugate symmetry: 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .

(2) Sesquilinearity:

〈c1v1 + c2v2, w〉 = c1〈v1, w〉 + c2〈v2, w〉 and

〈v, c1w1 + c2w2, 〉 = c̄1〈v, w1〉 + c̄2〈v, w2〉
for all v1, v2, w1, w2 ∈ V and all c1, c2 ∈ C.

(3) Positive definiteness: For all w ∈ V , 〈w, w〉 is real and
≥ 0 with equality only if w = 0.

Note that the property that 〈w, w〉 is real for all w ∈ V is a

consequence of skew symmetry since the fact that 〈w, w〉 = 〈w, w〉
implies it is real.

Example A.10.4. Let Cn denote the complex vector space of n-

tuples of complex numbers. If z = (z1, . . . , zn) and w = (w1, . . . , wn)

are elements of Cn, we define

〈z, w〉 =

n∑
i=1

ziw̄i.

This is called the standard Hermitian form on Cn.

Proposition A.10.5. (Hermitian form). If V is a complex vector
space with a Hermitian form and ‖ ‖ is defined by ‖v‖ =

√〈v, v〉,
then

(1) For all c ∈ C and v ∈ V , ‖cv‖ = |c|‖v‖.
(2) For all v ∈ V , ‖v‖ ≥ 0 with equality only if v = 0.

So ‖ || is a norm on V .

Proof. To show property (1) observe that

‖cv‖2 = 〈cv, cv〉 = cc̄〈v, v〉 = |c|2‖v‖2.
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Property (2) is immediate from positive definiteness of the Hermitian

form. �

Definition A.10.6. (Norm). If V is a complex vector space with
inner product 〈 , 〉, we define the associated norm ‖ ‖ by ‖v‖ =√〈v, v〉.

As in the real case, two vectors x and y are said to be perpendic-
ular with respect to the Hermitian form 〈 , 〉 if 〈x, y〉 = 0.

Proposition A.10.7. (Pythagorean theorem). If x1, x2, . . . , xn

are mutually perpendicular elements of a complex vector space with
Hermitian form 〈 , 〉 and associated norm ‖ ‖, then∥∥∥ n∑

i=1

xi

∥∥∥2

=

n∑
i=1

‖xi‖2.

Proof. Consider the case n = 2. If x is perpendicular to y, then

‖x+y‖2 = 〈x+y, x+y〉 = 〈x, x〉+〈x, y〉+〈y, x〉+〈y, y〉 = ‖x‖2+‖y‖2

since 〈x, y〉 = 〈y, x〉 = 0. The general case follows by induction on

n. �

Proposition A.10.8. (Cauchy-Schwarz inequality). If V is a
complex vector space and 〈 , 〉 is a Hermitian form, then for all v, w ∈
V ,

|〈v, w〉| ≤ ‖v‖ ‖w‖,
with equality if and only if v and w are multiples of a single vector.

Proof. The proof is very similar to the proof for inner products on

real vector spaces. One difference to keep in mind is that in this proof

〈 , 〉 is a Hermitian form rather than an inner product and | | denotes

the modulus of a complex number rather than absolute value.

First assume ‖v‖ = ‖w‖ = 1. Then

‖〈v, w〉w‖2+‖v − 〈v, w〉w‖2

= |〈v, w〉|2‖w‖2 + 〈v − 〈v, w〉w, v − 〈v, w〉w〉
= |〈v, w〉|2‖w‖2 + ‖v‖2 − 2〈v, w〉〈v, w〉 + |〈v, w〉|2‖w‖2

= ‖v‖2 = 1,

                

                                                                                                               



A.10. Complex Vector Spaces 169

since ‖v‖2 = ‖w‖2 = 1. Hence,

〈v, w〉2 = ‖〈v, w〉w‖2 ≤ ‖〈v, w〉w‖2 + ‖v − 〈v, w〉w‖2 = 1

This implies the inequality |〈v, w〉| ≤ 1 = ‖v‖ ‖w‖, when v and w are

unit vectors. Also this inequality is an equality only if ‖v−〈v, w〉w‖ =

0 or v = 〈v, w〉w, i.e., since v and w are unit vectors, only if v = cw

for some c ∈ C with modulus 1.

The general result is trivial if either v or w is 0. Hence, we may

assume the vectors are non-zero multiples, v = av0 and w = bw0, of

unit vectors v0 and w0. In this case we have |〈v, w〉| = |〈av0, bw0〉| =

|ab̄||〈v0, w0〉| ≤ |ab̄| = |a||b| = ‖av0‖ ‖bw0‖ = ‖v‖ ‖w‖.
Observe that we have equality only if |〈v0, w0〉| = 1, which, as

noted above, only happens if v0 = cw0 for some c with modulus 1,

i.e., only if v and w are multiples of each other. �

Proposition A.10.9. (Triangle inequality and parallelogram
law). If V is a complex vector space with a Hermitian form 〈 , 〉
and ‖ ‖ is the associated norm, then

(1) for all v, w ∈ V , ‖v + w‖ ≤ ‖v‖ + ‖w‖;
(2) for all v, w ∈ V , ‖v − w‖2 + ‖v + w‖2 = 2‖v‖2 + 2‖w‖2.

Proof. Observe

‖v + w‖2 = 〈v + w, v + w〉
= 〈v, v〉 + 〈v, w〉 + 〈w, v〉 + 〈w, w〉
= ‖v‖2 + 2�(〈v, w〉) + ‖w‖2

≤ ‖v‖2 + 2|〈v, w〉| + ‖w‖2

≤ ‖v‖2 + 2‖v‖ ‖w‖ + ‖w‖2 by Cauchy-Schwarz,

= (‖v‖ + ‖w‖)2.
The proof of item (2), the parallelogram law, is very similar to the

real version. Note ‖v−w‖2 = 〈v−w, v−w〉 = ‖v‖2−〈v, w〉−〈w, v〉+
‖w‖2. Likewise, ‖v + w‖2 = 〈v + w, v + w〉 = ‖v‖2 + 〈v, w〉+ 〈w, v〉+

‖w‖2. Hence, the sum ‖v−w‖2 +‖v +w‖2 equals 2‖v‖2 +2‖w‖2. �
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Exercise A.10.10.

(1) Prove that 〈 , 〉 : Cn × Cn → C defined in Example A.10.4

is a Hermitian form.

