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Foreword: MASS and
REU at Penn State
University

This book is part of a collection published jointly by the Amer-

ican Mathematical Society and the MASS (Mathematics Advanced

Study Semesters) program as a part of the Student Mathematical

Library series. The books in the collection are based on lecture

notes for advanced undergraduate topics courses taught at the MASS

and/or Penn State summer REU (Research Experiences for Under-

graduates). Each book presents a self-contained exposition of a non-

standard mathematical topic, often related to current research areas,

accessible to undergraduate students familiar with an equivalent of

two years of standard college mathematics and suitable as a text for

an upper division undergraduate course.

Started in 1996, MASS is a semester-long program for advanced

undergraduate students from across the USA. The program’s curricu-

lum amounts to sixteen credit hours. It includes three core courses

from the general areas of algebra/number theory, geometry/topology

and analysis/dynamical systems, custom designed every year; an in-

terdisciplinary seminar; and a special colloquium. In addition, ev-

ery participant completes three research projects, one for each core

course. The participants are fully immersed into mathematics, and

xi
                

                                                                                                               



xii Foreword: MASS and REU at Penn State University

this, as well as intensive interaction among the students, usually leads

to a dramatic increase in their mathematical enthusiasm and achieve-

ment. The program is unique for its kind in the United States.

The summer mathematical REU program is formally independent

of MASS, but there is a significant interaction between the two: about

half of the REU participants stay for the MASS semester in the fall.

This makes it possible to offer research projects that require more

than seven weeks (the length of the REU program) for completion.

The summer program includes the MASS Fest, a two to three day

conference at the end of the REU at which the participants present

their research and that also serves as a MASS alumni reunion. A non-

standard feature of the Penn State REU is that, along with research

projects, the participants are taught one or two intense topics courses.

Detailed information about the MASS and REU programs at

Penn State can be found on the website www.math.psu.edu/mass.

                

                                                                                                               



Preface

This book is a result of the MASS course in geometry in the fall

semester of 2007. MASS core courses are traditionally labeled as

analysis, algebra, and geometry, but the understanding of each area

is broad, e.g. number theory and combinatorics are allowed as algebra

courses, topology is considered as a part of geometry, and dynamical

systems as a part of analysis. No less importantly, an interaction

of ideas and concepts from different areas of mathematics is highly

valued.

The topic came to me as very natural under these conditions. Sur-

faces are among the most common and easily visualized mathematical

objects, and their study brings into focus fundamental ideas, con-

cepts, and methods from geometry proper, topology, complex anal-

ysis, Morse theory, group theory, and suchlike. At the same time,

many of those notions appear in a technically simplified and more

graphic form than in their general “natural” settings. So, here was

an opportunity to acquaint a group of bright and motivated under-

graduates with a wealth of concepts and ideas, many of which would

be difficult for them to absorb if presented in a traditional fashion.

This is the central idea of the course and the book reflects it closely.

The first, primarily expository, chapter introduces many (but not

all) principal actors, such as the round sphere, flat torus, Möbius strip,

Klein bottle, elliptic plane, and so on, as well as various methods of

xiii
                

                                                                                                               



xiv Preface

describing surfaces, beginning with the traditional representation by

equations in three-dimensional space, proceeding to parametric rep-

resentation, and introducing the less intuitive, but central for our

purposes, representation as factor spaces. It also includes a prelimi-

nary discussion of the metric geometry of surfaces. Subsequent chap-

ters introduce fundamental mathematical structures: topology, com-

binatorial (piecewise-linear) structure, smooth structure, Riemannian

metric, and complex structure in the specific context of surfaces. The

assumed background is the standard calculus sequence, some linear

algebra, and rudiments of ODE and real analysis. All notions are

introduced and discussed, and virtually all results proved, based on

this background.

The focal point of the book is the Euler characteristic, which ap-

pears in many different guises and ties together concepts from com-

binatorics, algebraic topology, Morse theory, ODE, and Riemannian

geometry. The repeated appearance of the Euler characteristic pro-

vides both a unifying theme and a powerful illustration of the notion

of an invariant in all those theories.

A further idea of both the motivations and the material presented

in the book may be found in the Table of Contents, which is quite

detailed.

My plan for teaching the course was somewhat bold and ambi-

tious, and could have easily miscarried had I not been blessed with a

teaching assistant who became the book’s co-author. I decided to use

no text either for my own preparations or as a prop for students. In-

stead, I decided to present the material the way I understand it, with

not only descriptions and examples, but also proofs, coming directly

from my head. A mitigating factor was that, although sufficiently

broadly educated, I am not a professional topologist or geometer.

Hence, the stuff I had ready in my head or could easily reconstruct

should not have been too obscure or overly challenging.

So, this is how the book came about. I prepared each lecture

(usually without or with minimal written notes), and my TA, the

third year Ph.D. student Vaughn Climenhaga, took notes and within

24 hours, usually less, prepared a very faithful and occasionally even

somewhat embellished version typed in TeX. I usually did some very

                

                                                                                                               



Preface xv

light editing before posting each installation for the students. Thus,

the students had the text growing in front of their eyes in real time.

By the end of the Fall semester the notes were complete: addi-

tional work involved further editing and, in a few cases, completing

and expanding proofs; a slight reordering of material to make each

chapter consist of complete lectures; and in a couple of cases, merging

two lectures into one, if in class a considerable repetition appeared.

But otherwise the book fully retained the structure of the original one-

semester course, and its expansion is due to the addition of a large

number of pictures, a number of exercises (some were originally given

in separate homework sets, others added later), and some “prose”,

i.e. discussions and informal explanations. All results presented in

the book appeared in the course, and, as I said before, only in a few

cases did proofs need to be polished or completed.

Aside from creating the original notes, my co-author Vaughn Cli-

menhaga participated on equal terms in the editorial process, and,

very importantly, he produced practically all of the pictures, includ-

ing dozens of beautiful 3-dimensional images for which, in many cases,

even the concept was solely his. Without him, I am absolutely sure

that I would not have been able to turn my course into a book in

anything approaching the present timeframe, and even if I did at all,

the quality of the final product would have been considerably lower.

Anatole Katok

                

                                                                                                               



Chapter 1

Various Ways of
Representing Surfaces
and Basic Examples

Lecture 1

a. First examples. For many people, one of the most basic images

of a surface is the surface of the Earth. Although it looks flat to

the naked eye (at least in the absence of any striking geographic

features), we learn early in our lives that it is in fact round, and that

its shape is very well approximated by a sphere. Geometrically, the

sphere is defined as the locus of points at a fixed distance, called the

radius, from a given point, the centre. Using Cartesian coordinates

and putting the origin at the centre, we derive the familiar equation

(1.1) x2 + y2 + z2 = R2,

where R is the radius; the sphere is the set of all points in R3 whose

coordinates (x, y, z) satisfy this equation.

Many other familiar shapes can also be defined geometrically and

represented as the set of solutions of a single equation, as in (1.1). For

example, the (round) cylinder is the locus of points at a fixed distance

from a given straight line. If the line is taken to be the z-axis and the

1

                                     

                

                                                                                                               



2 1. Various Ways of Representing Surfaces and Examples

Figure 1.1. Three familiar surfaces.

distance is equal to R, the equation for the cylinder is

(1.2) x2 + y2 = R2.

Another surface familiar from elementary geometry (and also

from ice-cream parlours) is the cone, which is obtained by rotating

a straight line around another line which intersects it. If the axis of

rotation is again the z-axis and the initial line lies in the xz-plane,

with the equation x = az, then the cone is given by the equation

(1.3) x2 + y2 = a2z2.

Exercise 1.1. If we construct a surface of revolution using parallel

lines instead of intersecting lines (as we did with the cone), we obtain

a cylinder. There is a third possibility; the lines may be skew, that

is, neither intersecting nor parallel. Describe the surface obtained in

this case, and derive its equation.

We feel immediately that the three objects expressed by equations

(1.1), (1.2), and (1.3), which are shown in Figure 1.1, are very different

in a variety of robust ways. For example, the sphere is bounded—

in fact, compact—while the cylinder and cone are not (contrary to

what the picture might suggest). The sphere and cylinder are smooth

everywhere, while the cone has a special point, the intersection of the

two lines in the construction, which is the origin in (1.3).

These differences are qualitative, and would not be changed if

we deformed each surface by a small amount—this reflects the fact

that the three surfaces in question have different topologies. Such a

deformation would, however, change the quantitative properties of a

surface, which constitute its geometry. For example, stretching or
                

                                                                                                               



Lecture 1 3

Figure 1.2. Three ellipsoids.

squeezing the sphere along the three coordinate axes produces an

ellipsoid given by the equation

(1.4)
x2

a2
+

y2

b2
+

z2

c2
= 1,

where a, b, and c are parameters which depend on the degree of

stretching or squeezing. Of the three surfaces above, the overall shape

and crude properties of an ellipsoid (its topology) are most similar

to that of a sphere, and are quite different from that of a cylinder

or a cone; its geometry, however, displays many differences from the

geometry of a sphere.1 For example, the sphere has many symmetries

(that is, rigid motions of the space which leave the sphere as a whole

in place), while a triaxial ellipsoid (one for which all three numbers

a, b, and c in (1.4) are different, such as the third shape shown in

Figure 1.2) has only a few.

Exercise 1.2. Find all the symmetries for

(1) a triaxial ellipsoid;

(2) an ellipsoid of revolution for which a = b �= c (such as the

second ellipsoid in Figure 1.2).

Consider separately the symmetries which can be effected by a contin-

uous motion of the space and those which cannot, such as reflections

with respect to planes.

1For the time being, we rely on intuitive ideas of what constitutes a general shape.
For a reader steeped in mathematical rigor, we refer to notions of homeomorphism and
diffeomorphism, which will be introduced later in Lectures 4 and 17, respectively, and
say that two surfaces have similar shapes if they are homeomorphic, or diffeomorphic
in the case of smooth surfaces.

                

                                                                                                               



4 1. Various Ways of Representing Surfaces and Examples

Figure 1.3. A torus and a handle.

Another familiar example of a surface is a torus—just as the

sphere is the surface of an idealised ball, the torus is the surface of

an idealised doughnut (or perhaps a bagel, depending on what sort

of diet one is on). Like our first three examples, it is a surface of

revolution, and may be obtained by rotating a circle around a line

which lies in the plane of the circle, but does not intersect it. We will

derive a nice equation (1.5) for the torus in the next lecture.

We can obtain new surfaces with qualitatively distinctive shapes

by the procedure called “attaching a handle”. A handle can be

thought of as a torus with a hole (or if you like, an inner tube with

a small patch cut out), as shown in Figure 1.3—this is attached to

a hole cut in a given surface. Applying this procedure to a sphere

produces a surface in the general shape of a torus. If we continue to

attach more handles, we obtain something reminiscent of a pretzel

with an increasing number of holes or, alternatively, a chain of tori

linked to each other—Figure 1.4 shows a sphere with two handles.

Like all the surfaces we have dealt with so far, these surfaces can

also be represented by equations with a certain amount of effort (see

Exercise 1.6).

b. Equations vs. other methods. We have obtained several dif-

ferent surfaces as the set of points whose coordinates (x, y, z) satisfy

one equation or another. It is natural to ask what sort of equations

will always yield nice, recognisable surfaces. Will any old equation

do? Or must we impose some restrictions? And conversely, can we

represent every surface by an equation?
                

                                                                                                               



Lecture 1 5

Figure 1.4. A sphere with two handles.

We begin by asking what sorts of equations are acceptable. By

moving all the terms to the same side, any equation in x, y, and

z can be written in the form F (x, y, z) = 0. If we hope to get a

smooth surface, we must demand that the function F be at least

differentiable—any of the equations (1.1), (1.2), (1.3), and (1.4) can

be written in this form with a quadratic polynomial as the function

F . But why are the sphere, the cylinder, and the ellipsoid all smooth,

while the cone has a special point? The difference is clearly seen in the

geometric description of the surfaces, since the line we use to define

the cone passes through the axis of rotation, but it is not so easy to

see what feature of the equations is responsible. How does this point

of non-smoothness turn up in the equations?

The answer is that the origin is a critical point of the function

x2 +y2−a2z2 and lies on the surface defined by (1.3), while the other

functions, x2 + y2 + z2 − R2, x2 + y2 − R2, and x2

a2 + y2

b2 + z2

c2 − 1,

have no critical points at the zero level. Thus, if we want to define a

smooth surface in R3 by an equation of the form F (x, y, z) = 0, the

function F should have no critical points at the zero level.

Turning to the other half of the relationship between surfaces

and equations, we find that not every geometric object which com-

mon sense would call a surface can be represented as the solution set

of an equation. One difficulty is caused by boundaries—notice that

the cylinder defined in (1.2) is unbounded, and extends infinitely far

in both the positive and negative z-directions. Suppose we want to

consider a finite cylinder, which may be obtained by rotating an inter-

val around a parallel line, or by rolling up a rectangular sheet of paper
                

                                                                                                               



6 1. Various Ways of Representing Surfaces and Examples

Figure 1.5. Two ways of gluing ends together.

and gluing together two opposite edges. How are we to represent such

a surface by an equation?

One possibility is to add an auxiliary inequality—for example,

one particular bounded cylinder is given as the solution set of

x2 + y2 = R2, z2 ≤ 1.

This method solves the problem in some cases, but not all. Consider

the second description of a cylinder given above, in which we take

a band of paper and glue together the two ends—now look at what

happens if we twist the band halfway around before gluing the ends

together! The result is the famous Möbius band (or Möbius strip),

shown in Figure 1.5. Its most surprising property is that it only has

one side: an insect which crawls once around the band will find itself

at the same place, but on the opposite side of the surface.

Now any surface which is given by an equation F (x, y, z) = 0

(with or without inequalities) and which does not contain any critical

points must have two sides—the function F is positive on one side

and negative on the other. It follows that the Möbius strip cannot

be represented as the solution set of a ‘nice’ equation in the sense

discussed above.

A related counterintuitive property of the Möbius strip has to do

with closed curves. In the plane, any closed curve divides the plane

into two regions2—on the Möbius strip, though, we can draw closed

curves which have no “inside” or “outside”. Consider the curve which

divides the strip in half, so to speak, running halfway between the free

2This if the Jordan Curve Theorem, which we will state and prove rigorously in
Lectures 34 and 35. It is not as easy as one might first think!

                

                                                                                                               



Lecture 1 7

Figure 1.6. Immersing a Klein bottle in R
3.

edges. If we take a pair of scissors and cut along this curve, we will

be left with a single connected surface, rather than two disconnected

pieces, which is what would happen if we performed the same oper-

ation on the cylinder, for example. This fact is intimately connected

to the observation that if we place a clock at some point on this curve

and move it once around the strip, when it returns it will be running

counterclockwise!

The existence of the Möbius strip is the first indication that rep-

resenting surfaces by equations is not sufficient. In the next lecture

we will discuss an alternative way of representing it in an analyti-

cal fashion. Notice, however, that the Möbius strip, along with all

our other examples, still lives comfortably in three-dimensional Eu-

clidean space. Our next example challenges the assumption that all

interesting surfaces can be realised this way.

If we want to glue together two opposite sides of a rectangle, we

can either glue them with no twist, which produces a cylinder, or with

a half-twist, which produces a Möbius strip.3 A similar dichotomy

arises if we decide to glue together the two ends of a cylinder. If we

do this in the conventional way, we produce a torus—however, this is

only one of two possible alignments for the pair of circles which are to

be attached. The second possibility involves ‘flipping’ one of the ends

around somehow, and results not in a torus, but in a Klein bottle.
The closest we can come to visualising this in three dimensions is to

have one end approach the other end not from outside the cylinder,

3A second half-twist will produce something which turns out to be homeomorphic
to a cylinder, but with a different embedding in R

3.
                

                                                                                                               



8 1. Various Ways of Representing Surfaces and Examples

(0, y)

(1, 1 − y)

(x, 1)

(x, 0)

(0, y) (1, y)

(x, 1)

(x, 0)

Figure 1.7. Planar models of a Klein bottle and a torus.

as with the torus, but from inside—to accomplish this, we must pass

the end through the wall of the cylinder, creating a sort of twisted

bottle (hence the name), as shown in Figure 1.6.

c. Planar models. Unlike the earlier examples, the Klein bottle

cannot be embedded in R3, and so it is more difficult to represent

properly. Abstractly, however, the procedure we followed to create

it is not hard to describe, and this idea introduces a totally different

way of looking at surfaces. We begin by taking the unit square for

our rectangle:

X = { (x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 }.
We may then ‘glue’ together two opposite edges by declaring that

for each value of x between 0 and 1, the pair of points (x, 0) and

(x, 1) are now the same point. This gives an abstract representation

of the cylinder—to obtain a Klein bottle, we must ‘glue’ together the

two remaining edges with a flip.4 We do this by considering each

pair of points (0, y) and (1, 1 − y) as a single point—notice that all

four corners are now identified. One easily checks that a piece of this

object near every point looks like a piece of ordinary plane, so this

seems to be a legitimate surface.5

Now we can look at the procedure just described and contemplate

what happens when we identify both pairs of sides of the square in

the conventional way: (x, 0) with (x, 1) and (0, y) with (1, y). We

4These edges are now “circles”, in the topological sense at least, since (0, 0) and
(0, 1) are the same point, and similarly for (1, 0) and (1, 1).

5Of course, we have not defined rigorously what we mean by a ‘legitimate surface’.
A two-dimensional smooth manifold (see Lecture 16) certainly qualifies.

                

                                                                                                               



Lecture 1 9

Figure 1.8. Meridians and parallels on two tori with different geometries.

obtain a surface resembling a torus as far as its global properties are

concerned. For example, vertical and horizontal segments become

closed curves which are identified with “parallels” and “meridians”

of the torus of revolution—this will become clear in the next lecture

when we introduce parametric representations of surfaces. However,

the geometry of our surface, the flat torus, is different from that of

the torus of revolution. For example, all vertical and all horizontal

“circles” in the flat torus have the same length, while in the torus

of revolution the meridians have the same length but the parallels

do not (Figure 1.8). This is a consequence of the fact that although

the cylinder in R3 has the same intrinsic geometry as the sheet of

paper with only one pair of sides identified (that is, the paper is not

stretched), it cannot be bent in R3 without a distortion. So far, our

notion of intrinsic geometry is intuitive, but soon we will make it more

precise.