(2) Consider the set �2C of square summable sequences in C de-

fined to be those sequences {zi}∞i=1 such that

∞∑
i=1

|zi|2 < ∞.

Prove that �2C is a vector space of complex-valued functions.

(3) If {zn} and {wn} are elements of �2C, define a function 〈 , 〉 :

�2C × �2C → C by

〈{zn}, {wn}〉 =

∞∑
n=1

znw̄n.

Prove that 〈 , 〉 is a Hermitian form on �2C.

A.11. Complete Normed Vector Spaces

In this section V will denote either a real or a complex vector space

with a norm ‖ ‖. The concepts of limit and Cauchy sequence extend

naturally to vector spaces with a norm. Indeed, the definitions are

essentially identical to those given for R and C. The only difference is

that where before we used | | to represent absolute value or modulus

of a complex number we now use ‖ ‖, the norm.

Definition A.11.1. (Limit and convergence). Suppose {vn}∞n=1

is a sequence in a vector space V with norm ‖ ‖ and w ∈ V. We say
the sequence converges to w and write

lim
n→∞ vn = w

if for every ε > 0 there exists N ∈ N such that

‖vm − w‖ < ε

for all m ≥ N.
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As mentioned earlier, the assertion that Cauchy sequences in R

always converge is equivalent to the Completeness Axiom. This for-

mulation is the one which generalizes to C (as we have seen in The-

orem A.4.4). The concept of completeness is also useful in normed

vector spaces. However, in normed vector spaces, especially the func-

tion spaces considered in this text, it is a very strong property not

shared by many spaces.

Definition A.11.2. (Cauchy sequence, complete). A sequence
{vn}∞n=1 in a normed vector space V is called a Cauchy sequence

if for every ε > 0 there is an N > 0 (depending on ε) such that
‖vn − vm‖ < ε for all n, m ≥ N. The normed vector space V is called
complete if every Cauchy sequence in V converges to an element of
V .

Exercise A.11.3.

(1) Suppose the sequence {vn}∞n=1 in a normed vector space

converges. Prove it is Cauchy.

(2) Prove that Rn with the standard norm is complete.

(3) Prove that Cn with the norm associated to the standard

Hermitian form from Example A.10.4 is complete.

(4) Let ‖ ‖ be the norm on �2 associated with the inner product

〈 , 〉. Prove �2 with this norm is a complete normed linear

space. (See Exercise A.9.9.) Similarly, let ‖ ‖ be the norm

on �2C associated with the inner product 〈 , 〉. Prove �2C with

this norm is a complete normed linear space.

                

                                                                                                               



Appendix B

Lebesgue Measure

B.1. Introduction

In this appendix we define a generalization of length called measure
for bounded subsets of the real line or subsets of the interval [a, b].

There are several properties which we want it to have. For a bounded

subset A of R we would like to be able to assign a non-negative real

number µ(A) in a way that satisfies the following:

I. Length: If A = (a, b) or [a, b], then µ(A) = len(A) = b− a,

i.e., the measure of an open or closed interval is its length.

II. Translation invariance: If A ⊂ R is a bounded subset

of R and c ∈ R, then µ(A + c) = µ(A), where A + c denotes

the set {x + c | x ∈ A}.
III. Countable additivity: If {An}∞n=1 is a countable collec-

tion of bounded subsets of R, then

µ(

∞⋃
n=1

An) ≤
∞∑

n=1

µ(An)

and if the sets are pairwise disjoint, then

µ(

∞⋃
n=1

An) =

∞∑
n=1

µ(An).
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Note the same conclusion applies to {An}m
n=1, a finite col-

lection of bounded sets (just let Ai = ∅ for i > m).

IV. Monotonicity: If A ⊂ B, then µ(A) ≤ µ(B). Actually,

this property is a consequence of additivity since A and B\A
are disjoint and their union is B.

It turns out that it is not possible to find a µ which satisfies I–IV

and which is defined for all bounded subsets of the reals; but we can

do it for a very large collection including the open sets and the closed

sets.

B.2. Outer Measure

We first describe the notion of “outer measure” which comes close to

what we want. It is defined for all subsets of the reals and satisfies

properties I, II and IV above. It also satisfies the inequality part

of the additivity condition, III, which is called subadditivity; but it

fails to be additive for some choices of disjoint sets. The resolution

of this difficulty will be to restrict its definition to a certain large

collection of nice sets (the measurable sets) on which we can show

the additivity condition holds. Our task for this appendix then is

threefold: (1) we must define the concept of measurable sets and

develop their properties; (2) we must define the notion of Lebesgue
measure µ for such sets; and (3) we must prove that properties I-IV

hold, if we restrict our attention to measurable sets.

Suppose A ⊂ R is a bounded set and {Un} is a countable covering

of A by open intervals, i.e., A ⊂ ⋃
n Un where Un = (an, bn). Then

if we were able to define a function µ satisfying the properties I-IV

above we could conclude from monotonicity and subadditivity that

µ(A) ≤ µ
( ∞⋃

n=1

Un

) ≤
∞∑

n=1

µ(Un) =

∞∑
n=1

len(Un)

and hence that µ(A) would be less than or equal to the infimum
of all such sums where we consider all possible coverings of A by a

countable collection of open intervals. This turns out to lead to a

very useful definition of an extended real-valued function µ∗ defined

for every subset A of R.
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Definition B.2.1. (Lebesgue outer measure). Suppose A ⊂ R

and U(A) is the collection of all countable coverings of A by open
intervals. We define the Lebesgue outer measure µ∗(A) by

µ∗(A) = inf
{Un}∈U(A)

{ ∞∑
n=1

len(Un)
}
,

where the infimum is taken over all possible countable coverings of A

by open intervals. If for every cover of A by open intervals
∞∑

n=1

len(Un) = +∞,

we define µ∗(A) = +∞.

Notice that this definition plus Definition 2.2.1, the definition of

a null set, imply that a set A ⊂ I is a null set if and only if µ∗(A) = 0.

We can immediately show that property I, the length property,

holds for Lebesgue outer measure.

Proposition B.2.2. (Length property for outer measure). For
any a, b ∈ R with a ≤ b we have µ∗([a, b]) = µ∗((a, b)) = b − a.

Proof. First consider the closed interval [a, b]. It is covered by the

single interval U1 = (a− ε, b + ε), so µ∗([a, b]) ≤ len(U1) = b− a + 2ε.

Since 2ε is arbitrary we conclude that µ∗([a, b]) ≤ b − a.

On the other hand, by Theorem A.7.2, the Heine-Borel theorem,

any open covering of [a, b] has a finite subcovering, so it suffices to

prove that for any finite cover {Ui}n
i=1 we have

∑
len(Ui) ≥ b − a

as this will imply µ∗([a, b]) ≥ b − a. We prove this by induction on

n, the number of elements in the cover by open intervals. Clearly,

the result holds if n = 1. If n > 1 we note that two of the open

intervals must intersect. This is because one of the intervals (say

(c, d)) contains b and if c > a another interval contains c and hence

these two intersect. By renumbering the intervals we can assume that

Un−1 and Un intersect.

Now define Vn−1 = Un−1 ∪ Un and Vi = Ui for i < n − 1. Then

{Vi} is an open cover of [a, b] containing n − 1 intervals. By the
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induction hypothesis,

n−1∑
i=1

len(Vi) ≥ b − a.

But len(Un−1) + len(Un) > len(Vn−1) and len(Ui) = len(Vi−1) for

i > 2. Hence,
n∑

i=1

len(Ui) >
n−1∑
i=1

len(Vi) ≥ b − a.

This completes the proof that µ∗([a, b]) ≥ b − a and hence that

µ∗([a, b]) = b − a.

For the open interval (a, b) we note that U = (a, b) covers itself,

so µ∗((a, b)) ≤ b − a. On the other hand, any cover {Ui}∞i=1 of (a, b)

by open intervals is also a cover of the closed interval [a + ε, b− ε] so,

as we just showed,

∞∑
i=1

len(Ui) ≥ b − a − 2ε.

As ε is arbitrary,
∑

len(Ui) ≥ b−a and hence µ∗((a, b)) ≥ b−a which

completes our proof. �

Two special cases are worthy of note:

Corollary B.2.3. The outer measure of a set consisting of a single
point is 0. The outer measure of the empty set is also 0.

Lebesgue outer measure satisfies a monotonicity property with

respect to inclusion.

Proposition B.2.4. (Monotonicity of outer measure). If A and
B are subsets of R and A ⊂ B, then µ∗(A) ≤ µ∗(B).

Proof. Since A ⊂ B, every countable cover {Un} ∈ U(B) of B by

open intervals is also in U(A) since it also covers A. Thus,

inf
{Un}∈U(A)

{ ∞∑
n=1

len(Un)
}
≤ inf

{Un}∈U(B)

{ ∞∑
n=1

len(Un)
}
,

so µ∗(A) ≤ µ∗(B). �
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Corollary B.2.5. If a ∈ R, then the outer measure of each of the
sets (a,∞), (−∞, a) and R is +∞.

Proof. Since µ∗((−N, N)) = 2N and (−N, N) ⊂ R we know µ∗(R) ≥
2N for all N . Likewise, µ∗((a,∞)) ≥ µ∗((a, N)) ≥ N − |a|, and

µ∗((−∞, a)) ≥ µ∗((−N, a)) ≥ N − |a|. �

We can now prove the first part of the countable additivity prop-

erty we want. It turns out that this is the best we can do if we want

our measure defined on all subsets of R. Note that the following result

is stated in terms of a countably infinite collection {An}∞n=1 of sets,

but it is perfectly valid for a finite collection also.

Theorem B.2.6. (Countable subadditivity). A countable collec-
tion {An}∞n=1 of subsets of R satisfies

µ∗(
∞⋃

n=1

An) ≤
∞∑

n=1

µ∗(An).

Proof. By the definition of outer measure we know that each An has

a countable cover by open intervals {Un
i } such that

∞∑
i=1

len(Un
i ) ≤ µ∗(An) + 2−nε.

But the union of all these covers {Un
i } is a countable cover of

⋃∞
n=1 An.

So

µ∗(
∞⋃

n=1

An) ≤
∞∑

n=1

∞∑
i=1

len(Un
i )

≤
∞∑

n=1

µ∗(An) +

∞∑
n=1

2−nε

=

∞∑
n=1

µ∗(An) + ε.

Since this is true for every ε the result follows. �

Corollary B.2.7. If A is countable, then µ∗(A) = 0
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Proof. Suppose A =
⋃∞

i=1{xi}. We saw in Corollary B.2.3 that

µ∗({xi}) = 0, so

µ∗(A) = µ∗(
∞⋃

i=1

{xi}) ≤
∞∑

i=1

µ∗({xi}) = 0,

which implies µ∗(A) = 0. �

We also immediately obtain the following non-trivial result. (For

alternate proofs see part (4) of Exercise A.5.12 and part (4) of Exer-

cise 2.2.2).

Corollary B.2.8. (Intervals are uncountable). If a < b, then
[a, b] is not countable.

Proof. Countable sets have outer measure 0, but µ∗([a, b]) = b−a �=
0. �

Outer Lebesgue measure satisfies property II of those we enumer-

ated at the beginning, namely it is translation invariant.

Theorem B.2.9. (Translation invariance). If c ∈ R and A is a
subset of R, then µ∗(A) = µ∗(A + c) where A + c = {x + c | x ∈ A}.

We leave the (easy) proof as an exercise.

Proposition B.2.10. (Regularity of outer measure). If A ⊂
R and µ∗(A) is finite, then for any ε > 0 there is an open set V

containing A such that µ∗(V ) < µ∗(A) + ε. As a consequence

µ∗(A) = inf{µ∗(U) | U is open and A ⊂ U}.

Proof. We observe from the definition of µ∗ that if ε > 0, there is a

countable cover {Vj} of A by open intervals such that

∞∑
j=1

len(Vj) < µ∗(A) + ε.

Hence, if V =
⋃

Vj , then subadditivity implies

µ∗(V ) ≤
∑

µ∗(Vj) ≤
∑

len(Vj) < µ∗(A) + ε,

so V has the desired property. Moreover, it follows that

inf{µ∗(U) | U is open and A ⊂ U} ≤ µ∗(A) + ε.
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Since this is true for all ε > 0, we conclude

inf{µ∗(U) | U is open and A ⊂ U} ≤ µ∗(A).

The reverse inequality follows from monotonicity of µ∗ since µ∗(A) ≤
µ∗(U) for any U containing A. Combining the two we obtain the

desired equality. �

Exercise B.2.11.

(1) Prove that if N is a null set and A ⊂ R then, µ∗(A ∪ N) =

µ∗(A).