Let us try to exhaust the possibilities of surface-building from a

rectangular piece of paper. The only remaining way of identifying

pairs of opposite sides is to identify both pairs of sides using a flip, so

that we identify (x, 0) with (1 − x, 1) and (0, y) with (1, 1 − y). We

will now turn our attention to this construction.

Exercise 1.3. Describe the surface obtained from the square by iden-

tifying points on pairs of adjacent sides, i.e. (0, t) with (1 − t, 1) and

(1, t) with (1−t, 0). Pay attention both to the shape and to geometry.

d. Projective plane and flat torus as factor spaces. To get a

more symmetric picture for the last construction, we may inflate the

square to a disc into which the square is inscribed, project the bound-

ary of the square radially to the circumference of the disc, and observe
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Figure 1.9. Various models for the real projective plane.

that the identified pairs become antipodal points on the boundary cir-

cle. Thus our object becomes the disc with pairs of opposite points

on the boundary identified, as in Figure 1.9. To make this even more

symmetric, inflate the disc to a hemisphere, keeping the boundary as

the equator. Now we can add the other hemisphere and observe that

each point of our object is represented by a pair of opposite points

on the sphere.

Instead of taking pairs of antipodal points as the points of our

surface, we may observe that any such pair determines a unique line in

R3 passing through the centre of the sphere, and vice versa. Thus we

may also think of our surface as the set of all lines through a particular

point—the surface so obtained is called the projective plane, denoted

RP 2. An obvious advantage of the sphere representation over gluing

is that it highlights the uniformity of the surface; all points look the

same.

Inspired by the last construction, we may try to look at the flat

torus differently. First recall that the circle can be represented either

by an interval, say [0, 1], with endpoints identified, or as the set of

equivalence classes of real numbers modulo one, i.e. the set of all

fractional parts of real numbers. If we simply think of all numbers

with the same fractional part as the same element of the circle we

come to the representation S1 = R/Z—note that here every point on

the circle is represented in the same way, in contrast to the interval

with endpoints identified, where the choice of representation led to a

false distinction between endpoints and non-endpoints. This choice

of representation is a matter of fixing a fundamental domain; that is,

a subset of R which contains exactly one element of each equivalence
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class, except along its boundary, where it may contain two or more. In

this case, we may take any unit interval as our fundamental domain.

A similar observation may be made with two variables, where we

observe that the (flat) torus T2 can be identified with the set of pairs

of fractional parts of real numbers:

T2 = R2/Z2,

where Z2 is the lattice of vectors with integer coordinates. These

equivalence classes are represented by points in the unit square (the

fundamental domain), once pairs of boundary points whose difference

is an integer have been identified.

We may make one further step into abstraction; instead of vectors

with integer coordinates, think about translations by those vectors.

Then each equivalence class in R2/Z2 becomes an orbit of the group

of such translations acting on R2, and our factor space (or quotient
space) naturally becomes the space of orbits.

The same approach may be taken with the projective plane—

notice that the flip on the sphere is a transformation which generates

a group of two elements, since its square is the identity. The orbit

of a point under the action of this group consists of the point itself,

together with its antipode—identifying each such pair of points yields

the projective plane, which can thus be thought of as the space of

orbits of this two-element group acting on the sphere.

Exercise 1.4. Represent the cylinder, the infinite Möbius strip, and

the Klein bottle as orbit spaces for some groups acting on the Eu-

clidean plane R2. The infinite Möbius strip is the infinite rectangle

[0, 1] × R with each pair of points (0, y) and (1,−y) identified.

Lecture 2

a. Equations for surfaces and local coordinates. Consider the

problem of writing an equation for the torus; that is, finding a function

F : R3 → R such that the torus is the solution set {(x, y, z) ∈ R3 |
F (x, y, z) = 0}. Because the torus is a surface of revolution, we begin

with the equation for a circle in the xz-plane with radius 1 and centre

at (2, 0):

S1 =
{

(x, z) ∈ R2
∣∣ (x − 2)2 + z2 = 1

}
.
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To obtain the surface of revolution, we replace x with the distance

from the z-axis by making the substitution x �→
√

x2 + y2, and obtain

T2 =
{

(x, y, z) ∈ R3
∣∣ (√x2 + y2 − 2)2 + z2 − 1 = 0

}
.

At first glance, then, setting F (x, y, z) = (
√

x2 + y2 − 2)2 + z2 − 1

gives our desired solution. However, this suffers from the defect that

F is not differentiable along the z-axis; we can overcome this fairly

easily with a little algebra. Expanding the equation, isolating the

square root, and squaring both sides, we obtain

x2 + y2 + 4 − 4
√

x2 + y2 + z2 − 1 = 0,

x2 + y2 + z2 + 3 = 4
√

x2 + y2,

(x2 + y2 + z2 + 3)2 = 16(x2 + y2),

and hence consider the function F defined by

(1.5) F (x, y, z) = (x2 + y2 + z2 + 3)2 − 16(x2 + y2).

It is easy to check that the new choice of F from (1.5) does not

introduce any extraneous points to the solution set, and now F is

differentiable on all of R3.

Exercise 1.5. Prove that a sphere with m ≥ 2 handles cannot be

represented as a surface of revolution.

Due to the result in Exercise 1.5, this argument cannot be applied

directly to find an equation whose set of solutions look like a sphere

with m ≥ 2 handles, but we can reverse engineer the result to find

a general method. Instead of beginning with a vertical plane, we

consider the intersection of the torus and the horizontal xy-plane,

which is given by two concentric circles. F (x, y, 0) is negative between

the circles, hence F (x, y, z) = F (x, y, 0) + z2 = 0 has two solutions

for those values of x and y, leading to the torus shape. By beginning

with three or more circles (no longer concentric) we may use this idea

to represent a sphere with any number of handles.

Exercise 1.6. Represent a sphere with two handles as the set of

solutions of the equation F (x, y, z) = 0, where F is a differentiable

function, and none of its critical points satisfy this equation.
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Figure 1.10. The sphere as a union of graphs.

What good is all this? What benefit do we gain from representing

the torus, or any other surface, by an equation? Of course, it allows

us to plug the equation into a computer and look at pretty pictures of

our surface, but what we are really after is coordinates on our surface.

After all, the surface is a two-dimensional affair, and so we should be

able to describe its points using just two variables, but the equations

we obtain are written in three variables.

To address this, we first backtrack a bit and discuss graphs of

functions. Recall that given a function f : R2 → R, the graph of f is

graph f = { (x, y, z) ∈ R3 | z = f(x, y) }.

If f is ‘nice’, its graph is a ‘nice’ surface sitting in R3. Of course,

most surfaces cannot be represented globally as the graph of such a

function; the sphere, for instance, has two points on the z-axis, and

hence we require at least two functions to describe it in this manner.

In fact, more than two functions are required if we adopt this

approach. The unit sphere is given as the solution set of x2+y2+z2 =

1, so we can write it as the union of the graphs of f1 and f2, where

f1(x, y) =
√

1 − x2 − y2,

f2(x, y) = −
√

1 − x2 − y2.
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The graph of f1 is the northern hemisphere, and the graph of f2

is the southern. However, we run into problems at the equator z = 0;

for reasons which will be made apparent when we give the precise

definition of a manifold (topological or differentiable), it is important

that the domain on which we define each graph be open. In this

particular case, this means we cannot include the equator in either

the northern or the southern hemisphere, and must cover those points

with other graphs. By using graphs with x or y as the dependent

variable, we can cover the ‘eastern’ and ‘western’ hemispheres, as

it were, but find that we require six graphs to deal with the entire

sphere, as shown in Figure 1.10.

This approach has wide validity. Recall that (x, y, z) ∈ R3 is

a critical point of a smooth function F : R3 → R if the gradient of

F vanishes at (x, y, z), and that a point is called regular if it is not

critical. If S is the zero set of such a function, then at any regular

point in S we can apply the Implicit Function Theorem and obtain

a neighbourhood of the point which is the graph of some function;

in essence, we are projecting patches of our surface to the various

coordinate planes in R3. If our surface contains only regular points,

this allows us to describe the entire surface in terms of these local

coordinates.

As indicated in the first lecture, if the gradient vanishes at a point,

the set of solutions may not look like a nice surface. A trivial example

is the sphere of radius zero, x2 + y2 + z2 = 0; a more interesting

example is the cone x2 + y2 − z2 = 0 near the origin.

b. Other ways of introducing local coordinates. From the geo-

metric point of view, the choice of planes involved in representing a

surface as the union of graphs of functions is somewhat arbitrary

and unnatural; for example, the orthogonal projection of the north-

ern hemisphere of S2 to the xy-plane represents points in the ‘arctic’

quite well, but distorts things rather badly near the equator, where

the derivative of the function blows up. If we are interested in an-

gles, distances, and other geometric qualities of the surface, a more

natural choice is to project to the tangent plane at each point; this

will lead us eventually to the notion of a Riemannian manifold. If

the previous approach represented an effort to draw a ‘world map’ of
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Figure 1.11. Stereographic projection from the sphere to the plane.

as much of the surface as possible, without regard to distortions near

the edges, this approach represents publishing an atlas, with many

smaller maps, each zoomed in on a small neighbourhood of each point

in order to minimise distortions.

Orthogonal projections, whether to coordinate planes or tangent

planes, form only a subset of the class of local coordinates on sur-

faces; there are many other members of this class besides. In the case

of a sphere, one well-known example of local coordinates is stereo-

graphic projection (Figure 1.11), which gives a diffeomorphism6 from

the sphere minus a point to the plane.

Another example is given by the use of the familiar system of

longitude and latitude to locate points on the surface of the earth;

these resemble polar coordinates, mapping the sphere minus a point

onto the open disc (Figure 1.12). The north pole is the centre of the

disc, while the (deleted) south pole is its boundary; lines of longitude

(meridians) become radii of the disc, while lines of latitude (parallels)

become concentric circles around the origin.

However, if we want to measure distances on the sphere using any

of these local coordinates, we cannot simply use the usual Euclidean

distance in the disc or the plane—for example, the polar coordinates

mentioned in the last example preserve distances along lines of longi-

tude (radii), but distort distances along lines of latitude (circles cen-

tred at the origin). This is especially true near the boundary of the

6That is, a bijective differentiable map with differentiable inverse. See Lecture
17 for more details.
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Figure 1.12. From the sphere to a disc via geographic coordinates.

disc, where the actual distance between points is much less than the

Euclidean distance (since every point on the boundary is identified)—

notice how much Antarctica is stretched out in Figure 1.12. This gives

us our first example of a Riemannian metric (which for the time be-

ing we may simply think of as a notion of distance) on D2, apart from

the usual Euclidean one.

Exercise 1.7. Stereographic projections from the north and south

poles introduce two coordinate systems on the sphere minus the poles.

Find the coordinate transformation from one of those systems to the

other—that is, if a point on the sphere has coordinates (x, y) in the

coordinate system projected from the north pole and (x′, y′) in the

projection from the south, find (x′, y′) as a function of (x, y).

c. Parametric representations. While the idea of putting local

coordinates on a surface will turn out to be more useful in general, we

will occasionally have reason to deal with parametric representations.

There are two important distinctions between these two methods of

introducing coordinates on a surface.

First, local coordinates involve a map from the surface to a plane

domain, while a parametric representation is a map from a plane

domain to the surface. Formally, then, these two constructions are

mutual inverses.

The second distinction is that a local coordinate system usually

does not attempt to cover the entire surface by a single coordinate
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system, but rather uses several patches to accomplish the task. A

parametric representation, on the other hand, usually involves a map

from a plane domain to a surface which is onto, or at at least nearly

so, as in the inverse to the stereographic projection. One should also

keep in mind that, while the notion of an atlas of local coordinate

systems has a precise meaning which we will describe in Chapter 3,

the notion of parametric representation is somewhat vague.

Exercise 1.8. Write a parametric representation of the torus of rev-

olution (1.5) using the ‘latitude’ (position of a plane section) and

‘longitude’ (the angular coordinate along a plane section) as parame-

ters. Use this representation to construct a bijection between the flat

torus from Lecture 1(d) and the torus of revolution.

d. Metrics on surfaces. As our discussion of local coordinates sug-

gested, we must address the question of how the distance between two

points on a surface is to be measured. In the case of the Euclidean

plane, we have a formula, obtained directly from the Pythagorean

theorem. For points on the sphere of radius R we also have a for-

mula: the distance between two points is simply the angle they make

with the centre of the sphere, multiplied by R. Properties of this dis-

tance, such as the triangle inequality, can be deduced via elementary

geometry, or by representing the points as vectors in R3 and using

properties of the inner product.

These explicit formulae are serendipitous consequences of the ex-

tremely symmetric shapes of the plane and the sphere. What is the

correct notion of distance on an arbitrary surface? Recalling that in

the plane at least, the shortest path between two points is a straight

line, and it is precisely along this line that the distance given by the

Pythagorean theorem is measured, we may suggest that the distance

between two points should naturally be defined as the length of the

shortest path connecting them.

In general, since we do not yet know whether such a shortest

path always exists, the proper definition of distance is as the infimum

of the set of lengths of paths connecting the two points. Of course,

this requires that we have a definition for the length of a path on the

surface. We can find the length of a path in R3 by approximating

it with piecewise linear paths and then using the notion of distance
                

                                                                                                               



18 1. Various Ways of Representing Surfaces and Examples

in R3, which we already know. If our surface is not embedded in

Euclidean space, however, we must replace this with an infinitesimal

notion of distance, the Riemannian metric alluded to above. We will

give a precise definition and discuss examples and properties of such

metrics later in this course.

Lecture 3

a. More about the Möbius strip and projective plane. Let us

go back to the Möbius strip. The most common way of introducing

it is as a sheet of paper (or belt, carpet, etc.) whose ends have been

attached after giving one of them a half-twist. In order to represent

this surface parametrically, it is useful to consider the factor space

construction, which was discussed in the first lecture for the Klein

bottle and the flat torus, and which is even simpler in the case of the

Möbius strip.

Begin with a rectangle R. We are going to identify each point on

the left-hand vertical boundary of R with a point on the right-hand

boundary; if we identify each point with the point directly opposite to

it (on the same horizontal line), we obtain a cylinder. To obtain the

Möbius strip, we identify the lower left corner with the upper right

corner and then move inwards; in this fashion, if R = [0, 1] × [0, 1],

the point (0, t) is identified with the point (1, 1 − t) for 0 ≤ t ≤ 1.

To embed this in R3, we can effect the half-twist by a continuous

uniform rotation of an interval (the vertical lines in the model) whose

centre moves around a closed curve (say a circle), and which remains

perpendicular to that circle. Using the x-coordinate in the model as

the angular coordinate along the circle, and the y-coordinate as the

distance along the interval, one can write a parametric representation

of a Möbius strip in R3 (see Figure 1.5).

Exercise 1.9. Write explicit expressions for the parametric represen-

tation of a Möbius strip embedded into R3 without self-intersections

described above.
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Figure 1.13. Multiple geodesics between antipodal points.

The projective plane with distance inherited from the sphere7 is

called the elliptic plane—it will be one of the star exhibits of this

course. We can motivate its definition by considering the sphere as a

geometric object, on which the notion of a line in Euclidean space is

to be replaced by the concept of a geodesic; one key property of the

former is that it is the shortest path between two points, and so infor-

mally at least, geodesics are simply curves which have this property.

On the sphere, we will see that the geodesics are great circles, and so

we may attempt to formulate various geometric propositions in this

setting. However, this turns out to have some undesirable features

from the point of view of conventional geometry; for example, every

pair of geodesics intersects in two (diametrically opposite) points, not

just one. Further, any two diametrically opposite points on the sphere

can be joined by infinitely many geodesics (Figure 1.13), in stark con-

trast to the “two points determine a unique line” rule of Euclidean

geometry.

Both of these difficulties are related to pairs of diametrically oppo-

site points; the solution turns out to be to identify such points with

each other. Identifying each point on the sphere with its antipode

yields a quotient space, which is the projective plane described at the

end of the first lecture. Alternatively, we can consider the flip map

I : (x, y, z) �→ (−x,−y,−z), which is an isometry of the sphere with-

out fixed points. Declaring all members of a particular orbit of I to

7This simply means that the distance between two points in the projective plane
is taken to be the minimum of pairwise distances between points in the sphere repre-
senting those points.
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Figure 1.14. Determining distances in RP 2 via central angles.

be the same point, we obtain the quotient space S2/I, which is again

the projective plane, or the elliptic plane when we are interested in

the geometry.

In the elliptic plane, there is no such notion as the sign of an angle;

we cannot consistently determine which angles are positive and which

are negative. All the other geometric notions carry over, however; the

distance between two points can still be found as the magnitude of

the (acute) central angle they make (Figure 1.14), and the notions of

angle between geodesics and length of geodesics are still well defined.

Exercise 1.10. Write at least five propositions from Euclidean ge-

ometry which are true in the elliptic plane and at least three propo-

sitions which are true in Euclidean geometry and are not true in the

elliptic plane. Each proposition must include statements about con-

figurations of lines and/or isometries, and no two should be trivial

reformulations of each other.

b. A first glance at geodesics. Informally, as mentioned above,

a geodesic is a curve of shortest length between two points; more

precisely, it is a curve γ with the property that given any two points

γ(a) and γ(b) whose parameter values a and b are sufficiently close

together, any other curve from one point to the other will have length

at least as great as the portion of γ between the two. Later in the

course (Lecture 25), we will consider the question of whether such a

curve always exists between two points, and whether it is unique.

The two most basic examples are the Euclidean spaces Rn, where

geodesics are straight lines, and the round sphere S2, where geodesics
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p q

Figure 1.15. Decomposing tangent vectors to show that a
straight line is the shortest smooth curve between two points.

are great circles. While the first fact is an article of faith in elementary

geometry, it requires a proof using a certain amount of calculus. We

will sketch the proof, but for a reader not familiar with calculations

involving arbitrary curves, we recommend carrying out the argument

in detail as an exercise.