(2) Prove Theorem B.2.9.

(3) Suppose A ⊂ R and r > 0. Let rA = {rx | x ∈ A}. Prove

µ∗(rA) = rµ∗(A).

(4) Prove that µ∗(A) is also the infimum of
∑

len(Un) for all

countable open covers of A by pairwise disjoint open inter-

vals Un.

(5) Prove that given ε > 0 there exist a countable collection of

open intervals U1, U2, . . . , Un, . . . such that
⋃

n Un contains

all rational numbers in R and such that
∑∞

n=1 len(Un) = ε.

(6) Give an example of a subset A of I = [0, 1] such that

µ∗(A) = 0, but with the property that if U1, U2, . . . , Un is a

finite cover by open intervals, then
∑n

i=1 len(Ui) ≥ 1.

(7) Suppose {Un} is a countable collection of pairwise disjoint

open intervals in I and U =
⋃

n Un. Prove that µ∗(U) =∑
len(Un).

(8) (�) Outer measure µ∗ is not generally additive. Prove, how-

ever, that if U =
⋃∞

n=1 Un is a countable union of pairwise

disjoint open intervals {Un} and A is a bounded subset of

R, then

µ∗(A ∩ U) =

∞∑
n=1

µ∗(A ∩ Un).
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B.3. The σ-algebra of Lebesgue Measurable Sets

In Definition 2.4.1 we defined the σ-algebra M to be the σ-algebra

of subsets of R generated by open intervals and null sets (it is also

the σ-algebra of subsets of R generated by Borel sets and null sets).

We defined a set to be Lebesgue measurable if it is in this σ-algebra.

However, now, in order to prove the existence of Lebesgue measure,

we want to use a different, but equivalent definition.

Our program for this section and the next is roughly as follows:

• We will define a collection M0 of subsets of R. The criterion

used to define M0 is often given as the definition of Lebesgue

measurable sets. We will first motivate this criterion.

• We will define the Lebesgue measure µ(A) of a set A in M0

to be the outer measure µ∗(A).

• We will show that the collection M0 is a σ-algebra of subsets

of R and, in fact, precisely the σ-algebra M. Hence, µ(A)

will be defined for all A ∈ M.

• In the next section we will prove that µ defined in this way

satisfies the properties promised in Chapter 2, namely prop-

erties I–VI of Theorem 2.4.2. Several of these properties

follow from the corresponding properties for outer measure

µ∗, which we proved in Section B.2.

Lebesgue outer measure as in Definition B.2.1 has most of the

properties we want for the measure µ. There is one serious problem,

however; namely, there exist subsets A and B of I such that A∩B = ∅
and A ∪ B = I, but µ∗(A) + µ∗(B) �= µ∗(I). That is, the additivity

property fails even with two disjoint sets whose union is an interval.

Fortunately, the sets for which it fails are rather exotic and not too

frequently encountered.

When we developed the theory of the Riemann integral in Chap-

ter 1, we saw that once we specified the obvious definition for the

integral of a step function and also required the monotonicity prop-

erty, there was a large class of functions for which the value of the

integral was forced. These were the functions f for which the infi-

mum of the integrals of step functions greater than f is equal to the
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supremum of the integrals of step functions less than f . Because of

monotonicity there was only one choice for the value of the integral of

f — it had to be this common value of the supremum and infimum.

And the class of functions for which this value is forced was defined
to be the Riemann integrable functions.

To carefully develop the theory of Lebesgue measure and measur-

able sets we will do something very similar. We will prove that if A is

any subset of R and J = [a, b], then there are upper and lower bounds

for all possible ways to define the measure of A ∩ J , the part of A in

J . Indeed, if µ is to be defined on a σ-algebra containing open and

closed sets, then the only possibilities for the value of µ(A ∩ J) must

be less than µ∗(A∩J) and greater than (len(J)−µ∗(Ac∩J)). Should

these upper and lower bounds be equal, life is good, and the value

of µ(A ∩ J) has been determined! In particular, if A had this prop-

erty for an interval J which contains A, then we will have determined

µ(A ∩ J) = µ(A).

Proposition B.3.1. Suppose A is a σ-algebra of subsets of R which
contains all Borel sets and µ is an extended real-valued function de-
fined on A which satisfies the Countable additivity, Monotonicity and
Length properties. Then for any interval J = [a, b] and any set A ∈ A,

len(J) − µ∗(Ac ∩ J) ≤ µ(A ∩ J) ≤ µ∗(A ∩ J).

Proof. Suppose A ∈ A and {Un} is a countable covering of A∩J by

open intervals. Then

µ(A ∩ J) ≤ µ
( ∞⋃

n=1

Un

) ≤
∞∑

n=1

µ(Un) =

∞∑
n=1

len(Un),

where the first inequality follows from monotonicity of µ and the

second from countable subadditivity. Hence, µ(A ∩ J) is less than or

equal to the infimum of all such sums where we consider all possible

countable coverings of A ∩ J by open intervals. We conclude that

(B.3.1) µ(A ∩ J) ≤ µ∗(A ∩ J).

Since Ac ∩ J is also in the σ-algebra A the same argument shows

µ(Ac∩J) ≤ µ∗(Ac∩J). Since the function µ satisfies both the Length

property and the additivity property for disjoint sets in A, we must
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also have µ(A ∩ J) + µ(Ac ∩ J) = µ(J) = len(J). So

len(J) − µ(A ∩ J) = µ(Ac ∩ J) ≤ µ∗(Ac ∩ J)

and it follows that

(B.3.2) µ(A ∩ J) ≥ len(J) − µ∗(Ac ∩ J).

�

Equations (B.3.1) and (B.3.2) tell us that the only possible values

of µ(A ∩ J) must be between len(J) − µ∗(Ac ∩ J) and µ∗(A ∩ J). If

these two values are equal, i.e., if µ∗(A ∩ J) + µ∗(Ac ∩ J) = len(J),

then there is only one choice for the value of µ(A ∩ J). It must be

equal to the common value µ∗(A ∩ J) = (len(J) − µ∗(Ac ∩ J)).

This certainly suggests that we consider subsets A of R such that

(B.3.3) µ∗(A ∩ J) + µ∗(Ac ∩ J) = len(J).