Consider an arbitrary parametrised curve with endpoints p and

q, and project it to the straight line pq. As a parametrised curve, the

projection is no longer than the original curve—in fact, it is strictly

shorter if the original curve does not lie entirely on the line.

If the curve is smooth, this follows from the formula for the length

of the curve as the integral of the length of its tangent vector, which

decomposes into two components, one parallel to the line pq, and

one perpendicular (Figure 1.15). For an arbitrary curve, one can

use an approximation by a polygonal curve—in either case, having

established that the length of the original curve is greater than or

equal to the length of the projected curve, one uses integration to

show that the length of the projected curve is greater than or equal to

the length of the interval pq, with equality if and only if the parameter

is monotone (so that the curve is a reparametrised interval).

A very similar argument can be carried out on the sphere, using

geographic coordinates around the point p and projection along par-

allels to the meridian (great circle) passing through p and q. In fact,

once it is understood just what is needed for this argument, it can be

adapted in many cases to find geodesics.

It is sometimes the case that one can find geodesics on other

surfaces by reducing the question to a known situation. For example,

the following exercise can be solved by reducing the question to the

case of the Euclidean plane.
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Figure 1.16. Three curves in R
3.

Exercise 1.11. Find all geodesics on the round cylinder

{ (x, y, z) ∈ R3 | x2 + y2 = 1 }

and the upper half of the round cone

{ (x, y, z) ∈ R3 | x2 + y2 − z2 = 0, z ≥ 0 }.

c. Parametric representations of curves. We often write a curve

in R2 as the solution of a particular equation; the unit circle, for ex-

ample, is the set of points satisfying x2 + y2 = 1. This implicit

representation becomes more difficult in higher dimensions; in gen-

eral, each equation we require the coordinates to satisfy will remove

a degree of freedom (assuming independence) and hence a dimension,

so to determine a curve in R3 we require not one, but two equations.

Geometrically, we are obtaining a curve as the intersection of two sur-

faces, each specified by one of the equations. For example, the unit

circle lying in the xy-plane is the solution set of

x2 + y2 = 1,

z = 0.

which is the intersection of this plane with a cylinder of unit radius.

This is a simple example for which these equations and the visualisa-

tion of the surfaces pose no real difficulty; there are many examples

which are more difficult to deal with in this manner, but which can

be easily written down using a parametric representation. That is, we

define the curve in question as the set of all points given by

(x, y, z) = (f1(t), f2(t), f3(t)),
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(x, y) = (t2, t3) (x, y) = (t3, t3)

Figure 1.17. Two curves with a vanishing tangent vector at
t = 0.

where t lies in the interval [a, b], whose endpoints a and b may be ±∞.

In this representation, the circle discussed above would be written as

(x, y, z) = (cos t, sin t, 0)

with 0 ≤ t ≤ 2π. If we replace the equation z = 0 with z = t, we

obtain not a circle, but a helix; it takes a little more imagination to

picture this as the intersection of two surfaces. We could also multiply

the expressions for x and y by t to describe a spiral on the cone, whose

implicit representation is again not immediate.

Exercise 1.12. Find two equations whose common solution set is

the helix.

If we expect our curve to be smooth, we must impose certain

conditions on the coordinate functions fi. The first condition is that

each fi be continuously differentiable; this will guarantee the existence

of a continuously varying tangent vector at every point along the

curve. However, if we do not impose the further requirement that this

tangent vector be non-vanishing, that is, that (f ′
1)

2+(f ′
2)

2+(f ′
3)

2 �= 0

holds everywhere on the curve, then the curve may still fail to be

smooth.

As a simple but important example of what may happen when

this condition is violated, consider the curve (x, y) = (t2, t3). The

tangent vector (2t, 3t2) vanishes at t = 0, which appears as a cusp at

the origin in Figure 1.17. So in this case, even though f1 and f2 are

perfectly smooth functions, the curve itself is not smooth.
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The non-vanishing condition is sufficient, but not necessary, to

have a smooth curve; to see the latter, consider the curve x = t3,

y = t3. The tangent vector vanishes when t = 0, but the curve

itself is just the line x = y, which is as smooth as we could possibly

ask for. In this case we could reparametrise the curve to obtain a

parametric representation in which the tangent vector is everywhere

non-vanishing.

d. Difficulties with representation by embedding. Parametric

representations of curves (and surfaces as well), along with repre-

sentations as level sets of functions (the implicit representations we

saw before) all embed the curve or surface into an ambient Euclidean

space, which so far has usually been R3. Our subsequent dealings

have sometimes relied on properties of this ambient space; for exam-

ple, the usual definition of the length of a curve relies on a broken

line approach, in which the curve is approximated by a piecewise lin-

ear ‘curve’, whose length we can compute using the usual notion of

Euclidean distance.

What happens, though, if our surface does not live in R3? We

already touched upon this problem in Lecture 1(b), and now return

to it in more depth, as R3 is not the proper setting for several of the

surfaces we have seen so far. For example, RP 2 cannot be embedded

in R3, so if we are to compute the length of curves in the elliptic plane,

we must either embed it in R4 or some higher-dimensional space, or

else come up with a new definition of length, an issue to which we

shall return in Lecture 23.

Our discussion of factor spaces in Lecture 1 was motivated by the

example of the Klein bottle, which was defined as a factor space of

the square, or rectangle, where the left and right edges are identified

with direction reversed (as with the Möbius strip), but in addition,

the top and bottom edges are identified (without reversing direction).

We mentioned then that the Klein bottle cannot be embedded into

R3, and that the closest one can come is to imagine rolling the square

into a cylinder, then attaching the ends of the cylinder after passing

one end through the wall of the cylinder into the interior.
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Figure 1.18. Life on a dodecahedron.

Of course, this results in the surface intersecting itself in a circle;

in order to avoid this self-intersection, we could add a dimension and

embed the surface in R4. Given the extra dimension to work with,

we could begin with the immersion described above and perform the

four-dimensional analogue of taking a string which is lying in a figure

eight on a table, and lifting part of it off the surface of the table in

order to avoid having it touch itself. No such manoeuvre is possible

for the Klein bottle in three dimensions, but the immersion of the

Klein bottle into R3 is still a popular shape, and some enterprising

craftsman has been selling both ‘Klein bottles’ and beer mugs in the

shape of Klein bottles at the yearly meetings of the American Math-

ematical Society. We had two such glass models of Klein bottles in

the class, which were bought there: one is a conventional inverted

bottle very similar to the image in Figure 1.6; the other is a “Klein

beer mug”, very close to a usual one in its outside shape and usable

as a drinking vessel.

Even when an embedding exists, it is possible for the choice of

embedding to obscure certain geometric properties of an object. Con-

sider the surface of a dodecahedron (or any solid, for that matter).

From the point of view of the embedding in R3, there are three kinds

of points on the surface; a given point can lie either at a vertex, along

an edge, or on a face. Being three-dimensional creatures, we see these

as three distinct classes of points.

Now imagine that we are two-dimensional creatures living on the

surface of the dodecahedron. We can tell whether or not we are at
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a vertex; at a vertex, the angles add up to less than 2π, whereas

everywhere else, they add up to exactly 2π. However, we cannot

tell whether or not we are at an edge; this has to do with the fact

that given two points on adjacent faces, the way to find the shortest

path between them is to unfold the two faces and place them flat

on the plane (at which stage points on an edge look just like points

on a face), draw a straight line between the two points in question,

and then fold the surface back up (Figure 1.18). As far as our two-

dimensional selves are concerned, points on an edge and points on a

face are indistinguishable, since the unfolding process does not change

any distances along the surface.

It is also possible that a surface which can be embedded in R3 will

lose some of its nicer properties in the process. For example, the usual

embedding of the torus destroys the symmetry between meridians and

parallels; all of the meridians are the same length, but the length of

the parallels varies. We can retain this symmetry by embedding in

R4, the so-called flat torus. Parametrically, this is given by

x = r cos t, y = r sin t,

z = r cos s, w = r sin s,

where s, t ∈ [0, 2π]. As we already mentioned, we can also obtain

the flat torus as a factor space, using the same method as in the

definition of the projective plane or Klein bottle. Beginning with a

rectangle, we identify opposite sides (with no reversal of direction);

alternately, we can consider the family of isometries of R2 given by

Tm,n : (x, y) �→ (x + m, y + n), where m, n ∈ Z, and mod out by

orbits. This construction of T2 as R2/Z2 is exactly analogous to the

construction of the circle S1 as R/Z.

We have seen that surfaces can be considered from different view-

points: sometimes we treat them as geometric objects, with intrinsi-

cally defined distances, angles, and areas, while other times we treat

them as ‘stretchable’ objects which can be bent and deformed, but

not torn or broken. In mathematical language, this corresponds to

considering different structures on surfaces, and this is the central

theme of this course, which we will take up in earnest in the next

lecture.
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Before doing so, we would like to fix a linguistic ambiguity; for

example, what should the word ‘sphere’ mean? How will we indicate

whether we are treating a particular surface as a geometric object,

or as a topological one (that is, one which may be deformed without

changing the nature of the surface)? Our convention will be as follows:

an indefinite article in front of the name, as in ‘a sphere’, ‘a torus’, or

‘a projective plane’, will mean that we consider the object in the topo-

logical sense, up to a homeomorphism. The use of an adjective or the

definite article will generally signify a smaller class of objects, as in ‘a

sphere given by an equation’. Then ‘a round sphere’ would mean any

sphere which has ‘spherical geometry’, that is, which is isometric to

the actual sphere in Euclidean space. Similarly, ‘a flat torus’ signifies

any torus with locally Euclidean geometry, while ‘the flat torus’ or

‘the torus’ will indicate the unit square with opposite sides identified,

endowed with the appropriate geometry inherited from R2; sometimes

we will call this object ‘the standard flat torus’. ‘The elliptic plane’

indicates the factor space of the unit sphere in which antipodal points

are identified, with geometry inherited from the sphere, and so on for

various other examples which will arise.

Exercise 1.13. Write parametric representations for a projective

plane in each of the following:

(1) R3 (with self-intersections).

(2) R4 (without self-intersections).

e. Regularity conditions for parametrically defined surfaces.
A parametrisation of a surface in R3 is given by a region U ⊂ R2

with coordinates (t, s) ∈ U and a set of three maps f1, f2, f3; the

surface is then the image of F = (f1, f2, f3), the set of all points

(x, y, z) = (f1(t, s), f2(t, s), f3(t, s)).

As with parametric representations of curves, we need a regular-

ity condition to ensure that our surface is in fact smooth, without

cusps or singularities. We once again require that the functions fi be

continuously differentiable, but now it is insufficient to simply require

that the matrix of derivatives Df be non-zero. Rather, we require
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that it have maximal rank; the matrix is given by

Df =

⎛
⎝∂sf1 ∂tf1

∂sf2 ∂tf2

∂sf3 ∂tf3

⎞
⎠

and so our requirement is that the two tangent vectors to the surface,

given by the columns of Df , be linearly independent. Under this con-

dition, the Implicit Function Theorem guarantees that the parametric

representation is locally bijective and that its inverse is differentiable.

Parametric representations may of course have singularities. A

good example is the representation of the sphere given by the inverse

map to the geographic coordinates, which maps an open disc regularly

onto the sphere with a point removed, and collapses the boundary of

the disc into this single point.

Lecture 4

a. Remarks on metric spaces and topology. Geometry in its

most immediate form deals with measuring distances.8 For this rea-

son, metric spaces are fundamental objects in the study of geometry.

In the geometric context, the distance function itself is the object of

interest; this stands in contrast to the situation in analysis, where

metric spaces are still fundamental (as spaces of functions, for exam-

ple), but where the metric is introduced primarily in order to have a

notion of convergence, and so the topology induced by the metric is

the primary object of interest, while the metric itself stands somewhat

in the background.

A metric space is a set X, together with a metric, or distance

function, d : X ×X → R+
0 , which satisfies the following axioms for all

values of the arguments:

(1) Positivity: d(x, y) ≥ 0, with equality iff x = y.

(2) Symmetry: d(x, y) = d(y, x).

(3) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

8The reader should be aware, however, that in modern mathematical terminology,
the word ‘geometry’ may appear with adjectives like ‘affine’ or ‘projective’. Those
branches of geometry study structures which do not involve distances directly.
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The last of these is generally the most interesting, and is sometimes

useful in the following equivalent form:

d(x, y) ≥ |d(x, z) − d(y, z)|.

Once we have defined a metric on a space X, we immediately

have a topology on X induced by that metric. The ball in X with

centre x and radius r is given by

B(x, r) = { y ∈ X | d(x, y) < r }.

Then a set A ⊂ X is said to be open if for every x ∈ A, there exists

r > 0 such that B(x, r) ⊂ A, and A is closed if its complement X \A

is open. We now have two equivalent notions of convergence: in the

metric sense, xn → x if d(xn, x) → 0, while the topological definition

requires that for every open set U containing x, there exist some N

such that for every n > N , we have xn ∈ U . It is not hard to see that

these are equivalent.

Similarly for the definition of continuity; we say that a function

f : X → Y is continuous if xn → x implies f(xn) → f(x). The

equivalent definition in more topological language is that continuity

requires f−1(U) ⊂ X to be open whenever U ⊂ Y is open. We say

that f is a homeomorphism if it is a bijection and if both f and f−1

are continuous.

Exercise 1.14. Show that the two sets of definitions (metric and

topological) in the previous two paragraphs are equivalent.

Within mathematics, there are two broad categories of concepts

and definitions with which we are concerned. In the first instance, we

seek to fully describe and understand a particular kind of structure.

We make a particular definition or construction, and then seek to

either show that there is only one object (up to some appropriate

notion of isomorphism) which fits our definition, or to give some sort

of classification which exhausts all the possibilities. Examples of this

approach include Euclidean space, which is unique once we specify

dimension, or Jordan normal form, which is unique for a given matrix

up to a permutation of the basis vectors, as well as finite simple

groups, or semisimple Lie algebras, for which we can (eventually)

obtain a complete classification.
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No such uniqueness or classification result is possible with metric

spaces and topological spaces in general; these definitions are exam-

ples of the second category of mathematical objects, and are gener-

alities rather than specifics. In and of themselves, they are far too

general to allow any sort of complete classification or universal un-

derstanding, but they have enough properties to allow us to eliminate

much of the tedious case by case analysis, which would otherwise be

necessary when proving facts about the objects in which we are really

interested. The general notion of a group, or of a Banach space, also

falls into this category of generalities.

Before moving on, there are three definitions of which we ought

to remind ourselves. First, recall that a metric space is complete if

every Cauchy sequence converges. This is not a purely topological

property, since we need a metric in order to define Cauchy sequences;

to illustrate this fact, notice that the open interval (0, 1) and the real

line R are homeomorphic, but that the former is not complete, while

the latter is.

Secondly, we say that a metric space (or subset thereof) is com-
pact if every sequence has a convergent subsequence. In the context of

general topological spaces, this property is known as sequential com-

pactness, and the definition of compactness is given as the require-

ment that every open cover have a finite subcover; for our purposes,

since we will be dealing with metric spaces, the two definitions are

equivalent. There is also a notion of precompactness, which requires

every sequence to have a Cauchy subsequence.

The knowledge that X is compact allows us to draw a number

of conclusions; the most commonly used one is that every continuous

function f : X → R is bounded, and in fact achieves its maximum

and minimum. In particular, the product space X × X is compact,

and so the distance function is bounded.

Finally, we say that X is connected if it cannot be written as the

union of non-empty disjoint open sets; that is, if X = A ∪ B, with A

and B open and A∩B = ∅, implies either A = X or B = X. There is

also a notion of path connectedness, which requires for any two points

x, y ∈ X the existence of a continuous function f : [0, 1] → X such

that f(0) = x and f(1) = y. As is the case with the two forms of
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compactness above, these are not equivalent for arbitrary topological

spaces (or even for arbitrary metric spaces—the usual counterexample

is the union of the graph of sin(1/x) with the vertical axis), but will

be equivalent on the class of spaces with which we are concerned.

b. Homeomorphisms and isometries. In the topological context,

the natural notion of equivalence between two spaces is that of home-

omorphism, which we defined above as a continuous bijection with

continuous inverse. Two topological spaces are homeomorphic if there

exists a homeomorphism between them. Any property common to all

homeomorphic spaces is called a topological invariant ; this naturally

includes any property defined in purely topological terms, such as

connectedness, path-connectedness, and compactness.

Some invariants require a little more work; for example, we would

like to believe that dimension is a topological invariant, and this is

in fact true,9 but proving that Rm and Rn are not homeomorphic for

m �= n requires non-trivial tools.

A considerable part of this course deals with topological invari-

ants of compact surfaces, and in particular, the task of classifying

such surfaces up to a homeomorphism. We will almost succeed in

solving this problem completely; the only assumption we will have

to make is that the surfaces in question admit one of several natural

additional structures. In fact this assumption turns out to be true for

any surface, but we do not prove this in this course.

The natural equivalence relation in the geometric setting is isom-

etry; a map f : X → Y between metric spaces is isometric if

dY (f(x1), f(x2)) = dX(x1, x2)

for every x1, x2 ∈ X. If in addition f is a bijection, we say that f is

an isometry. We are particularly interested in the set of isometries

from X to itself,

Isom(X, d) = { f : X → X | f is an isometry },

which we can think of as the symmetries of X. In general, the more

symmetric X is, the larger this set.

9At least for the usual definition of dimension; we mention an alternate definition
in the next section.
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Figure 1.19. A planar model on a hexagon.

In fact, Isom(X, d) is not just a set; it has a natural binary oper-

ation given by composition, under which is becomes a group. This is

an example of a very natural and general kind of group which is often

of interest; all the bijections are from some fixed set to itself, with

composition as the group operation. On a finite set, this gives the

symmetric group Sn, the group of permutations. On an infinite set,

the group of all bijections becomes somewhat unwieldy, and it is more

natural to consider the subgroup of bijections which preserve a partic-

ular structure, in this case the metric structure of the space. Another

common example of this is the general linear group GL(n, R), which

is the group of all bijections from Rn to itself preserving the linear

structure of the space.

In the next lecture, we will discuss the isometry groups of Eu-

clidean space and of the sphere.

Exercise 1.15. Consider a regular hexagon with pairs of opposite

sides identified by the corresponding translations, as in Figure 1.19.

(1) Prove that it is a torus.

(2) Prove that locally, it is isometric to Euclidean plane.

(3) Prove that it is not isometric to the standard flat torus.

c. Other notions of dimension. As mentioned above, we usually

think of dimension as a topological invariant. However, for general

compact metric spaces there is another notion of dimension which is

a metric invariant, rather than a topological one. The main idea is

to capture the rate at which volume (or some other kind of measure)

scales with the metric; for example, a cube in Rn with side length r

has volume rn, and the exponent n is the dimension of the space.
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In general, given a compact metric space X, for any ε > 0, let

N(ε) be the minimum number of ε-balls required to cover X; that

is, the minimum number of points x1, . . . , xN(ε) in X such that every

point in X lies within ε of some xi. This may be thought of as

measuring the average ‘volume’ of an ε-ball, in some sense; the upper
box dimension of X is defined to be

d̄box(X) = lim sup
ε→0

log N(ε)

log 1/ε
.

We take the upper limit because the limit itself may not exist. The

lower box dimension is defined similarly, taking the lower limit in-

stead. These notions of dimension do not behave quite so nicely as

we would like in all situations; for example, the set of rational num-

bers, which is countable, has upper and lower box dimension equal to

one.

There is a more effective notion of Hausdorff dimension, which

eliminates the need to distinguish between upper and lower limits,

and which is equal to zero for any countable set; because its definition

requires an understanding of measure theory, we will not discuss it

here. For ‘good’ sets all three definitions coincide, and are central

to the study of fractal geometry; however, they are not topological

invariants, so our claim in the last section must be understood to

apply only to a strictly topological notion of dimension.

d. Geodesics. When we are interested in a metric space as a geo-

metric object, rather than as something in analysis or topology, it is

of particular interest to examine those triples (x, y, z) for which the

triangle inequality becomes degenerate, that is, for which d(x, z) =

d(x, y) + d(y, z).

For example, if our space X is just the Euclidean plane R2 with

distance function given by Pythagoras’ formula,

d((x1, x2), (y1, y2)) =
√

(y1 − x1)2 + (y2 − x2)2,

then the triangle inequality is a consequence of the Cauchy-Schwarz

inequality, and we have equality in the one iff we have equality in the

other; this occurs iff y lies in the line segment [x, z], so that the three

points x, y, z are in fact collinear.
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x

yz

dxy

dyz

dxz
Ix

Iy

z1

z2
dxz

dyz

Figure 1.20. Images of three points determine an isometry.

A similar observation holds on the sphere, where the triangle

inequality becomes degenerate for the triple (x, y, z) iff y lies along

the shorter arc of the great circle connecting x and z. So in both

these cases, degeneracy occurs when the points lie along a geodesic;

this suggests that in general, a characteristic property of a geodesic

is the relation d(x, z) = d(x, y) + d(y, z) whenever y lies between two

points x and z which are sufficiently close along the curve.

Lecture 5

a. Isometries of the Euclidean plane. There are three ways to

describe and study isometries of the Euclidean plane: synthetic; as

affine maps in two real dimensions; and as affine maps in one complex

dimension. The last two methods are closely related. We begin with

observations using the traditional synthetic approach.

If we fix three non-collinear points in R2 and want to describe

the location of a fourth, it is enough to know its distance from each

of the first three. This may readily be seen from the fact that three

circles whose centres are not collinear intersect in at most one point.

As a consequence of this, an isometry of R2 is completely de-

termined by its action on three non-collinear points. In fact, if we

have an isometry I : R2 → R2, and three such points x, y, z, as in

Figure 1.20, the choice of Ix constrains Iy to lie on the circle with

centre Ix and radius d(x, y), and once we have chosen Iy, there are

only two possibilities for Iz; one (z1) corresponds to the case where

I preserves orientation, the other (z2) corresponds to the case where
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x = Ix

y

z

Iy

Iz

Rotation—one fixed point

x

y

z

Ix

Iy

Iz

Translation—no fixed points

Figure 1.21. Orientation preserving isometries.

orientation is reversed. So for two pairs of distinct points a, b and

a′, b′ such that the distances between a and b and between a′ and b′

coincide, there are exactly two isometries which map a to a′ and b to

b′; one of these will be orientation preserving, the other orientation

reversing.

Passing to algebraic descriptions, notice that any isometry I must

carry lines to lines, since as we saw last time, three points in the plane

are collinear iff the triangle inequality becomes degenerate. Thus

it is an affine map—that is, a composition of a linear map and a

translation—so it may be written as I : x �→ Ax + b, where b ∈ R2

and A is a 2× 2 matrix. In fact, A must be orthogonal, which means

that we can write things in terms of the complex plane C and get (in

the orientation preserving case) I : z �→ az + b, where a, b ∈ C and

|a| = 1. In the orientation reversing case, we have I : z �→ az̄ + b.

Using the preceding discussion, we can now classify any isometry

of the Euclidean plane as belonging to one of four types, depending

on whether it preserves or reverses orientation, and whether or not it

has a fixed point.

Case 1 : An orientation preserving isometry which possesses a

fixed point is a rotation. Let x be the fixed point, Ix = x. Fix

another point y; both y and Iy lie on a circle of radius d(x, y) around

x. The rotation about x which takes y to Iy satisfies these criteria,

which are enough to uniquely determine I given that it preserves

orientation; hence I is exactly this rotation.
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a

Ia
b

Ib
c = Ic

a

Ia b

Ib

Figure 1.22. An orientation preserving isometry with no
fixed points is a translation.

Rotations are entirely determined by the centre of rotation and

the angle of rotation, and so are specified by three parameters.

Case 2 : An orientation preserving isometry I with no fixed points

is a translation. The easiest way to see that is to use the complex

algebraic description. Writing Iz = az + b with |a| = 1, we observe

that if a �= 1, we can solve az + b = z to find a fixed point for I.

Since no such point exists, we have a = 1, hence I : z �→ z + b is a

translation.

One can also make a purely synthetic argument for this case; we

show that the intervals [a, Ia] and [b, Ib] must be parallel and of equal

length for every a, b. Indeed, if they fail to be parallel for some a, b,

then their perpendicular bisectors intersect in some point c, as shown

in Figure 1.22. Since [a, Ia, c] and [b, Ib, c] are isosceles triangles, we

have d(a, c) = d(Ia, c) and d(b, c) = d(Ib, c), hence Ic = c since I

preserves orientations.

But I has no fixed point, and so [a, Ia] and [b, Ib] must be parallel;

since I is an isometry, d(Ia, Ib) = d(a, b), and hence the quadrilateral

[a, Ia, Ib, b] is a parallelogram. It follows that the intervals [a, Ia] are

all parallel and of equal length, and so I is a translation.

We only require two parameters to specify a translation; since

the space of translations is two-dimensional, almost every orientation

preserving isometry is a rotation, and hence has a fixed point.

Case 3 : An orientation reversing isometry which possesses a fixed

point is a reflection. Say Ix = x, and fix y �= x. Let � be the line

bisecting the angle formed by the points y, x, Iy. Using the same
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x = Ix

y

z

Iy

Iz

x

y

z Ix

Iy

Iz

Reflection—a line of fixed points Glide reflection—no fixed points

Figure 1.23. Orientation reversing isometries.

approach as in case 1, the reflection through � takes x to Ix and y to

Iy; since it reverses orientation, I is exactly this reflection.

It takes two parameters to specify a line, and hence a reflection,

so the space of reflections is two-dimensional.

Case 4 : An orientation reversing isometry with no fixed point is

a glide reflection. Let T be the unique translation that takes x to Ix.

Then I = R◦T where R = I◦T−1 is an orientation reversing isometry

which fixes Ix. By the above, R must be a reflection through some

line �. Decompose T as T1 ◦ T2, where T1 is a translation by a vector

perpendicular to �, and T2 is a translation by a vector parallel to �.

Then I = R ◦T1 ◦T2, and R ◦T1 is a reflection through a line parallel

to �, hence I is the composition of a translation T2 and a reflection

R ◦ T1 which commute; that is, a glide reflection.

A glide reflection is specified by three parameters; hence the space

of glide reflections is three-dimensional, so almost every orientation

reversing isometry is a glide reflection, and hence has no fixed point.

The group Isom(R2) is a topological group with two components;

one component comprises the orientation preserving isometries, the

other the orientation reversing isometries. From the above discussions

of how many parameters are needed to specify an isometry, we see

that the group is three-dimensional; in fact, it has a nice embedding

into the group GL(3, R) of invertible 3 × 3 matrices:

Isom(R2) =

{(
O(2) R2

0 1

)
:

(
R2

1

)
→
(

R2

1

)}
.
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Here O(2) is the group of real-valued orthogonal 2 × 2 matrices, and

the plane upon which Isom(R2) acts is the horizontal plane z = 1 in

R3.

Exercise 1.16. Prove that every isometry of the Euclidean plane can

be represented as a product of at most three reflections.

Exercise 1.17. Consider all possible configurations of two and three

lines in the plane: two lines may be either parallel or intersecting;

for three lines there are a few more options. Identify the product of

reflections in those lines for each case as one of four types of isometries.

Exercise 1.18. Consider an orientation reversing isometry in the

complex form z �→ az̄ + b. Find a condition on a, b ∈ C which will

determine if it is a reflection or a glide reflection, and identify the axis

in both cases.

b. Isometries of the sphere and the elliptic plane. By counting

dimensions in the isometry group of the Euclidean plane, we argued

that almost every orientation preserving isometry has a fixed point,

while almost every orientation reversing isometry has no fixed point.

In the next lecture, we will see that the picture for the sphere is

somewhat similar—now any orientation preserving isometry has a

fixed point, and most orientation reversing ones have none. For the

elliptic plane, however, it will turn out to be dramatically different:

any isometry has a fixed point, and can in fact be interpreted as a

rotation!

Many of the arguments in the previous section carry over to the

sphere; the same techniques of taking intersections of circles, etc.

still apply. The classification of isometries on the sphere is somewhat

simpler, since every orientation preserving isometry has a fixed point,

while every orientation reversing isometry (other than reflection in a

great circle) has a point of period two, which becomes a fixed point

when we pass to the elliptic plane.

We will be able to show that every orientation preserving isometry

of the sphere comes from a rotation of R3, and that the product of

two rotations is itself a rotation. This is slightly different from the

case with Isom(R2), where the product could either be a rotation, or

if the two angles of rotation summed to zero (or a multiple of 2π), a
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translation. We will, in fact, be able to obtain Isom(S2) as a group of

3× 3 matrices in a much more natural way than we did for Isom(R2)

above, since any isometry of S2 extends to a linear orthogonal map

of R3, and so we will be able to use linear algebra directly.

Lecture 6

a. Classification of isometries of the sphere and the elliptic
plane. There are two approaches we can take to investigating isome-

tries of the sphere S2; we saw this dichotomy begin to appear when

we examined Isom(R2). The first is the synthetic approach, which

treats the problem using the tools of solid geometry; this is the ap-

proach used by the Greek geometers of late antiquity in developing

spherical geometry for use in astronomy.

The second approach, which we will follow below, uses methods of

linear algebra; translating the question about geometry to a question

about matrices puts a wide range of techniques at our disposal, which

will prove enlightening, and rather more useful now than it was in the

case of the plane, when the relevant matrices were only 2 × 2.

The first important result is that there is a natural bijection

(which is in fact a group isomorphism) between Isom(S2) and O(3),

the group of real orthogonal 3 × 3 matrices. The latter is defined by

O(3) = {A ∈ M3(R) | AT A = I }.

That is, O(3) comprises those matrices for which the transpose and

the inverse coincide. This has a nice geometric interpretation; we

can think of the columns of a 3 × 3 matrix as vectors in R3, so that

A = (a1|a2|a3), where ai ∈ R3. (In fact, ai is the image of the ith basis

vector ei under the action of A.) Then A lies in O(3) iff {a1, a2, a3}
forms an orthonormal basis for R3, that is, if 〈ai, aj〉 = δij , where

〈·, ·〉 denotes the inner product, and δij is the Kronecker delta, which

takes the value 1 if i = j, and 0 otherwise. The same criterion applies

if we consider the rows of A rather than the columns.

Since det(AT ) = det(A), any matrix A ∈ O(3) has determi-

nant ±1; the sign of the determinant indicates whether the map pre-

serves or reverses orientation. The group of real orthogonal matrices
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with determinant equal to positive one is the special orthogonal group
SO(3).

In order to see that the members of O(3) are in fact the isome-

tries of S2, we could take the synthetic approach and look at the

images of three points not all lying on the same geodesic, as we did

with Isom(R2); in particular, we can take the standard basis vectors

e1, e2, e3.

An alternate approach is to extend the isometry to R3 by ho-

mogeneity. That is, given an isometry I : S2 → S2, we can define a

linear map A : R3 → R3 by

Ax = ‖x‖ · I
(

x

‖x‖

)
.

It follows that A preserves lengths in R3, and in fact, this is sufficient

to show that it preserves angles as well. This can be seen using a

technique called polarisation, which allows us to express the inner

product in terms of the norm, and hence show the general result that

preservation of norm implies preservation of inner product:

‖x + y‖2 = 〈x + y, x + y〉
= 〈x, x〉 + 2〈x, y〉 + 〈y, y〉
= ‖x‖2 + ‖y‖2 + 2〈x, y〉,

〈x, y〉 =
1

2
(‖x + y‖2 − ‖x‖2 − ‖y‖2).

This is a useful trick to remember, and it allows us to show that a

symmetric bilinear form is determined by its diagonal part. In our

particular case, it shows that the matrix A we obtained is in fact in

O(3), since it preserves both lengths and angles.

The matrix A ∈ O(3) has three eigenvalues, some of which may be

complex. Because A is orthogonal, we have |λ| = 1 for each eigenvalue

λ; further, because the determinant is the product of the eigenvalues,

we have λ1λ2λ3 = ±1. The entries of the matrix A are real, hence the

coefficients of the characteristic polynomial are as well; this implies

that if λ is an eigenvalue, so is its complex conjugate λ̄.

There are two cases to consider. Suppose det(A) = 1. Then the

eigenvalues are λ, λ̄, and 1, where λ = eiα lies on the unit circle in
                

                                                                                                               



Lecture 6 41

the complex plane. Let x be the eigenvector corresponding to the

eigenvalue 1, and note that A acts on the plane orthogonal to x by

rotation by α; hence A is a rotation by α around the axis through x.

The second case, det(A) = −1, can be dealt with by noting that A

can be written as a composition of −I (reflection through the origin)

with a matrix with positive determinant, which must be a rotation,

by the above discussion. Upon passing to the elliptic plane RP 2, the

reflection −I becomes the identity, so that every isometry of RP 2 is

a rotation.

This result, that every isometry of the sphere is either a rotation

or the composition of a rotation and a reflection through the origin,

shows that every isometry has either a fixed point or a point of period

two, which becomes a fixed point upon passing to the quotient space

RP 2.

As a concrete example of how all isometries become rotations in

RP 2, consider the map A given by reflection through the xy-plane,

A(x, y, z) = (x, y,−z). Let R be rotation by π about the z-axis, given

by R(x, y, z) = (−x,−y, z). Then A = R ◦ (−I), so that as maps on

RP 2, A and R coincide. Further, any point (x, y, 0) on the equator

of the sphere is fixed by this map, so that R fixes not only one point

in RP 2, but many.

Exercise 1.19. Let x and y be two points in the elliptic plane.

(1) Prove that there are at most two shortest curves connecting

x and y.

(2) Find a necessary and sufficient condition for uniqueness of

the shortest curve connecting x and y.

b. Area of a spherical triangle. In the Euclidean plane, the most

symmetric formula for determining the area of a triangle is Heron’s

formula

A =
√

s(s − a)(s − b)(s − c),

where a, b, c are the lengths of the sides, and s = 1
2 (a + b + c) is

the semiperimeter of the triangle. There are other, less symmetric,

formulae available to us if we know the lengths of two sides and the

measure of the angle between them, or two angles and a side; if all
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Figure 1.24. Determining the area of a spherical triangle.

we have are the angles, however, we cannot determine the area, since

the triangle could be scaled up or down, preserving the angles while

changing the area.

This is not the case on the surface of the sphere; given a spherical

triangle, that is, the region on the sphere enclosed by three geodesics

(great circles), we can find the area of the triangle via a wonderfully

elegant formula in terms of the angles, as follows.

Consider the ‘wedge’ lying between two lines of longitude on the

surface of a sphere, with an angle α between them. The area of

this wedge is proportional to α, and since the surface area of the

sphere with radius R is 4πR2, it follows that the area of the wedge

is α
2π 4πR2 = 2αR2. If we take this together with its mirror image

(upon reflection through the origin), which lies on the other side of

the sphere, runs between the same poles, and has the same area, then

the area of the ‘double wedge’ shown in Figure 1.24 is 4αR2.

Now consider a spherical triangle with angles α, β, and γ. Put

the vertex with angle α at the north pole, and consider the double

wedge lying between the two great circles which form the angle α.

Paint this double wedge red; as we saw above, it has area 4αR2.

Repeat this process with the angle β, painting the new double

wedge yellow, and with γ, painting that double wedge blue. Now

every point on the sphere has been painted exactly one colour (or,

as in Figure 1.24, one particular shade of gray), with the exception

of the points lying inside our triangle, and the points diametrically
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opposite them, which have been painted all three colours. (We neglect

the boundaries of the wedges, since they have area zero.) Hence if we

add up the areas of the double wedges, we obtain∑
areas of wedges = blue area + yellow area + red area

= (area of sphere) + 4 × (area of triangle),

which allows us to write an equation for the area A of the triangle:

4(α + β + γ)R2 = 4πR2 + 4A.