It turns out (see Exercise B.3.5 below) that if a set A satisfies equa-

tion (B.3.3) for every interval J, then, in fact, it satisfies it for every
subset X ⊂ R, if we replace J by X and len(J) by µ∗(X). So we might

as well make things easier for ourselves and ask that equation (B.3.3)

hold when we replace J with an arbitrary subset X ⊂ R if we use

µ∗(X) in place of len(X). All this should motivate the following def-

inition.

Definition B.3.2. (Lebesgue measure). Let M0 denote the
collection of all A ⊂ R with the property that for any X ⊂ R,

µ∗(A ∩ X) + µ∗(Ac ∩ X) = µ∗(X).

For any set A ∈ M0 we define its Lebesgue measure, µ(A), to be
µ∗(A).

Once again we have followed the paradigm of listing the properties

we want a function (Lebesgue measure in this case) to have, next

finding the class of objects where there is only one possible value of

that function, and then defining the function on that class to be those

uniquely determined values.

Notice that if µ∗(X) = +∞, then subadditivity implies

µ∗(A ∩ X) + µ∗(Ac ∩ X) = µ∗(X)
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no matter what A is since at least one of µ∗(A ∩X) and µ∗(Ac ∩X)

must be infinite. So if we want to check if a particular set A is in

M0, it suffices to check that µ∗(A∩X)+µ∗(Ac ∩X) = µ∗(X) for all

subsets X ⊂ R with µ∗(X) finite.

The goal of the remainder of this section is to prove that, in fact,

M0 is nothing other than the σ-algebra M of Lebesgue measurable

subsets of R. In the next section we will show the extended real-valued

function µ satisfies the properties I–VI which we claimed for Lebesgue

measure in Chapter 2. The defining condition above for a set A to

be in M0 is often taken as the definition of a Lebesgue measurable

set because it is what is needed to prove the properties we want for

Lebesgue measure. Since we have already given a different defini-

tion of Lebesgue measurable sets in Definition 2.4.1 we will instead

prove the properties of M0 and µ which we want and then show in

Corollary B.3.11 that the sets in M0 are precisely the sets in M, the

σ-algebra generated by Borel subsets and null sets.

As a first step we show that bounded sets in M0 are in M. We

will later see that unbounded ones are also.

Proposition B.3.3. Every bounded set A ∈ M0 can be written as

A = B \ N

where B is a Borel set and N = Ac ∩ B is a null set.

Proof. It follows from Proposition B.2.10, the regularity of outer

measure, that for any k ∈ N there is a an open set Vk containing A

such that µ∗(Vk) ≤ µ∗(A) + 1/k. Let B =
⋂∞

k=1 Vk. By monotonicity

we have

µ∗(A) ≤ µ∗(B) ≤ µ∗(Vk) ≤ µ∗(A) +
1

k
.

Since this holds for all k > 0 we conclude that µ∗(B) = µ∗(A).

In the defining equation of M0 (see Definition B.3.2) we may take

X = B and conclude that

µ∗(A ∩ B) + µ∗(Ac ∩ B) = µ∗(B).

Since A ⊂ B we have A ∩ B = A and hence µ∗(A) + µ∗(Ac ∩ B) =

µ∗(B). From the fact that µ∗(B) = µ∗(A) it follows that µ∗(Ac∩B) =
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0. (This uses the fact that µ∗(A) is finite.) Therefore, if N = Ac ∩B,

then N is a null set. Finally, A = B \ (B ∩ Ac), so A = B \ N. �

The definition of M0 is relatively simple, but to show it has the

properties we want requires some work. We begin, however, with two

very easy properties.

Proposition B.3.4. Suppose A ⊂ R, then

(1) The set A is in M0 provided for every subset X ⊂ R,

µ∗(A ∩ X) + µ∗(Ac ∩ X) ≤ µ∗(X).

(2) The set A is in M0 if and only if Ac is in M0.

Proof. For part (1) observe X = (A ∩ X) ∪ (Ac ∩ X) so the subad-

ditivity property of outer measure in Theorem B.2.6 tells us that

µ∗(A ∩ X) + µ∗(Ac ∩ X) ≥ µ∗(X)

always holds. This plus the inequality of our hypothesis gives the

equality of the definition of M0.

For part (2) suppose A is an arbitrary subset of R. The fact that

(Ac)c = A implies immediately from Definition B.3.2 that A is in M0

if and only if Ac is. �

Exercise B.3.5. (�) Let S denote the collection of all subsets A of

R such that

µ∗(A ∩ J) + µ∗(Ac ∩ J) = µ∗(J)

for every interval J = [a, b] in R.

(1) Prove that if A ∈ S and U is a bounded open subset of R,

then

µ∗(A ∩ U) + µ∗(Ac ∩ U) = µ∗(U).

Hint: Use part (8) of Exercise B.2.11

(2) Use (1) to prove that if A ∈ S and X is any bounded subset

of R, then

µ∗(A ∩ X) + µ∗(Ac ∩ X) = µ∗(X).

                

                                                                                                               



B.3. The σ-algebra of Lebesgue Measurable Sets 185

Proposition B.3.6. A set A ⊂ R is a null set if and only if A ∈ M0

and µ(A) = 0.

Proof. Let X be a subset of R. By definition a set A is a null set if

and only if µ∗(A) = 0. If A is a null set, then since A ∩ X ⊂ A we

know by the monotonicity of outer measure (Proposition B.2.4) that

µ∗(A ∩ X) = 0. Similarly, since Ac ∩ X ⊂ X we know that µ∗(Ac ∩
X) ≤ µ∗(X). Hence, again using monotonicity of outer measure from

Proposition B.2.4, we know that

µ∗(A ∩ X) + µ∗(Ac ∩ X) = µ∗(Ac ∩ X) ≤ µ∗(X)

and the fact that A ∈ M0 follows from part (1) of Proposition B.3.4.

�

Proposition B.3.7. If A and B are in M0, then A ∪ B and A ∩ B

are in M0.

Proof. To prove the union of two sets, A and B, in M0 is also in

M0 requires some work. Suppose X ⊂ I. Since (A ∪ B) ∩ X =

(B ∩ X) ∪ (A ∩ Bc ∩ X), the subadditivity of Theorem B.2.6 tells us

(B.3.4) µ∗((A ∪ B) ∩ X) ≤ µ∗(B ∩ X) + µ∗(A ∩ Bc ∩ X).

Also, the definition of M0 tells us

(B.3.5) µ∗(Bc ∩ X) = µ∗(A ∩ Bc ∩ X) + µ∗(Ac ∩ Bc ∩ X).

Notice that (A ∪ B)c = Ac ∩ Bc. So we get

µ∗((A ∪ B) ∩ X) + µ∗((A ∪ B)c ∩ X)

= µ∗((A ∪ B) ∩ X) + µ∗(Ac ∩ Bc ∩ X).

Using the inequality from equation (B.3.4) we get

µ∗((A ∪ B) ∩ X) + µ∗((A ∪ B)c ∩ X)

≤ µ∗(B ∩ X) + µ∗(A ∩ Bc ∩ X) + µ∗(Ac ∩ Bc ∩ X)

= µ∗(B ∩ X) + µ∗(Bc ∩ X) = µ∗(X)

where the first equality comes from equation (B.3.5) and the second

follows from the fact that B ∈ M0.

Hence, we conclude

µ∗((A ∪ B) ∩ X) + µ∗((A ∪ B)c ∩ X) ≤ µ∗(X)
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and according to part (1) of Proposition B.3.4 this is sufficient to

show that A ∪ B is in M0.

The intersection now follows easily using what we know about

the union and complement. More precisely, A∩B = (Ac ∪Bc)c, so if

A and B are in M0, then so is (Ac ∪ Bc) and hence its complement

(Ac ∪ Bc)c is also. �

Next we wish to show intervals are in M0.

Proposition B.3.8. Any interval, open, closed or half open, is in
M0.

Proof. First consider (−∞, a] with complement (a,∞). If X is an

arbitrary subset of R, we must show µ∗((−∞, a] ∩ X) + µ∗((a,∞) ∩
X) = µ∗(X). Let X− = (−∞, a] ∩ X and X+ = (a,∞) ∩ X. Given

ε > 0, the definition of outer measure tells us we can find a countable

cover of X by open intervals {Un}∞n=1 such that

(B.3.6)

∞∑
n=1

len(Un) ≤ µ∗(X) + ε.

Let U−
n = Un ∩ (−∞, a] and U+

n = Un ∩ (a,∞). Then X− ⊂⋃∞
n=1 U−

n and X+ ⊂ ⋃∞
n=1 U+

n . Note that U+
n is an open interval and

U−
n is either an open interval or a half open interval. Subadditivity

of outer measure implies

µ∗(X−) ≤ µ∗(
∞⋃

n=1

U−
n )

≤
∞∑

n=1

µ∗(U−
n ) =

∞∑
n=1

len(U−
n )

and

µ∗(X+) ≤ µ∗(
∞⋃

n=1

U+
n )

≤
∞∑

n=1

µ∗(U+
n ) =

∞∑
n=1

len(U+
n ).
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Adding these inequalities and using equation (B.3.6) we get

µ∗(X−) + µ∗(X+) ≤
∞∑

n=1

len(U−
n ) + len(U+

n )

=

∞∑
n=1

len(Un)

≤ µ∗(X) + ε.

Since ε is arbitrary we conclude that µ∗(X−) + µ∗(X+) ≤ µ∗(X)

which by Proposition B.3.4 implies that (−∞, a] is in M0 for any

a ∈ R. A similar argument implies that [a,∞) is in M0. Taking

complements, unions and intersections it is clear that any interval,

open closed or half open, is in M0. �

Lemma B.3.9. Suppose A and B are disjoint sets in M0. Then

µ∗(A ∪ B) = µ∗(A) + µ∗(B).

The analogous result for a finite union of disjoint measurable sets is
also valid.

Proof. It is always true that

A ∩ (A ∪ B) = A.

Since A and B are disjoint

Ac ∩ (A ∪ B) = B.

Hence, the fact that A is in M0 (using A ∪ B for X) tells us

µ∗(A ∪ B) = µ∗(A ∩ (A ∪ B)) + µ∗(Ac ∩ (A ∪ B))

= µ∗(A) + µ∗(B).

The result for a finite collection A1, A2, . . . , An follows immedi-

ately by induction on n. �

Theorem B.3.10. The collection M0 of subsets of I is closed under
countable unions and countable intersections and taking complements.
Hence, M0 is a σ-algebra.
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Proof. We have already observed in part (2) of Proposition B.3.4

that the complement of a set in M0 is a set in M0.

We have also shown that the union or intersection of a finite

collection of sets in M0 is a set in M0.

Suppose {An}∞n=1 is a countable collection of sets in M0. We want

to construct a countable collection of pairwise disjoint sets {Bn}∞n=1

which are in M0 and have the same union.

To do this we define B1 = A1 and

Bn+1 = An+1 \
n⋃

i=1

An = An+1 ∩
( n⋃

i=1

An

)c

.

Since finite unions, intersections and complements of sets in M0

are sets in M0, it is clear that Bn is in M0. Also, it follows easily

by induction that
⋃n

i=1 Bi =
⋃n

i=1 Ai for any n. Thus,
⋃∞

i=1 Bi =⋃∞
i=1 Ai.

Hence to prove
⋃∞

i=1 Ai is in M0 we will prove that
⋃∞

i=1 Bi is in

M0. Let Fn =
⋃n

i=1 Bi and F =
⋃∞

i=1 Bi. If X is an arbitrary subset

of R, then since Fn is in M0 and F c ⊂ F c
n

µ∗(X) = µ∗(Fn ∩ X) + µ∗(F c
n ∩ X) ≥ µ∗(Fn ∩ X) + µ∗(F c ∩ X).

By Lemma B.3.9

µ∗(Fn ∩ X) =

n∑
i=1

µ∗(Bi ∩ X).

Putting these together we have

µ∗(X) ≥
n∑

i=1

µ∗(Bi ∩ X) + µ∗(F c ∩ X)

for all n > 0. Hence,

µ∗(X) ≥
∞∑

i=1

µ∗(Bi ∩ X) + µ∗(F c ∩ X).

But subadditivity of µ∗ implies

∞∑
i=1

µ∗(Bi ∩ X) ≥ µ∗(
∞⋃

i=1

(Bi ∩ X)) = µ∗(F ∩ X).
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Hence,

µ∗(X) ≥ µ∗(F ∩ X) + µ∗(F c ∩ X)

and F is in M0 by Proposition B.3.4.