Solving, we see that

(1.6) A = R2(α + β + γ − π).

Thus the area of the triangle is directly proportional to its angular
excess ; this result has no analogue in planar geometry, due to the

flatness of the Euclidean plane. As we will see later on in the course,

it does have an analogue in the hyperbolic plane, where the angles of

a triangle add up to less than π, and the area is proportional to the

angular defect.

Exercise 1.20. Express the area of a geodesic polygon on the sphere

in terms of its angles.

Lecture 7

a. Spaces with lots of isometries. In our discussion of the isome-

tries of R2, S2, and RP 2, we have observed a number of differences

between the various spaces, as well as a number of similarities. One of

the most important similarities is the high degree of symmetry each

of these spaces possesses, as evidenced by the size of their isometry

groups.

We can make this a little more concrete by observing that the

isometry group acts transitively on each of these spaces; given any

two points a and b in the plane, on the sphere, or in the projective

plane, there is an isometry I of the space such that Ia = b.

In fact, we can make the stronger observation that the group acts

transitively on the set of unit tangent vectors. That is to say, if v is

a unit tangent vector at a, which can be thought of as indicating a

particular direction along the surface from the point a, and w is a
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unit tangent vector at b, then not only can we find an isometry that

carries a to b, but we can find one that carries v to w.

Another example of a surface with this property is the hyper-

bolic plane, which will appear in Chapter 4, and has the remarkable

property that its isometry group allows not one but three natural

representations as a matrix group (or a factor of such a group by its

two-element centre).

In fact, these four examples are the only surfaces for which isome-

tries act transitively on unit tangent vectors. There are of course a

number of higher-dimensional spaces with this property: Euclidean

spaces, spheres, and projective spaces, which are all analogues of their

two-dimensional counterparts, immediately come to mind, and there

are many more besides.

As an example of a space for which this property fails, consider

the flat torus T2 = R2/Z2. The property holds locally, in the neigh-

bourhood of a point, but does not hold on the entire space. While

Isom(T2) acts transitively on points, it does not act transitively on

tangent vectors; some directions lie along geodesics which are closed

curves, while other directions do not. Another example is given by

the cylinder, and examples of a different nature will appear later when

we consider the hyperbolic plane and its factors.

What sorts of isometries does T2 have? We may consider trans-

lations z �→ z + z0; rotations of R2, however, will not generally lead

to isometries of T2, since they will usually fail to preserve the lattice

Z2. The rotation by π/2 about the origin is permissible, as are the

flips around the x- and y-axes, and around the line x = y.

In general, Z2 must be mapped to itself or a translation of itself,

and so the isometry group is generated by the group of translations,

along with the symmetry group of the lattice. The latter group is

simply D4, the dihedral group on four letters, which arises as the

symmetry group of the square.

Exercise 1.21. Describe all the isometries of

(1) the ‘hexagonal’ torus of Exercise 1.15;

(2) the flat Möbius strip;
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(3) the flat Klein bottle, i.e. the square with appropriately iden-

tified pairs of opposite sides.

Consider a more general class of examples, which generalise the

construction of the flat torus as R2/Z2. Let L be a lattice in R2—that

is, a set of vectors of the form {mu + nv | m, n ∈ Z }, where u and v

are two fixed linearly independent vectors. We can identify the factor

space R2/L with the parallelogram

{ su + tv | 0 ≤ s, t ≤ 1 }

with pairs of opposite sides identified by translations.

Exercise 1.22. Show that the following statements hold.

(1) The factor space R2/L is homeomorphic to a torus;

(2) R2/L has a natural metric which is locally isometric to R2;

(3) The isometry group acts transitively on R2/L.

The ‘crystallographic restriction’ property established in the fol-

lowing exercise aids in the classification of isometries of these tori.

Exercise 1.23. Show that any non-trivial isometry of R2/L with a

fixed point has period 2, 3, 4, or 6.

b. Symmetric spaces. The discussion of spaces with lots of isome-

tries is related to the notion of a symmetric space, which we will now

examine more closely. In what follows, we assume certain properties

of geodesics which will be formally described (but not proved) later in

this course. In particular, we assume that there is a unique geodesic

passing through a given point in a given direction, and that there is a

unique shortest geodesic connecting any two sufficiently close points.

Of course, all of this assumes the metric on our surface is given in a

nice way, as has been the case with all examples considered so far.10

Given a point x on a surface X, we define the geodesic flip through

x, denoted by Ix, as follows. For each geodesic γ passing through x,

each point y lying on γ is sent to the point on γ which is the same

10These notions of direction and ‘nice’ metrics, which are rather vague at the
moment, will be made more precise when we discuss smooth manifolds and Riemannian
metrics in Chapters 3 and 4.
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distance along the geodesic from x as y is, but in the other direc-

tion. It is immediate that this map preserves lengths along geodesics

through x; it may happen, however, that the distances between these

geodesics vary, in which case the map would not be isometric.

If the map is indeed isometric on some neighbourhood of x, and if

this property holds for the geodesic flip Ix through any point x ∈ X,

then we say that X is locally symmetric. The classification of such

spaces (in any dimension) is one of the triumphs of Lie theory. No-

tice that the geodesic flip may not be extendable to a globally defined

isometry, so the isometry group of a locally symmetric space may be

(and sometimes is) quite small. Although we have not yet encoun-

tered any such examples, later on (Lecture 31) we will construct the

hyperbolic octagon, whose isometry group can be shown to be finite,

even though the space is locally symmetric.

Given two nearby points x, y, we can take the point z lying at the

midpoint of the geodesic segment connecting them. Then Izx = y.

If X is connected (and hence path-connected) then any two points

can be connected by a finite chain of neighbourhoods where these

local isometries are defined. This implies that for any two points in

a locally symmetric space, there exists an isometry between small

enough neighbourhoods of those points. In other words, locally such

a space looks the same near every point.

If for any point x ∈ X the geodesic flip Ix can be defined not just

locally, but globally (that is, extended to the entire surface X), and

if it is in fact an isometry of X, then we say X is globally symmetric.
In this case, the group of isometries Isom(X) acts transitively on all

of X.

In the previous lecture we discussed a related, but stronger, no-

tion, in which we require Isom(X) to act transitively not only on

points in X, but also on unit tangent vectors. If this holds, then in

particular, given any x ∈ X, there is an isometry of X taking some

tangent vector at x to its opposite; this isometry must then be the

geodesic flip, and so X is globally symmetric. It is not the case,

however, that every globally symmetric space has this property of

transitive action on tangent vectors; the flat torus is one example.
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Examples of symmetric spaces are given by Rn, Sn, and RPn,

as well as by their direct products, about which we will say more

momentarily. First, notice that the flat torus is symmetric, being the

direct product of two symmetric spaces S1. However, the embedding

of the torus into R3 produces a space which is not symmetric, since

the isometry group does not act transitively on the points of the sur-

face. In fact, the isometry group of the embedded torus of revolution

(the bagel) in R3 is a finite extension of a one-dimensional group of

rotations, while the isometry group of the flat torus is, as we saw last

time, a finite extension of a two-dimensional group of translations.

Hence the two surfaces are homeomorphic but not isometric.

The flat torus R2/Z2 has no isometric embedding into R3, but it

is isometric to the embedded torus in R4 given as the zero set of the

two equations

x2
1 + x2

2 = 1,

x2
3 + x2

4 = 1.

c. Remarks concerning direct products. Given any two sets X

and Y , we can define their direct product, sometimes called the Carte-
sian product, as the set of all ordered pairs (x, y):

X × Y = { (x, y) | x ∈ X, y ∈ Y }.

It is very often the case that if X and Y carry an extra structure,

such as that of a group, a topological space, or a metric space, then

this structure can be carried over to the direct product in a natural

way. For example, the direct product of two groups is a group under

pointwise multiplication, and the direct product of two topological

spaces is a topological space in the product topology.

If X and Y carry metrics dX and dY , then we can put a metric

on X × Y in the same manner as we put a metric on R2, by defining

d((x, y), (x′, y′)) =
√

dX(x, x′)2 + dY (y, y′)2.

If there are geodesics on X and Y , we can define geodesics on X ×Y ,

and hence can define the geodesic flip, which can be shown to satisfy

the formula

I(x,y)(x
′, y′) = (Ix(x′), Iy(y′)).
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In the case R × R = R2, this corresponds to the fact that the com-

position of a flip about a vertical line with a flip about a horizontal

line is equivalent to rotation by π around the intersection of the two

lines.

With the geodesic flip defined, we can then ask whether the prod-

uct space X × Y is symmetric, and it turns out that if X and Y are

both symmetric spaces, so is their direct product X × Y . In this

manner we can obtain many higher-dimensional examples, and so if

we were to attempt to classify such spaces, we would want to focus

on those which are irreducible in that they cannot be decomposed as

the direct product of two lower-dimensional spaces, since the other

examples will be built from these.

The direct product provides a common means by which we de-

compose objects of interest into simpler examples in order to gain

a complete understanding. We find many examples of this in linear

algebra, in which context the phrase direct sum is also sometimes

used. Any finite-dimensional vector space can be written as the di-

rect product of n copies of R; this is just the statement that any

finite-dimensional vector space has a basis. A more sophisticated ap-

plication of this process is the decomposition of a linear transforma-

tion in terms of its action upon its eigenspaces, so that a symmetric

matrix can be written as the direct product of one-dimensional trans-

formations, while for a general matrix, we have the Jordan normal

form.

This process is also used in the classification of finitely generated

abelian groups, where we decompose the group of interest into a direct

sum of copies of Z and cyclic groups whose order is a power of a

prime, so that no further decomposition is possible. Thus the natural

counterpart to the study of how a particular sort of mathematical

structure can be decomposed is the study of what instances of that

structure are, in some appropriate sense, irreducible.

                

                                                                                                               



Chapter 2

Combinatorial Structure
and Topological
Classification of Surfaces

Lecture 8

a. Topology and combinatorial structure on surfaces. Let X

be a topological space. To avoid pathological cases, assume that X is

metrisable, i.e. it is possible to place a metric d on X which induces

the given topology. Note that there are many choices of metric which

will be equivalent from the topological point of view. Once we have

chosen a distance function, we can define balls of fixed radius around

points, open and closed sets, convergence, closure, boundary, interior,

and so on just as we do in real analysis.

Such an X is a manifold if for every point x ∈ X, there exists some

open neighbourhood Ux containing x which is homeomorphic to Rn;

i.e. there exists a homeomorphism φx : Ux → Rn. Thus a manifold is

a topological space which locally looks like Euclidean space.

Exercise 2.1.

(1) Show that every connected manifold is path-connected.

(2) Construct an example of a compact connected metric space

which is not path-connected.

49
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We would like to say that the dimension n of the Euclidean space

in question is also the dimension of the manifold, and is the same for

every point x; two issues arise. The first is that if the space X is not

connected, n may vary across the different components; this is easily

avoided by assuming in addition that X is connected.

The second is more subtle. The proof that n is the same for every

φx ought to go something like this: “Given two homeomorphisms

φx : Ux → Rm and φy : Uy → Rn, we can find a path from x to y in M .

Then we can find points x1, . . . , xk along the path such that x1 = x,

xk = y, φxi
: Uxi

→ Rni is a homeomorphism, and Uxi
∩ Uxi+1 �= ∅

for every i. Thus that intersection is homeomorphic to open sets in

both Rni and Rni+1 , and so ni = ni+1, because. . . ”

Because what? This is where our intuition claims something

stronger than our knowledge (at least for the moment). The above

proof can be used to establish that Rm and Rn are homeomorphic,

and we want to say that this can only happen if m = n. This is, in

fact, true, but the general proof is somewhat more slippery than we

might at first think.

It is relatively straightforward to show that R and R2 are not

homeomorphic, although it should be noted that the Peano curve

gives an example of a continuous map from R onto R2. This cannot

be made into a homeomorphism, however; indeed, if f : R → R2 is a

homeomorphism, then f : R \ {0} → R2 \ {f(0)} is also a homeomor-

phism, but the latter space is connected and the former is not. Since

connectedness is a topological property (we can define it entirely in

terms of open and closed sets, without reference to a metric or any

other structure), it is preserved by homeomorphisms, and hence we

have a contradiction, showing that R is not homeomorphic to R2.

This argument actually shows that R is not homeomorphic to any
Rn for n ≥ 2, and naturally suggests a similar approach to showing,

for example, that R2 is not homeomorphic to R3. Removing a line

from R2 disconnects it, while removing a line from R3 leaves it con-

nected. However, we cannot say in general what form the image of

the line we remove from R2 will have in order to show that R3 re-

mains connected. If we start with a line in R3 and take its preimage

in R2, we have a continuous non-self-intersecting curve in the plane;
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that such a curve separates R2 into two connected components is the

content of the famous Jordan Curve Theorem, one of the cornerstones

of two-dimensional topology. We will prove this theorem in Lectures

34 and 35.

The preceding discussion illustrates one of the difficulties inher-

ent to topology; the notion of continuity is not a particularly nice one

to work with all of the time, since continuous functions can be quite

unpleasant, and the field is home to many pathological counterexam-

ples. If, however, we restrict ourselves to differentiable objects, then

things become much easier, and we have a whole array of local tools

at our disposal, using the fact that the idea of direction is now made

meaningful by the presence of tangent vectors. So far we have defined

the notion of a topological manifold ; by adding more structure, we can

work with differentiable manifolds, in which context the equivalence

relation of homeomorphism is replaced with that of diffeomorphism.

This will be one of the central topics later in this course, beginning

in Chapter 3.

For the time being, let us return to the continuous case. Hav-

ing made these definitions, we can now give a proper definition of

a surface; a surface is simply a two-dimensional manifold. One of

our primary goals will be the classification of compact surfaces up to

homeomorphism. Thus, we will need a reliable way of determining

whether two surfaces are homeomorphic.

If two surfaces are in fact homeomorphic, we can demonstrate

this by simply exhibiting a homeomorphism from one to the other. To

show that they are not homeomorphic, however, often requires a little

more ingenuity. For example, why is the torus not homeomorphic to

the sphere? Intuitively it is clear that one cannot be deformed into

the other, but a rigorous proof is harder to come by. One method is to

follow our sketch of the proof that R2 is not homeomorphic to Rn for

any n ≥ 3; a ‘nice’ curve on the surface of the sphere disconnects it,

which is not the case for every curve on the torus. So we can consider

a curve which fails to disconnect the torus and claim that its image

disconnects the sphere; this is again the Jordan Curve Theorem.

There are other proofs of this result as well, but they all require

an alternative set of tools with which to approach the problem. For
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example, once we have the definition of a fundamental group and

develop the basic theory of covering spaces, it becomes immediate

that the sphere and the torus are not homeomorphic, since they have

different fundamental groups. This illustrates a common approach to

such problems, that of finding an invariant. If we can exhibit some

property of a surface which is invariant under homeomorphisms, then

two surfaces for which that property differs cannot be homeomorphic;

in this case, the property is the fundamental group, or the property

of being simply connected.

One approach to classifying surfaces is to restrict ourselves to the

differentiable case, where everything is smooth, and then see what

we can learn about the continuous case from that analysis. This

echoes, for example, the approximation of continuous functions by

polynomials in numerical analysis.

Another approach, which we will examine more closely in the next

lecture, is to decompose our surface into a combination of simple

pieces and take a combinatorial approach. For example, we could

study surfaces which can be built up as the union of triangles glued

along the edges. The strategy then is to first classify all surfaces

which can be obtained this way (or, equivalently, all surfaces which

allow such a combinatorial structure), and then to show that every
surface can be so obtained.

We will occupy ourselves primarily with the first part, which is

fun, includes combinatorics and algebra, and provides a good set of

tools dealing with various examples and questions. The second part

would drag us into hard general topology, starting from the Jordan

Curve Theorem (which we will prove at the end of the course), and

involves subtle approximation constructions which we will not discuss

in this course. Fortunately, once this is established it can be taken

for granted.

Exercise 2.2. Consider the space obtained from the torus T2 =

R2/Z2 by identifying every point x with −x. Prove that it is homeo-

morphic to the sphere.

b. Triangulation. Because non-compact surfaces can be extremely

complicated, we will fix our attention for the next while on compact
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surfaces, with the goal of describing all possible compact surfaces up

to homeomorphism. That is, we will construct a list of representative

examples, which will provide a classification in the sense that

(1) Every compact surface is homeomorphic to a surface from

the list.

(2) No two surfaces from the list are homeomorphic to each

other.

Along the way, we will describe convenient sets of invariants charac-

terising the surfaces up to a homeomorphism.

So far, we have defined a surface as a two-dimensional manifold.

We will begin by considering surfaces with an additional combina-

torial structure, a triangulation, which avoids local complexity by

building the surface up from simple pieces.

Definition 2.1. The standard n-simplex, denoted σn, is the subset

of Rn+1 given by

σn =

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣∣ xi ≥ 0 ∀i,
n∑

i=0

xi = 1

}
.

We also use σn to denote any homeomorphic image of the standard n-

simplex along with the barycentric coordinates (x0, . . . , xn), and refer

to such an image as an n-simplex.

We will only use the low-dimensional simplices σ0, σ1, and σ2.

The 0-simplex is simply a point, while the 1-simplex is an interval with

a coordinate; that is, if A and B are the endpoints of the interval,

then any point in the interval can be written as tA + (1− t)B, where

t ∈ [0, 1], or more symmetrically as tA + sB, where t, s ≥ 0 and

t + s = 1.

The 2-simplex is a triangle; if the vertices are A, B, and C, then

any point in the triangle can be written as t1A + t2B + t3C, where

ti ≥ 0 and t1 + t2 + t3 = 1. Some motivation for the term barycentric
coordinates is given by the fact that if a point mass measuring ti is

placed at each vertex, then t1A + t2B + t3C gives the location of the

centre of mass of the triangle.
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Properly attached Improperly attached

Figure 2.1. Attaching 2-simplices.

The boundary of an n-simplex σn is a union of n + 1 different

(n − 1)-simplices, and the barycentric coordinates on these simplices

come in a natural way from the coordinates on σn. For example, in

the 2-simplex {t1A + t2B + t3C}, the part of the boundary opposite

C is the 1-simplex {t1A + t2B}.
A simplex also carries an orientation corresponding to the order-

ing of the vertices; this orientation is preserved by even permutations

of the vertices, and reversed by odd ones. Hence there are two dif-

ferent orientations of a 2-simplex; one corresponds to the orderings

(going clockwise, for instance) ABC, BCA, and CAB, while the other

corresponds to CBA, BAC, and ACB.

The method by which we will build a surface out of simplices is

called triangulation. We will say that two simplices are properly at-
tached if their intersection is a simplex whose barycentric coordinates

are given by the restriction of the coordinates on the two intersecting

simplices.

Figure 2.1 gives examples of properly and improperly attached

simplices. Informally, a collection of properly attached simplices is a

simplicial complex, and a triangulation is a simplicial complex which

is also a manifold. We can make this precise as follows:

Definition 2.2. A triangulation of a surface S is a collection T of

2-simplices, T = {σ2
i }n

i=1, such that the following hold:

(1) S =
⋃n

i=1 σ2
i .

(2) For every i �= j, the intersection σ2
i ∩σ2

j is either a 1-simplex

σ1
ij , a 0-simplex σ0

ij , or the empty set ∅.
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Figure 2.2. Properly attached simplices in forbidden configurations.

(3) Every 1-simplex is in the boundary of exactly two of the σ2
i ;

that is, σ1
ij = σ1

k� iff (i, j) = (k, �).

(4) Every 0-simplex is in the boundary of several σ2
i which may

be arranged in a cyclic order; that is, given σ0, the set of σ2
i

which contain σ0 can be put in a list σ2
i1

, . . . , σ2
ik

in such a

way that σ2
ij
∩σ2

ij+1
is a 1-simplex for each 1 ≤ j ≤ k (where

σ2
ik+1

= σ2
i1

).

Properties (1) and (2) are fundamental to the concept of a sim-
plicial complex, while properties (3) and (4) ensure that T is in fact

a surface. In property (3), we could replace the words “exactly two”

with “at most two”; this would allow for the possibility of a surface

with a boundary.

The final two properties forbid the sorts of (three-dimensional)

configurations seen in Figure 2.2, which serves to ensure that the

triangulation is locally homeomorphic to R2; the details of this are

left as an exercise for the reader.

Exercise 2.3. Show that if we define S by the union in property 1,

and the simplices in T satisfy the other properties listed, then S is in

fact a surface.

We now turn our attention to a particular surface, the sphere, and

investigate possible triangulations. In particular, what is the trian-

gulation of S2 which uses the smallest possible number of simplices?

Any convex polyhedron is homeomorphic to the sphere, and we

may subdivide any face which is not already a triangle to obtain a

triangulation of S2. Note that we will often refer to 2-simplices as

faces, 1-simplices as edges, and 0-simplices as vertices. Among all

polyhedra, the tetrahedron has the smallest number of faces, and in

fact, this is the best we can do. Given any triangulation of S2 (or
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any surface for that matter), fix a 2-simplex, or face; since each edge

must belong to exactly two faces, and since any two faces intersect in

at most one edge, there must be at least three distinct faces besides

the one we chose, for a total of at least four, as in the tetrahedron.

As an example of a fairly natural construction which is not a

triangulation, consider the torus. We obtain the torus as the quotient

space of the square by an equivalence relation on its edges, and there

is a very natural triangulation of the square into two 2-simplices by

drawing a diagonal. This is not a triangulation of the torus, however,

since the two triangles intersect along all three edges after passing to

the quotient space.

One final example of a triangulation is provided by the icosahe-

dron, which has 20 faces; passing to the quotient space obtained by

identifying opposite faces, we have a triangulation of the projective

plane using 10 simplices (it must be checked that all properties of a

triangulation still hold after taking the quotient).

In general, triangulations provide an excellent theoretical tool

for use in proofs, but are not the ideal technique for constructions or

computations regarding particular surfaces; we will eventually discuss

other methods more suited to those tasks.

c. Euler characteristic.

Definition 2.3. Given a triangulation T , let F be the number of

2-simplices σ2 (faces), E the number of 1-simplices σ1 (edges), and V

the number of 0-simplices σ0 (vertices). Then the Euler characteristic
of the triangulation is given by

(2.1) χ(T ) = F − E + V.

For the five regular polyhedra, we have the following table—here

V ′, E′, and F ′ represent the number of vertices, edges, and faces of the

triangulations of the cube and dodecahedron obtained by partitioning

each square face into two triangles, and each pentagonal face into

three.
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V E F V ′ E′ F ′ χ

tetrahedron 4 6 4 2

cube 8 12 6 8 18 12 2

octahedron 6 12 8 2

dodecahedron 20 30 12 20 54 36 2

icosahedron 12 30 20 2

Two features of this table are worthy of note. First note that

for the cube and for the dodecahedron, we obtain χ = 2 whether we

calculate with V , E, F or V ′, E′, F ′; the act of subdividing each

face does not change the Euler characteristic. Secondly, each of these

polyhedra has the same Euler characteristic. This last turns out to

be a consequence of the fact that they are all homeomorphic to the

sphere S2, and leads us to a quite general theorem.

Theorem 2.4. Given a surface S, any two triangulations T1 and T2

of S have the same Euler characteristic.

Proof. The proof will proceed in four steps.

(1) Define barycentric subdivisions, which will allow us to refine

a triangulation T .

(2) Show that χ is preserved under barycentric subdivisions,

so that refining a triangulation does not change its Euler

characteristic.

(3) Define a process of coarsening, and show that it also pre-

serves χ.

(4) Given any two triangulations T1 and T2, refine T1 until we

can use its vertices and edges to approximate the vertices

and edges of T2, then coarsen this refinement into a true

approximation of T2 itself.

This will allow us to speak of χ(S) rather than χ(T ), and to compare

properties of surfaces via properties of their triangulations.

Barycentric subdivision. Given a face σ2 of T , draw three lines,

each originating at a vertex, passing through the point (1/3, 1/3, 1/3),

and ending at the midpoint of the opposite side. This partitions σ2

into six smaller triangles (Figure 2.3), which inherit their barycentric

coordinates from an appropriate scaling of the coordinates on σ2.
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Figure 2.3. Two successive barycentric subdivisions.

Notice also that subdivisions of edges inherit coordinates in a

consistent manner from both of the faces which are being subdivided;

this is an advantage that barycentric subdivision enjoys over other

possible methods of subdividing the 2-simplices.

Invariance of χ. Given a triangulation T , let T ′ denote its

barycentric subdivision. Each face is divided into six parts, so F ′ =

6F . Similarly, each edge is divided into two new edges, and each face

has six new edges drawn in its interior, so E′ = 2E + 6F . Finally,

one new vertex is drawn on each edge, and one more in the centre of

each face, so V ′ = V + E + F . Putting this all together, we obtain

χ(T ′) = V ′ − E′ + F ′

= (V + E + F ) − (2E + 6F ) + 6F

= V − E + F

= χ(T ),

and so the Euler characteristic is preserved by barycentric subdivision.

Lecture 9

a. Continuation of the proof of Theorem 2.4. In order to com-

plete the proof that two triangulations of the same surface have the

same Euler characteristic, we first prove two lemmas. For our pur-

poses here, a polygon is a region of the plane bounded by a closed

broken line.

Lemma 2.5. Any polygon can be triangulated.
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p
p

q

A
B

Figure 2.4. Triangulating polygons.

Proof. In the convex case, we can triangulate an n-gon P by fixing a

vertex p, and then drawing n−3 diagonals from p, one to each vertex

which is distinct from and not adjacent to p.

If the polygon P is non-convex, we proceed by induction on the

number of sides. Fix a vertex p at which the angle is greater than

π (if no such vertex exists, we are back in the convex case); it must

be the case that some other vertex q is visible from p, in the sense

that the line segment [p, q] lies inside the polygon. Note that unlike

the convex case, it may no longer happen that q can be taken to be

adjacent to a neighbour of p (Figure 2.4).

Now each of A and B has fewer sides than P , and hence can by

triangulated by the inductive hypothesis. This gives a triangulation

of our original polygon, and proves the lemma. �

Definition 2.6. Two triangulations T1 and T2 are affinely equivalent
if there exists a bijection f : T1 → T2 which preserves the simplicial

structure (that is, the image of a 2-simplex in T1 is a 2-simplex in T2,

and so on) and whose restriction to any 2-simplex is an affine map.

Lemma 2.7. Any triangulated polygon is affinely equivalent to a con-
vex triangulated polygon.

Proof. Once again, we proceed by induction. For n = 3, triangles

are convex, so there is nothing to prove. For n ≥ 4, decompose P

into the union of an (n−1)-gon P ′ and a triangle T which is attached

to P ′ along an edge e. By the inductive hypothesis, P ′ is affinely

equivalent to a convex triangulated polygon f(P ′), and to show that

P is as well, we must attach an affine image of T along f(e) in such

a way that the polygon remains convex.
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f(P ′)

f(e) f(T )

Figure 2.5. Obtaining a convex triangulation.

Any two triangles are affinely equivalent, and so we can make two

angles of f(T ) as small as we like. In particular, the two angles at

either end of f(e) are each less than π, and so we can make two angles

of f(T ) small enough that gluing f(T ) along f(e) does not increase

either of these angles beyond π, and the polygon remains convex. �

We now return to the proof that χ(T1) = χ(T2). We begin by

defining an analogue of triangulation using polygons with any number

of sides.

Definition 2.8. A map1 of a surface S is a partition of S into poly-

gons such that the intersection of any two polygons is a union of some

number of edges and/or vertices from each of the two (a polygon may

also have a non-trivial intersection of this kind with itself). A coars-
ening of a triangulation T of S is a map of S in which each polygon

is the union of 2-simplices from T .

This definition allows certain configurations which were forbidden

when using triangulations, as illustrated in Figure 2.6(a). Certain

other configurations are still forbidden, however. For example, the

requirement that the boundary of each polygon be a single closed

curve forbids ‘nestings’ of the sort shown in Figure 2.6(b).

Remark. As we are doing topology at the moment, rather than ge-

ometry, it is natural to include the 1-gon (the disc with a marked

‘vertex’ on its boundary) and the 2-gon (the disc with the boundary

divided into two ‘edges’) among the polygons. Notice, however, that

by adding extra ‘unnecessary’ vertices which divide some edges, one

1In the sense of a ‘geographic map’, rather than in the usual mathematical sense
of a ‘mapping’ or ‘function’.
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(a) Permissible (b) Forbidden

Figure 2.6. Permissible and forbidden configurations for
maps of the torus.

can always assume that any polygon within a map has at least three

sides.

It is a straightforward matter to verify that the Euler charac-

teristic is preserved by coarsening, since joining together two faces

eliminates both an edge and a face, and hence preserves χ. Note fur-

thermore that when we compute χ(M) for a map M, we may, if we

like, disregard vertices with only two edges, and count edges separated

by such vertices as a single edge, since by doing so we eliminate both

a vertex and an edge, and so preserve χ. This will be the convention

we follow in the remainder of the proof.

The final step of the proof requires approximating T2 with a coars-

ening of a refinement of T1. That is, if we denote by T n
1 the refinement

of T1 obtained by performing n consecutive barycentric subdivisions,

then we want to find a map M which is simultaneously

(1) a coarsening of T n
1 ;

(2) an approximation of T2, in a sense which will soon be made

precise.

The latter requirement will, in particular, imply that V (M) = V (T2),

and similarly for E and F . Thus we will have χ(T2) = χ(M) = χ(T1).

To make precise the notion of ‘approximation’, observe that a tri-

angulation gives us not only a combinatorial structure on a surface,

but a metric one as well. Using the Pythagorean distance formula in

terms of barycentric coordinates, we can define the distance between

any two points on the same face—for convenience, we will scale dis-

tances so that edges of 2-simplices have unit length. Once the distance
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Bj

Ti

Figure 2.7. A neighbourhood of T2.

is defined on each face, we may define the length of a piecewise linear

path on the surface, and so distances between points on different faces

can be defined as the infimum of lengths of all such paths connecting

the points.

Consider then the metric induced on S by the triangulation T2,

which we hope to approximate. Let Bi be the ball of radius 1/3

around the ith vertex, and Ti the ‘tube’ of radius 1/10 around the

ith edge, as indicated in Figure 2.7; then Bi ∩ Bj = ∅ for i �= j, and

similarly for Ti.

The plan now is to consider a refinement T n
1 , where n is very large.

Then the edges of T n
1 form a sort of mesh, as shown in Figure 2.8.

For sufficiently large n, the diameter of T n
1 (in the metric induced by

T2) will be small enough that the mesh contains a path through each

tube Ti from the ball Bj at one end to the ball Bk at the other. We

will also be able to choose vertices in the mesh within each Bi and

join them to these paths in such a way as to obtain a map M which

is a coarsening of T n
1 and which has one vertex within each Bi, one

edge for each tube Ti, and one face for each face of T2. It will then

follow that the Euler characteristic is the same for M and T2.

Given an edge e of T2 running from vertex v1 to vertex v2, let B1

and B2 denote the ε1-balls around v1 and v2, respectively, and let T

denote the tube around e between B1 and B2. Note carefully that

although we are accustomed to thinking of e as a straight line, there

is no compatibility condition between the affine structures of the two

triangulations T1 and T2—hence in Figures 2.8, 2.9, and 2.10, which

are drawn with reference to the coordinates on T1, the edge e appears

as a somewhat arbitrary continuous curve γ : [0, 1] → S.
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Figure 2.8. Refining T1 to approximate an edge of T2.

As the parameter t along the curve increases from 0 to 1, let x0

be the last point of e which lies in the closure of B1. Let x1 be the

first point of e after x0 which intersects an edge of T n
1 . Thereafter,

let xk+1 be the first point of e after xk which lies along an edge of T n
1

which does not contain xk, and terminate the sequence with the first

point xN which lies in the closure of B2.

Now the sequence x0, x1, . . . , xN determines a sequence of edges

in the mesh T n
1 . If xk does not lie on a vertex, then it determines a

unique edge ek; if xk does coincide with a vertex of the mesh, then

choose an edge ek which has xk as one endpoint and an endpoint of

ek−1 as the other.

This gives a sequence of edges e1, . . . , eN , each of which shares

an endpoint with each of its neighbours. As shown in Figure 2.9, this

may not be a true path, due to the presence of configurations which

may be thought of as ‘fans’ and ‘loops’. If we can eliminate these, we

will have our desired path.

This elimination may be accomplished by beginning at an end-

point y1 of e1 and following not e1, but the last ek (greatest value

of k) to have y1 as an endpoint. This takes us to a vertex y2, which

must be an endpoint of ek+1 since the latter shares an endpoint with

ek, and y1 is never to be visited again.

Again we follow the last e� to have y1 as an endpoint, and iterate

this procedure, eventually ending at yM , an endpoint of eN . We can

follow an edge from yM to a point yM+1 ∈ B2, and similarly can

find y0 ∈ B1. Let ẽ denote the broken line path from y0 to yM+1.

Provided n was taken large enough, ẽ lies entirely inside the tube T .
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Figure 2.9. Determining a sequence of edges in the mesh.

We carry out this procedure along every edge e of T2, and then

turn our attention to the balls Bi. Given a ball Bi, let m be the num-

ber of edges coming into Bi, and denote the corresponding endpoints

of the broken paths ẽ by z1, . . . , zm. Choose any vertex v of T n
1 lying

inside Bi, and connect v to z1 by a path along edges of the mesh T n
1 .

Then connect it to z2 by a path which does not intersect the first,

and continue until it is connected to every zj .

After repeating this in every Bi, we have a map M of S which

contains

(1) One vertex in each Bi, and hence the same number of ver-

tices as T2, because the Bi are disjoint.

(2) One edge corresponding to each edge of T2, because the Ti

are disjoint, and we constructed the edges ẽ so as not to

intersect themselves or each other.

(3) One polygonal region corresponding to each 2-simplex of T2,

because of the non-intersecting nature of the edges.

Hence V , E, and F all agree on M and T ; further, M is a coarsening

of T n
1 , and hence we have

χ(T2) = χ(M) = χ(T n
1 ) = χ(T1). �
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Figure 2.10. A true path along the mesh.

The sort of technical drudgery involved in the above proof is com-

mon in point set topology. In algebraic topology, one is often able to

bypass considerations of this type by considering a coarser equivalence

relation than homeomorphism, namely that of homotopy equivalence,
which makes no distinction between, for example, the unit disc and

a single point, or between an annulus and a circle.

This allows us to avoid certain convoluted constructions such as

the one we have just been through, but has drawbacks of its own.

While the fundamental invariants studied in algebraic topology, par-

ticularly homotopy and homology groups, are indeed invariant under

homotopy equivalence, other important topological invariants such as

dimension are not, and so there are topological results which cannot

be achieved using this method. For example, the question of how

many simple closed curves can be removed from a surface before it is

disconnected is related to the Euler characteristic, but the proof re-

quires an argument closer to the one we have just given, rather than

one involving homotopy.

b. Calculation of Euler characteristic. We have already seen

that the Euler characteristic of any regular polyhedron is 2, and with

the above result on independence from choice of triangulation, we can

now state unequivocally that χ(S2) = 2.
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Not a triangulation A true triangulation

Figure 2.11. Attempts at triangulating the torus.

Consider the triangulation of the torus in Figure 2.11. We must

be careful how we count vertices and edges because of the identifica-

tions made between opposite sides. The four corners are all the same

vertex, and the eight remaining vertices along the edge are identi-

fied in four pairs. Adding the four vertices in the interior, we have

1 + 4 + 4 = 9 vertices. Similarly, the 12 outside edges come in six

pairs, and we add 21 interior edges for a total of E = 27. Finally,

there are 18 faces, so χ = V − E + F = 9 − 27 + 18 = 0.

Exercise 2.4. Prove that the minimal number of vertices in a trian-

gulation of the torus is seven.