To see that a countable intersection of sets in M0 is in M0 we

observe that ∞⋂
n=1

An =
( ∞⋃

n=1

Ac
n

)c

so the desired result follows from the result on unions together with

the fact that M0 is closed under taking complements. �

Corollary B.3.11. The σ-algebra M0 equals M the σ-algebra gen-
erated by Borel sets and null sets.

Proof. In Proposition B.3.8 we showed the σ-algebra M0 contains

open intervals and hence it contains the σ-algebra they generate, the

Borel subsets of R. Also, M0 contains null sets by Proposition B.3.6.

Therefore, M0 contains M the σ-algebra generated by Borel sets and

null sets.

On the other hand, by Proposition B.3.3 bounded sets which are

in M0 are also in M. Hence, if A ∈ M0, then A ∩ [n, n + 1] ∈ M0,

so A ∩ [n, n + 1] ∈ M and it follows that A =
⋃

(A ∩ [n, n + 1]) is in

M. Hence M0 = M. �

B.4. The Existence of Lebesgue Measure

Since we now know the sets in M0, i.e., the sets which satisfy Def-

inition B.3.2, coincide with the sets in M, we will refer to them as

Lebesgue measurable sets, or simply measurable sets for short. We

also no longer need to use outer measure, but can refer to the Lebesgue

measure µ(A) of a measurable set A (which, of course, has the same

value as the outer measure µ∗(A)).

Theorem B.4.1. (Countable additivity). If {An}∞n=1 is a count-
able collection of measurable subsets of R, then

µ(

∞⋃
n=1

An) ≤
∞∑

n=1

µ(An).
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If the sets are pairwise disjoint, then

µ(

∞⋃
n=1

An) =

∞∑
n=1

µ(An).

Proof. The first inequality is simply a special case of the subaddi-

tivity from Theorem B.2.6. If the sets Ai are pairwise disjoint, then

by Lemma B.3.9 we know that for each n,

µ(

∞⋃
i=1

Ai) ≥ µ(

n⋃
i=1

Ai) =

n∑
i=1

µ(Ai).

Hence,

µ(

∞⋃
i=1

Ai) ≥
∞∑

i=1

µ(Ai).

Since the reverse inequality follows from subadditivity we have equal-

ity. �

We can now prove the main result of this appendix, which was

presented as Theorem 2.4.2 in Chapter 2. In that chapter we re-

stricted our attention to measurable sets in an interval I. This was

done to gain the simplicity of dealing only with sets of finite mea-

sure, because that was sufficient for our purposes. However, we have

defined extended real-valued functions (see Definition 3.1.5) and can

therefore prove the existence and uniqueness of the extended real-

valued function µ defined on all of M.

Theorem B.4.2. (Existence of Lebesgue measure). There ex-
ists a unique function µ, called Lebesgue measure, from M to the
extended real numbers satisfying:

I. Length: If A = (a, b), then µ(A) = len(A) = b−a, i.e., the
measure of an open interval is its length

II. Translation Invariance: Suppose A ∈ M, and c ∈ R,

then µ(A+ c) = µ(A) where A+ c is the set {x+ c | x ∈ A}.
III. Countable additivity: If {An}∞n=1 is a countable col-

lection of elements of M, then

µ(

∞⋃
n=1

An) ≤
∞∑

n=1

µ(An)
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and if the sets are pairwise disjoint, then

µ(

∞⋃
n=1

An) =

∞∑
n=1

µ(An)

IV. Monotonicity: If A, B ∈ M and A ⊂ B, then µ(A) ≤
µ(B)

V. Null sets: A subset A ⊂ R is a null set if and only if
A ∈ M(I) and µ(A) = 0.

VI. Regularity: If A ∈ M, then for any ε > 0 there is an
open set V containing A such that µ(V \ A) < ε. In partic-
ular,

µ(A) = inf{µ(U) | U is open and A ⊂ U}.

Proof. The Lebesgue measure, µ(A), of any set A ∈ M is defined to

be its outer measure µ∗(A). Hence, properties I, II, and IV for µ follow

from the corresponding properties of µ∗. These were established in

Propostion B.2.2, Theorem B.2.9, and Proposition B.2.4, respectively.

Property III, countable additivity, was proved in Theorem B.4.1,

and Property V is a consequence of Proposition B.3.6.

Property VI is an immediate consequence of Proposition B.2.10

(regularity of outer measure) when µ(A) is finite, because that propo-

sition asserts µ(V ) < µ(A) + ε. Since µ(V \ A) = µ(V ) − µ(A) we

conclude µ(V \A) < ε. The case when µ(A) is infinite is Exercise B.4.3

below.

We are left with the task of showing that µ is unique. Suppose

µ1 and µ2 are two functions defined on M and satisfying properties

I–VI. They must agree on any open interval by property I. By Theo-

rem A.6.3 any open set is a countable union of pairwise disjoint open

intervals, so countable additivity implies µ1 and µ2 agree on open

sets.

Finally, if A is an arbitrary set in M, then, since µ1 and µ2 agree

on any open set U containing A, property VI (regularity) implies they

agree on A. �
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Exercise B.4.3.

(1) Prove that a measure which satisfies all properties from The-

orem B.4.2 except II, must also satisfy property II.

(2) Prove that if ν is a measure which satisfies properties II–

VI of Theorem B.4.2, then there is a c ∈ [0,∞) such that

ν = cµ.

(3) If A ⊂ R is measurable and µ(A) is infinite prove that for

any ε > 0 there is an open set V containing A such that

µ(V \ A) < ε.

                

                                                                                                               



Appendix C

A Non-measurable Set

We are now prepared to prove the existence of a non-measurable set.
The proof (necessarily) depends on the Axiom of choice (see the end

of Section A.5).

Theorem C.1.1. (Non-measurable set). There exists a subset E

of [0, 1] which is not Lebesgue measurable.

Proof. Let Q ⊂ R denote the rational numbers. The rationals are an

additive subgroup of R and we wish to consider the so-called “cosets”

of this subgroup. More precisely, we want to consider the sets of the

form Q + x where x ∈ R.

We observe that two such sets Q + x1 and Q + x2 are either

equal or disjoint. This is because the existence of one point in their

intersection,

z ∈ (Q + x1) ∩ (Q + x2),

implies z = x1+r1 = x2+r2 with r1, r2 ∈ Q, so x1−x2 = (r2−r1) ∈ Q.