For the projective plane RP 2, we could be careful and choose a

particular symmetric triangulation of S2 which remains a triangula-

tion after identifying antipodal points, such as the icosahedron, or we

could be a little more careless and simply consider a very fine sym-

metric triangulation T which is guaranteed to remain a triangulation

when we pass to its projection T̃ in RP 2. Then we have 2F̃ = F ,

2Ẽ = E, and 2Ṽ = V , so it follows that χ(RP 2) = 1.

Exercise 2.5. Find a triangulation of the projective plane which uses

the fewest possible simplices.

This argument works quite generally whenever we have a cov-

ering map from one space to another. In particular, since the map

(x, y) �→ (2x, 2y) is a covering map from the flat torus to itself, we have

4χ(T2) = χ(T2), which provides an alternative proof that χ(T2) = 0.

Exercise 2.6. Calculate the Euler characteristic of the Klein bottle.
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Lecture 10

a. From triangulations to maps. Let M1 and M2 be two surfaces

equipped with triangulations T1 and T2. If f : M1 → M2 is a homeo-

morphism, then f(T1) is a triangulation of M2, hence χ(T1) = χ(T2);

it follows that χ(M1) = χ(M2), so the Euler characteristic is a topo-

logical invariant of a compact triangulable surface.

We have left unanswered (and up until now, unasked) the ques-

tion of whether any compact surface (compact two-dimensional man-

ifold) admits a triangulation. This is in fact the case, but we will not

present the proof of this result in this course, as it requires not only

considerable combinatorial ingenuity, but also techniques of point set

topology at a higher level than used in the proof of Theorem 2.4.

Rather, we shall turn our attention from triangulations to maps,

which we introduced briefly in the proof of Theorem 2.4. We will see,

in particular, that the proof given there really establishes the more

general result that the Euler characteristic is an invariant not just of

triangulations, but of maps. First, though, a few comments about

maps are in order.

The most obvious distinction between maps and triangulations is

the list of permissible shapes; maps may comprise polygons with any

number of sides, while triangulations are restricted to triangles. How-

ever, there is another, more subtle distinction. A triangulation comes

equipped with barycentric coordinates on each triangle, so when we

attach two triangles, it is obvious how the gluing along each edge is

to be carried out. This is not the case for a map; the polygons lack a

native affine structure, and so in particular there is no canonical way

to attach along edges. With this in mind, let us make more precise

the definition of a map, which so far we have thought of as a union

of “properly attached” polygons.

We begin with the standard n-gons Sn, which are modeled by the

regular n-gons lying in the complex plane C with vertices at the nth

roots of unity exp(2πik/n), 1 ≤ k ≤ n. As was mentioned before, we

allow the case n = 2; S2 is modeled by the unit circle { z ∈ C | |z| =

1 } with two vertices at ±1 and two edges, one the top half of the

circle, the other the bottom half. We also allow the case n = 1; the
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Figure 2.12. A map with a ‘spike’.

model for S1 has the entire unit circle as its single edge, and z = 1 as

its single vertex.

Now a generalised polygon P on a surface M is simply the image

of some Sn under a continuous function f : Sn → M satisfying certain

conditions:

(1) The restriction of f to the interior of Sn is a homeomorphism

onto its image.

(2) Given any edge e of Sn, the restriction of f to e is a home-

omorphism onto its image.

The images under f of edges of Sn are themselves referred to as edges,

and similarly for vertices. This allows us to make the following formal

definition:

Definition 2.9. Given a surface M , a map on M is a decomposition

of M as a union of generalised polygons (not disjoint), M =
⋃n

i=1 Pi,

along with the associated functions fi : Sni
→ Pi, satisfying:

(1) Given i �= j, the intersection Pi ∩ Pj is a union of edges of

Pi and Pj .

(2) Any point x ∈ M which is not a vertex has at most two

preimages; in particular, it lies in at most two of the Pi.

The latter condition ensures that each edge is identified with at

most (in fact, exactly) one other. With the precise definition in hand,

we can now state the following:

Theorem 2.10. Let M be a compact surface which admits a trian-
gulation T , and let M be any map on M . Then χ(M) = χ(T ), and
hence any two such maps have the same Euler characteristic.
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S4 T2

Figure 2.13. A map of the torus using only a single face.

Proof. Proceed exactly as in the proof of Theorem 2.4, taking T1 = T
and replacing T2 with M; note that we may just as easily approximate

the map M with the mesh T n
1 as the triangulation T2. �

The definition of a map allows for very general configurations;

for example, we can have ‘spikes’, as in Figure 2.12, which is the

image of S3 under a function identifying two adjacent sides in the

direction indicated. We can also represent the torus T2 as a map

with a single face, which is just the familiar planar model shown in

Figure 2.13, the image of S4 under a function identifying opposite

edges—the usual parametric embedding of the flat torus in R4 gives

a concrete realisation of this map.

This last example illustrates the greater utility provided by maps

for purposes of computation and classification. As indicated in the

previous lecture, triangulations are not terribly effective for these two

purposes, despite being powerful theoretical tools. We will see very

shortly that maps do not suffer from this shortcoming.

Theorem 2.11. Any surface M which admits a map must necessarily
admit a map with a single face.

Proof. The proof is by induction on the number of faces, and the only

difficulty is a slight technical one. Given two generalised polygons Pi

and Pj which share an edge, we would like to erase that edge and

combine the two polygons into one; Pi is an image of Sni
, and Pj of

Snj
, so we would like to obtain Pi∪Pj as an image of Sni+nj−2 under

some function fij . However, because there is no affine structure on

the polygons, and hence no a priori agreement in any meaningful

sense between fi and fj along the edge we wish to remove, we must

explicitly construct fij .
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By Lemma 2.5, we can triangulate both Sni
and Snj

, and these

triangulations carry over to triangulations of Pi and Pj . Taking the

union of these gives a triangulation of Pi ∪ Pj , which we can coarsen

by removing all edges and vertices in the interiors of Pi and Pj , as

well as all those lying along the edge we wish to remove.

In this way we obtain a single face in place of the two which were

there before, decreasing the number of faces in the map by one. The

result follows by induction. �

This leads us to the following result which will prove very valuable

in our classification of surfaces:

Corollary 2.1. Every compact triangulable surface is homeomorphic
to a polygon with pairs of sides identified (which must therefore have
an even number of sides).

Remark. The process of investigating higher-dimensional manifolds

via the analogue of triangulation, known as simplicial decomposition,

is in general much more difficult. In three dimensions, for example,

it is not obvious what requirement should be placed on the set of

3-simplices intersecting at a common vertex in order that the neigh-

bourhood of that vertex be homeomorphic to R3, whereas in two

dimensions the requirement was simply that the 2-simplices be ar-

ranged cyclically.

More critically, there are examples of higher-dimensional topo-

logical manifolds which admit no simplicial decomposition. The ex-

istence of such manifolds, which defies straightforward intuition, is

among the most striking results of topology.

We also note that all our considerations can also be carried out for

surfaces with a boundary; that is, two-dimensional manifolds where

we allow two different types of points. Interior points have neighbour-

hoods homeomorphic to R2, while boundary points have neighbour-

hoods homeomorphic to R2
+ = { (x, y) ∈ R2 | y ≥ 0 }. Such surfaces

may be usefully thought of as compact surfaces without boundary

which have had holes removed.

b. Examples. We now know from Corollary 2.1 that we can classify

compact triangulable surfaces by examining the quotient spaces of
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S2 RP 2

Figure 2.14. The two possible models on S2.

various polygons upon identifying various pairs of sides. Let us begin

our investigation of these planar models with the possibilities for the

2-gon.

S2 is just the unit disc in C with ±1 singled out as the vertices.

An identification of the two edges is accomplished by a homeomor-

phism from one to the other along which we will ‘glue’ the edges.

The reader may verify that perturbing the homeomorphism slightly

does not change the resulting quotient space; all that matters is the

direction of the homeomorphism. That is, if we move from left to

right along the top edge, does the corresponding point on the bottom

edge move from left to right or from right to left?

The two cases are shown in Figure 2.14. In the first case, we have

the quotient space of the disc D2 ⊂ C by the equivalence relation

z ∼ z̄ for |z| = 1, which is the sphere S2. We note that the model has

two vertices, one face, and one edge (since the top and bottom edges

are identified), so χ = V − E + F = 2 − 1 + 1 = 2, as expected for

the sphere.

In the second case, the equivalence relation is given by z ∼ −z,

and we obtain the projective plane RP 2. This may be seen from the

fact that RP 2 is the northern hemisphere of S2 with antipodal equa-

torial points identified; upon orthogonal projection to the equatorial

plane we obtain the disc with antipodal boundary points identified,

which is the picture in Figure 2.14. Note that the vertices ±1 are

identified, so the model has V = E = F = 1 and hence χ = 1, which

agrees with our original calculation for χ(RP 2).

We now pass to the case where P is a 4-gon, or square. We

must first decide which pairs or edges will be identified; we can either

identify opposite sides or two sets of adjacent sides. For each pair,
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a

b

a−1

b

Figure 2.15. Notation for models on S4.

there are two possible orientations, which we may think of as forward

and backward, so given a choice of how to pair up the edges, there

are three possibilities; both pairs forward, both backward, or one each

way.

We can make this more precise with some notation, which is illus-

trated in Figure 2.15. Let us assign each edge a letter, and use each

letter exactly twice. Two edges with the same letter are to be identi-

fied, and the direction is determined by whether the letter appears as,

for example, a or a−1. If we draw arrows on the sides indicating the

direction of identification, and then make a circuit clockwise around

the square beginning in the lower left, we write each side as x if we

are moving in the direction of the arrows, and x−1 if we are moving

opposite the direction of the arrows.

Thus we would write Figure 2.15, which is a model of the Klein

bottle, as aba−1b, because starting at the lower left, we encounter

first a side labeled a with an arrow pointing clockwise, then a side b

with an arrow pointing clockwise. We then encounter a with an arrow

pointing counterclockwise, so we write a−1, and finally a second side

b with an arrow pointing clockwise, so we write b.

In this way we can write the six possible identifications, up to

rotations and relabelings, as

aabb, aa−1bb, aa−1bb−1,

abab, aba−1b, aba−1b−1.

For example, the labeling aba−1b−1 is quickly seen to be our usual

model of the torus T2 = R2/Z2, and Figure 2.15 shows the labeling

aba−1b to be the Klein bottle. But what are the other four?
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If we look at aa−1bb−1, for example, we can compute χ = 2, and

so we might conjecture that it represents the sphere, since so far all

of the surfaces we have computed χ for have had distinct Euler char-

acteristics. However, while S2 and RP 2 are in fact the only surfaces

with χ = 2 and 1, respectively, it is no longer true for χ ≤ 0 that the

Euler characteristic uniquely determines the surface.

Exercise 2.7. Prove by direct construction that

• aabb is another representation for the Klein bottle;

• aa−1bb is the projective plane;

• aa−1bb−1 is indeed the sphere;

• abab is the projective plane.

Exercise 2.8. Consider all surfaces which can be obtained by identi-

fying pairs of sides in a hexagon. Divide them into groups of mutually

homeomorphic surfaces, and prove that surfaces from different groups

are not homeomorphic.

In turns out that we will need another invariant to construct our

list of surfaces; this will lead us to the notion of orientability. With

this tool in hand, we will be able to construct a complete list, and to

identify any planar model with a surface on our list via the method

of cutting and pasting.

Lecture 11

a. Euler characteristic of planar models. So far we have seen

planar models for four different surfaces; two of these used the 2-

gon and two the 4-gon. We can list these in terms of the identifica-

tions made between various sides as we complete a circuit around the

boundary, as explained previously:

edge identifications surface Euler characteristic

aa−1 sphere 2

aa projective plane 1

aba−1b−1 torus 0

abab−1 or aabb Klein bottle 0
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To compute the Euler characteristic χ of a planar model on a

2m-gon, we may observe that F = 1 and E = m after passing to the

quotient space, so the only variable is the number of vertices after all

identifications have been made. If we write qi for the number of edges

attached to the ith vertex, then we have the relation 2E =
∑V

i=1 qi.

A vertex attached to a single edge constitutes a ‘spike’ which may

be removed without changing the topology of the surface. In general,

this allows us to obtain a planar model on a 2(m − 1)-gon, and so

we may assume that qi ≥ 2 for every i. We can go further and note

that a vertex with qi = 2 is in some sense superfluous, and can be

removed, combining the two adjacent edges into one, to again obtain

a planar model on a 2(m−1)-gon. Thus for any planar model without

spikes or unnecessary vertices, we have 2E ≥ 3V , and it follows that

χ = V − E + F ≤ 2

3
E − E + 1 = 1 − m

3
.

Upon making the further observations that χ is an integer and that

V ≥ 1, we have convenient bounds on the Euler characteristic in

terms of the number of sides of the planar model:

2 − m ≤ χ ≤ 1 −
⌈m

3

⌉
.

Note that these only apply if the model is simplified, in the sense

discussed above. The astute reader will observe that the bounds we

have obtained forbid positive values of χ, and hence cannot apply to

our models of the sphere and the projective plane. This is because

in the model of the sphere as a 2-gon with edges identified, both

vertices are spikes, but we cannot remove them to make a simpler

model without eliminating every edge of the 2-gon. Similarly, for the

projective plane, the single edge has both ends at the same vertex, so

the vertex has degree two, but cannot be removed without eliminating

every vertex of the 2-gon.

We now return to the question of planar models on the 4-gon.

At least two vertices must be identified, so 1 ≤ V ≤ 3, hence χ must

be one of 0, 1, or 2. We have seen surfaces with each of these values

already, and it turns out that these are the only options.

b. Attaching handles. Given a surface M , we can ‘attach a handle’

by cutting two holes in the surface, taking a cylinder C, and gluing
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Figure 2.16. Attaching a handle—two equivalent constructions.

one end of C to each hole (Figure 2.16). For example, if we begin

with a sphere and attach a handle in this manner, we obtain a surface

homeomorphic to a torus.

Consider a neighbourhood of the two holes to which the cylinder

is attached; this is homeomorphic to a disc with two holes, the so-

called ‘pair of pants’ surface (also shown in Figure 3.14). Gluing one

end of C to each hole, we obtain a torus with a hole, and so attaching

a handle in the manner described above is equivalent to cutting a

single hole and gluing our torus with a hole along its boundary; this

is the procedure mentioned at the very beginning of this course, back

in Lecture 1.

So far this is rather vague and imprecise; what does ‘cutting a

hole’ mean, anyway? We want to say that we remove a homeomorphic

image of a disc and glue along its boundary; will we obtain the same

object no matter which disc we remove? Just how standard is a hole?

If we consider attaching a handle to a sphere, we could appeal

to the Jordan Curve Theorem, which states that any homeomorphic

image of a circle on the sphere separates it into two disjoint regions,

each homeomorphic to a disc. We then remove one of these discs, and

glue the torus with a hole along the boundary circle.

Alternately, we can return to our combinatorial approach, and

examine methods for cutting holes in our planar models. The usual

model of the torus is the square with opposite edges identified; where

is the best place to cut the hole? As shown in Figure 2.17, we cut the

hole in a corner, so that the torus with a hole has a planar model on

a pentagon.
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Figure 2.17. Cutting a hole in a torus.

Now if we begin with a planar model on any 2m-gon and cut a

hole in this manner, we can attach the torus with a hole as shown in

Figure 2.18 to obtain a planar model on a 2(m+2)-gon. Since all five

vertices of the torus with a hole are identified, we do not add any new

vertices by doing this, and we still have F = 1; thus the net result of

this process is to increase the number of edges by two, and hence to

decrease the Euler characteristic by two.

As we have seen, the sphere with one handle is a torus, which has

a planar model on the 4-gon. Using the above process, we may attach

a second handle and obtain a planar model on the 8-gon (Figure 2.19);

c

c

a

b

a−1

b−1

Figure 2.18. Attaching a handle to a planar model.
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Figure 2.19. A sphere with two handles.

in general, after attaching m handles, we have a planar model on the

4m-gon, with identifications given as in the table below:

m identifications V E F χ

1 aba−1b−1 1 2 1 0

2 a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 1 4 1 −2

m a1b1a
−1
1 b−1

1 · · · ambma−1
m b−1

m 1 2m 1 2 − 2m

We will see eventually that this list is exhaustive; any compact

orientable surface which admits a triangulation is homeomorphic to

the sphere with m handles, for some m ∈ N0. First, though, we must

discuss the notion of orientability.

Exercise 2.9. Prove that for every m ≥ 1, both the regular 4m-gon

and the regular 4m + 2-gon with pairs of opposite sides identified by

translations are homeomorphic to the sphere with m handles.

c. Orientability. What does it mean for a surface to be orientable?

The usual first example of a non-orientable surface is the Möbius strip;

it is often said that the strip “only has one side”, which distinguishes

it from orientable surfaces such as the sphere and the torus. Another

way of saying this is that if we place a clock on this surface and move

it once around the strip, returning to its original position, it will have

reversed directions and be running counterclockwise.

However, we are dealing with surfaces as topological objects, and

the notion of direction along a surface, which we need to apply the

above method in its simplest incarnation, properly belongs to the
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1
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incoherent

1

3

2

1

2

3

coherent

Figure 2.20. Coherent and incoherent orientations of 2-simplices.

study of differentiable manifolds, rather than topological ones. Ori-

entability is in fact a topological invariant, and so we proceed as we

did for the Euler characteristic, by first considering surfaces with tri-

angulations.

An orientation of a triangle is simply an ordering of its vertices;

this is preserved by even permutations of the vertices, and reversed

by odd permutations. Thus we label the vertices 1, 2, and 3, and

think of traversing the boundary of the triangle in the direction given

by 1 → 2 → 3 → 1. We say that two adjacent 2-simplices are oriented

coherently if they induce opposite orderings (or orientations) on the

edge in which they intersect, as illustrated in Figure 2.20.

Definition 2.12. A triangulation T of a surface M is orientable if

its 2-simplices admit a coherent collection of orientations.

Exercise 2.10. Show that no triangulation of the Möbius strip is

orientable.