This, in turn implies that

Q + x2 = {x2 + r | r ∈ Q}
= {x2 + r + (x1 − x2) | r ∈ Q}
= {x1 + r | r ∈ Q}
= Q + x1.
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Notice that since Q is dense in R so is each coset Q + x. Hence,

each coset has a non-empty intersection with the interval [0, 1]. Ac-

cording to the Axiom of Choice, there is a choice function Ψ : P(R) →
R, i.e., a function such that Ψ(A) is an element of A for every non-

empty subset A ⊂ R. We define

E =
{
y | y = Ψ

(
[0, 1] ∩ (Q + x)

)
for some x ∈ R

}
.

The set E is a subset of [0, 1] and contains one element from each of

the cosets Q+x. That is, for any x0 ∈ R the set E∩(Q+x0) contains

exactly one point and that point is in [0, 1]. Now let {rn}∞n=1 be an

enumeration of the rational numbers.

We want to show that {E +rn}∞n=1 defines a partition of R. That

is, the sets (E + rn) are pairwise disjoint and

R =

∞⋃
n=1

(E + rn).

To see this first note that if y ∈ (E + rn) ∩ (E + rm), then there

are e1, e2 ∈ E such that e1 + rn = e2 + rm and hence (e1 − e2) ∈ Q,

so e1 and e2 are in the same coset of Q. Since E contains only one

element from each coset we conclude e1 = e2 which implies rn = rm.

Thus, the sets E + rn and E + rm are disjoint unless rn = rm.

Now let x ∈ R be arbitrary and let {x0} = E ∩ (Q + x). Then

x = x0 + r for some r ∈ Q. Hence, x ∈ E + r, so x ∈ ⋃∞
n=1 E + rn.

We have shown that R =
⋃∞

n=1(E + rn).

Note that E ⊂ [0, 1], so the outer measure µ∗(E) ≤ 1. It is not

possible that µ∗(E) = 0 since translation invariance of outer measure

would imply µ∗(E + rn) = µ∗(E) = 0 and hence (by subadditivity)

that

µ∗(R) = µ∗
( ∞⋃

n=1

E + rn

)
≤

∞∑
n=1

µ∗(E + rn) = 0.

We conclude that µ∗(E) > 0.

Let {sn}N
n=1 be a set of N distinct rational numbers in [0, 1]. Each

set E + sn is a subset of [0, 2], so

µ∗
( N⋃

n=1

E + sn

)
≤ µ∗([0, 2]).
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Since µ∗ equals µ on measurable sets and µ is additive, if E were

measurable, we could conclude

µ∗
( N⋃

n=1

(E + sn)
)

= µ
( N⋃

n=1

(E + sn)
)

=

N∑
n=1

µ(E + sn)

= Nµ(E) = Nµ∗(E).

Since µ∗(E) > 0 it is clearly impossible to have Nµ∗(E) ≤
µ∗([0, 2]) = 2 for all N ∈ N. Hence, we conclude that E is not mea-

surable. �

Exercise C.1.2.

(1) Prove that there exist subsets A and B of I = [0, 1] such

that A ∩ B = ∅ and A ∪ B = I, but µ∗(A) + µ∗(B) �= 1.

(2) Prove that if r ∈ (0, 1), there is a non-measurable subset

E ⊂ I such that µ∗(E) = r. Hint: Use part (3) of Exer-

cise B.2.11.

(3) Prove there is a subset A ⊂ R with the property that for

every open set U containing A the outer measure of the

set difference µ∗(U \ A) is infinite. (Cf. part (3) of Exer-

cise B.4.3.)
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M movie, 139
µ Lebesgue measure, 31, 182
ν-almost all, 130

⊥ perpendicular, 95
σ-algebra, 29, 37, 76
σ-algebra generated by a family of

sets, 30

absolute continuity, 65
absolute convergence, 95, 107, 147,

150
absolutely continuous, 74
absolutely continuous measure, 74
additivity, 54

algebra of functions, 114
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complete, 91
complete normed space, 171
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continuous, 160
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converge pointwise, 8
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countability, 152
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countable additivity, 26, 31, 38,
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integral, 71
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distributivity, of ∪ and ∩, 151
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Egorov’s theorem, 72
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interval partition, 5
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Lebesgue integrable, 77
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Lebesgue integral of a bounded
function, 51

Lebesgue measurable, 180
Lebesgue measurable function, 45
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Lebesgue measure, 31, 174, 190
Lebesgue outer measure, 175
Lebesgue simple, 42
limit, 145
limit in a normed space, 170
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linear function, 98
linear functional, 96, 106
linearity, 42
Littlewood’s three principles, 34, 72
lower bound, 142

Mean value theorem, 161
measurable function, 44, 45
measurable function (complex), 119
measurable partition, 41
measurable set, 31, 174, 182, 189
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measurable with respect to a
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measure, 73
measure preserving transformation,
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Minkowski inequality, 87
modulus, 149, 168
monotone, 146
monotone convergence theorem, 70
monotone decreasing, 146
monotone increasing, 146
monotonicity, 42, 181

movie, 139

natural numbers, 141
non-measurable set, 193
norm, 84, 163, 168
normed linear space, 164
nowhere dense, 39
null set, 28

open interval, 156
open set, 156
orbit, 129
orthogonal projection, 99, 107

orthonormal, 165
orthonormal family, 100, 106
outer measure, 175

parallelogram law, 164, 169
perfect, 39
perpendicular, 95, 168
Poincaré recurrence theorem, 133
pointwise, 56
positive definite, 88, 105, 163, 167
power set, 154
Pythagorean theorem, 95, 168

Radon-Nikodym derivative, 76
Radon-Nikodym theorem, 76
range, 143
rational numbers, 141
real numbers, 141
real part, 149
recurrent, 129, 132
regulated function, 9
regulated integral, 11
Riemann integrable, 18
Riemann integral, 18

sequence, 144
set difference, 32, 151
set inverse, 144

Sigma algebra, 29
simple, 42
simple functions, 41
square integrable, 84
square integrable complex

functions, 121
square summable, 148
standard Hermitian form, 167
step function, 5
subadditivity, 174
supremum, 142
surjection, 144
surjective, 143
symmetric difference, 35

translation invariance, 26, 31, 173,
178, 190

triangle inequality, 164, 169

uncountable, 152
uniform continuity, 160
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uniform convergence, 7
uniformly continuous, 12, 160
upper bound, 142

vector space of complex-valued
functions, 166

vector space of real-valued
functions, 2, 162

weak convergence of measures, 77
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