Exercise 2.11. Prove that for a surface with a triangulation, the

following two definitions of orientability are equivalent:

(1) All triangles can be oriented in a coherent way.

(2) One can chose a positive direction of rotation at every point

which changes continuously.

Theorem 2.13. Let T1 and T2 be two triangulations of a surface M .
Then T1 is orientable if and only if T2 is orientable.

Proof. As in the proof of Theorem 2.4, we refine, coarsen, and ap-

proximate. Notice first that orientability is inherited by barycentric
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Figure 2.21. Two handles, one inverted, one not.

subdivision. Furthermore, we can extend the definition of orientabil-

ity to maps, and one sees immediately that orientability is preserved

under coarsening. Finally, a slight perturbation of an orientable tri-

angulation is also orientable, and so we may approximate T2 with a

coarsening of a refinement of T1 to obtain the result. �

d. Inverted handles and Möbius caps. Looking at the usual im-

mersion of the Klein bottle into R3, we may see that it is homeomor-

phic to a sphere with two holes which has had a cylinder attached,

but in which the attachment has been made in different directions

along the two circles.

This is the notion of an inverted handle; after removing two holes

from the surface M , take a patch of the surface which contains both

and which can be given an orientation. Then take orientations of the

two circles which are not coherent with respect to this orientation,

and attach the ends of the cylinder according to these (Figure 2.21).

We have seen that attaching a single inverted handle to a sphere

results in a Klein bottle. What surface do we obtain if we attach a

second inverted handle?

We postpone the answer, and first consider the result of attaching

an inverted handle to the projective plane. Because the projective

plane is not orientable, we may slide one of the holes all the way

around the surface and return it to its original position, reversing its

orientation in the process. Thus attaching an inverted handle gives
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a
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v

b
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y x−1

Figure 2.22. Planar models of the Möbius strip.

the same surface as attaching a regular handle in the case when the

original surface is not orientable.

One final remark is in order. Just as with regular handles, the

process of attaching an inverted handle decreases the Euler charac-

teristic by two. Since no connected surface has χ > 2, we cannot

obtain the projective plane by attaching an inverted handle to any-

thing. Rather, we may obtain it by attaching a Möbius cap to the

sphere.

This attachment, also known as a cross cap, is carried out by

removing a disc from the surface, and then identifying opposite points

on its boundary. Alternately, we may think of gluing its boundary

circle to the boundary circle of a Möbius strip; we will discuss this

in more detail next time. For the time being, we merely note that

attaching a Möbius cap to the sphere results in the projective plane,

and ask the reader to consider what surface results if we attach a

Möbius cap to the projective plane.

Lecture 12

a. Non-orientable surfaces and Möbius caps. As indicated in

Figure 2.22, a planar model of the Möbius strip M is given by 4-gon

with identifications axay. The edges x and y are not identified with

anything else, and so remain as points on the boundary of the Möbius

strip. The two vertices labeled v are identified with each other, as

are the two vertices labeled w. Thus the boundary of M is given by

following x from v to w, and y from w to v, and we see that the

boundary of the Möbius strip is simply a single circle, as the third

part of Figure 2.22 makes clear.
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Figure 2.23. A cross cap; the Möbius strip immersed in R
3

with self-intersection.

If we immerse the Möbius strip in R3 as shown in Figure 2.23,

then the boundary circle x−1y is shown at the top of the figure, and

the edge a runs along the lower portion of the surface. Beginning with

any surface, we can cut a hole in the surface and attach a Möbius strip

along the circle forming its boundary; this is the action of adding a

Möbius cap, or cross cap.

This construction immediately makes the surface non-orientable,

since any ‘clock’ can be brought to the Möbius strip and moved once

around it, reversing its direction. We see from this that while ori-

entability is a property of the entire surface, non-orientability is in

some sense a local property; not in the sense that it can be defined in

terms of neighbourhoods of points, but in the sense that if a portion of

the surface is non-orientable, then the entire surface is non-orientable,

no matter what constructions we may make elsewhere.

b. Calculation of Euler characteristic. We will follow a very

general procedure of constructing surfaces by making various attach-

ments. Suppose we are given a surface and then cut out a number

of holes; then we are left with a surface whose boundary is a disjoint

union of homeomorphic images of the circle S1. Then there are three

ways we can fill each hole by attaching standard surfaces to each

image of S1:

(1) Attach a cap, that is, a homeomorphic image of a disc, to a

hole.
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Figure 2.24. Cutting a hole in a surface.

(2) Attach a Möbius cap, a homeomorphic image of the Möbius

strip, to a hole.

(3) Attach a handle to two holes, or, equivalently, attach a torus

with a hole to a single hole.

Note that we make no mention of inverted handles, which we discussed

in the previous lecture. The reason for this will shortly be made clear;

first we ask what effect each of these attachments has on the Euler

characteristic χ. Let us see what each does to a map of the surface.

As shown in Figure 2.24, cutting a single hole has the effect of

adding two vertices, three edges, and leaving F constant,2 so it de-

creases χ by 1. If we fill the hole with a cap, we add a face and leave

E and V unchanged, so χ is returned to its original value. Hence

the overall effect of cutting a hole and attaching a cap is to preserve

the Euler characteristic (indeed, removing a hole and attaching a cap

produces a surface which is homeomorphic to the original surface).

Similarly, attaching a Möbius cap adds a face; in addition, how-

ever, it adds an edge (the edge a from Figure 2.22), so that χ remains

the same as it was for the surface with the hole. Hence the overall

effect of cutting a hole and attaching a Möbius cap is to decrease the

Euler characteristic by 1.

If we cut two holes to attach a handle, we decrease χ by 2. At-

taching the handle itself adds two faces and two edges, leaving χ

unchanged. Hence the overall effect of cutting two holes and attach-

ing a handle is to decrease the Euler characteristic by 2, as we saw

before.

2Of course, there are various other ways we could create a map for the new surface;
we could, for example, take a minimalist approach and simply add a single edge with
both ends attached to a preexisting vertex, as in Figure 2.17. Any choice we make will
decrease χ by 1.
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Figure 2.25. An inverted handle is two Möbius caps.

Once we establish that every surface can be obtained from the

sphere by these constructions, these considerations illustrate why ev-

ery orientable surface has even Euler characteristic.

Now what about adding an inverted handle? Why has it been

left off our list? It turns out that attaching an inverted handle is

equivalent to attaching two Möbius caps. Indeed, just as attaching a

handle to two holes is equivalent to attaching a torus with a hole to a

single hole, we can think of attaching an inverted handle as attaching

a Klein bottle with a hole. A planar model of the Klein bottle on the

4-gon is given by the identifications aabb, and Figure 2.22 suggests

a proof that each of aa and bb is equivalent to attaching a Möbius

cap. Then Figure 2.25 shows that attaching an inverted handle is

equivalent to attaching two Möbius caps.

The reader is encouraged to work through the details of these con-

structions independently; the concepts involved are not difficult, but

care must be taken in counting vertices, edges, and faces to compute

the Euler characteristic.

c. Covering non-orientable surfaces.

Definition 2.14. A (finite) covering space of a surface S is a con-

nected surface S̃ together with a map f : S̃ → S such that the follow-

ing conditions hold:

(1) There exists n ∈ N such that given any point x ∈ S, the

preimage f−1(x) ⊂ S̃ consists of n distinct points.

(2) For every point x ∈ S, there exists a neighbourhood Ux of

x such that f−1(Ux) =
⋃n

i=1 Vi, where each Vi ⊂ S̃ is open,
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Vi ∩ Vj = ∅ for i �= j, and the restriction of f to Vi is a

homeomorphism between Vi and Ux.

Then we say that S̃ is an n-fold covering space, or sometimes an

n-fold cover.

Remark. One may also consider infinite covering spaces, where the

pre-image of a neighbourhood of any point consists of a countable

collection of homeomorphic images of the neighbourhood. The stan-

dard projection of the real line onto the circle is the simplest example

of such a covering; projection of the plane onto the torus is another.

These examples show that covering spaces and factor spaces are in

some sense dual constructions to each other.

We have already seen one important example of a covering space;

S2 is a double cover of the projective plane RP 2. This is an immediate

consequence of the definition we gave for RP 2, with the quotient map

providing the covering map f .

Another example is given by the Möbius strip, which has the

cylinder as a double cover. Consider the infinite strip X = R ×
[−1, 1] with the translation τ : (x, y) �→ (x + 2, y). Then we obtain

the cylinder as the quotient space of X by the action of τ ; that is,

we identify each point with all of its images under iterates of τ . A

square root of τ is given by σ : (x, y) �→ (x + 1,−y), and the quotient

space of X by the action of σ is the Möbius strip. The covering map

arises naturally as the canonical projection

f : X/σ2 → X/σ,

{ (x + 2n, y) | n ∈ Z } �→ { (x + n, (−1)ny) | n ∈ Z }.

A similar argument, whose details are left to the reader, shows

that the torus is a double cover for the Klein bottle.

We repeat our observation from a previous lecture that the Euler

characteristics of S and S̃ are related; in particular, if S̃ is an n-fold

cover of S, we have χ(S̃) = nχ(S).

These examples point us towards a general result concerning non-

orientable surfaces. Specifically, we have the following:
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Proposition 2.1. Every non-orientable surface has an orientable
double cover.

Proof. We follow an approach which is of wide utility both in topol-

ogy and in other fields of mathematics; we define the problem away.

We would like to associate a fixed orientation to each point of S; since

we cannot do this, we define S̃ as follows: a point on S̃ is just a point

of S together with a particular orientation at that point.

Locally, this looks like taking the direct product S×{±1}, so that

each point in S appears twice in S̃, once with a positive orientation

and once with a negative one. Of course, this is not true globally,

precisely since S is non-orientable, and so we cannot define positive

and negative in a coherent sense over the whole surface.

So far this gives us a set of points S̃ along with a natural projec-

tion f : S̃ → S. In order for S̃ to be a surface, we must describe its

topology. We may define a set U ⊂ S̃ to be open if its image f(U) in

S is an open set, and if in addition we may define a coherent orienta-

tion on f(U) which agrees with the orientation associated with each

point in U . This gives a basis for the topology on S̃, and it is now

immediate that f is a covering map.

If our original surface S were orientable, this procedure would

give us a disconnected space, the union of two disjoint copies of S.

Because S is non-orientable, we may find a path γ : [0, 1] → S such

that γ(0) = γ(1), and following γ reverses orientation. Hence given

any two points x, y ∈ S̃, we can find paths η1 from f(x) to γ(0) and

η2 from γ(0) to f(y); then one of η1 ◦ η2 or η1 ◦ γ ◦ η2 must give a

path from x to y, and it follows that S̃ is connected.

Finally, S̃ is orientable by the construction. �

Exercise 2.12. Find a necessary and sufficient condition on k and l

so that there is a covering map from the sphere with k handles onto

the sphere with l handles.

d. Classification of orientable surfaces.

Theorem 2.15. If M is a compact, closed (without boundary), ori-
entable surface which has a map, then there exists an integer m ≥ 0

such that M is homeomorphic to the sphere with m handles.
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Proof. We begin by outlining the general strategy, and postpone a

detailed proof until the next lecture.

By Theorem 2.11, our surface admits a map with a single face, so

we can consider a model on a 2n-gon. After making the appropriate

cancellations, we may assume that our model has no spikes; that

is, no two adjacent edges have the same label. This corresponds

to cancelling inverses in the sequence of identifications, so we forbid

appearances of aa−1, bb−1, etc. Next we demonstrate a technique to

modify our map so that it has only a single vertex; because the Euler

characteristic must be preserved, this will of necessity decrease the

number of edges.

Because M is orientable, it may be shown that in the sequence of

identifications, each side must appear once in each direction. That is,

we cannot have abab, but must have aba−1b−1, and so on. Then by

considering the pair of identified edges which have the fewest other

edges between them, we may find two symbols a and b which appear

in the order aba−1b−1; note that there may be other edges in between

these appearances. However, by assuming that all vertices of the 2n-

gon are identified, we may show that the model is equivalent to a

2(n − 2)-gon with a handle attached, and then proceed by induction

on the Euler characteristic.

Lecture 13

a. Proof of the classification theorem. Given a map on a closed

compact orientable surface S, we follow the steps indicated last time

to show that S is homeomorphic to the standard model for a sphere

with m handles, that is, a 4m-gon with identifications

a1b1a
−1
1 b−1

1 . . . ambma−1
m b−1

m .

By Theorem 2.11, we may take the map on S to be a single polyg-

onal face with pairs of edges identified. Because we may obtain our

map as the coarsening of a triangulation, we have an affine structure

along the edges of the face, which may be used in the identification

process.

If S is the sphere with model aa−1, then we are done; otherwise,

any spikes aa−1 may be eliminated without changing the topology of
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Figure 2.26. Collapsing a maximal tree.

the surface, and so we may assume that no symbol appears next to

its inverse.

Before carrying out the inductive step, we make some definitions,

and prove a lemma which allows us to assume that all vertices of the

polygon are identified.

Definition 2.16. The n-skeleton of a triangulation (or in general, of

a simplicial complex) is the union of all simplices of dimension ≤ n.

In particular, the 1-skeleton is the ‘frame’ around which the trian-

gulation is built; since it comprises 0-simplices (vertices) connected by

1-simplices (edges), it is in fact a graph. We can make the analogous

definition for a map, and this is the concept we will now utilise.

Definition 2.17. A tree is a graph without cycles.

It is easy to show by induction that any (finite connected) graph

admits a maximal tree, that is, a subgraph which is a tree and which

is not properly contained in any other tree. This last condition is

equivalent to the requirement that the subgraph contain every vertex

of the graph. Unless the graph itself is a tree, maximal trees are never

unique.

Figure 2.26 illustrates a common construction in algebraic topol-

ogy; we consider a graph G, a maximal tree T (the darker edges in

the picture), and identify T to a point, obtaining a quotient space

G/T , which will have one vertex and n edges, and will be a ‘bouquet’

of circles all connected at a single point. G/T is homotopic to G, but

not homeomorphic. Consequently, we will not use this construction

directly, but will use it to motivate the proof of the following lemma.

Lemma 2.18. Given a map M on a surface S, there exists a map M̃
on S with the same number of faces as M, but with only one vertex.
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v w
e

v w

Figure 2.27. Turning a leaf into a spike.

Proof. Let G be the 1-skeleton of M, and let T be a maximal tree

of G. Consider a ‘leaf’ of T , that is, a vertex v which is connected to

only one edge e (in T ; its degree in G may be greater).

Let w be the vertex at the other end of e. As shown in Figure 2.27,

take every other edge (besides e) which is attached to v, and attach it

instead to w. This gives a new map on S in which the edge between

v and w is a spike, and so may be eliminated.

We continue this procedure until T consists of just a single point;

the resulting map is M̃, and since the step of moving edges from v to

w does not change the number of faces, we see that we are done. �

Further, because S is orientable, the direction of each identifi-

cation is specified for us. Indeed, if any symbol a0 appears twice

(as . . . a0 . . . a0 . . . , rather than . . . a0 . . . a−1
0 . . . ), then we have the

configuration seen in Figure 2.30. Moving a ‘clock’ once through H

from a0 to a0 reverses its orientation, which cannot happen if S is

orientable, and so we see that if a symbol a appears in the identifying

sequence, so does its inverse a−1.

Returning to our proof of the theorem, we now have a surface

whose 1-skeleton is a bouquet of circles a, b, c, . . . , which we draw as

a polygonal map with certain identifications a ∼ a−1, etc. The next

step is to find a handle.

Given any symbol a, we write the distance between a and a−1 as

dist(a); here by ‘distance’ we mean the number of edges between a

and a−1 as we proceed around the boundary of the polygon in either

direction (whichever gives us the shorter distance). For example,
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H

S′

a

b

a−1

b−1

Figure 2.28. The configuration aba−1b−1.

in the sequence aa−1, we have dist(a) = 0, and in abca−1b−1c−1,

dist(a) = 2.

Now choose a such that dist(a) is minimal; that is, dist(a) ≤
dist(b) for any other symbol b. Because we have eliminated spikes, we

have dist(a) ≥ 1, so some symbol b lies between a and a−1. Further,

since dist(a) is minimal, b−1 cannot lie between a and a−1, so our

sequence must look something like . . . a . . . b . . . a−1 . . . b−1 . . . .

This configuration is illustrated by Figure 2.28. The region H is

homeomorphic to a torus with a hole, as shown in Figure 2.29.

Figure 2.29. A visualisation of H and S′.
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The lighter region, labeled S′ and comprising four faces which are

joined when a, a−1 and b, b−1 are identified, models a surface with a

hole; Figure 2.29 illustrates the fact that upon filling the hole with a

disc, we obtain a planar model which satisfies the conditions of our

theorem, and which has four fewer edges than our original model. By

induction, this is homeomorphic to the standard model of the sphere

with m handles, for some value of m, and so reattaching the handle

H shows that our surface S is homeomorphic to the standard model

of the sphere with m + 1 handles. �

Remark. In higher dimensions, a complete classification along these

lines would be much more difficult to accomplish. Indeed, one of

the great achievements in mathematics in recent years has been an

essential completion of the classification of 3-manifolds, which was

achieved by Perelman’s proof of the Thurston geometrisation conjec-

ture; in particular, this settled the famous Poincaré conjecture.

There are other models for the sphere with m handles besides the

standard one; one of the most symmetric is given by the sequence of

identifications

a1 . . . a2ma−1
1 . . . a−1

2m

which is just the 4m-gon with opposite sides identified. This and

other models have the same topology as the standard model (recall

Exercise 2.9), and so do not add any new surfaces to our list, but

are sometimes useful for understanding various geometric structures

which will appear later in this course. For example, in this model the

edge identifications can be effected by parallel translations, and thus

one obtains a Euclidean structure everywhere on the surface, with the

exception of the vertices, which become ‘super-conic’ points at which

the total angle is a multiple of 2π.

Example 2.19. For m = 2, all eight vertices of the regular octagon

are identified, producing a sphere with two handles equipped with a

Euclidean structure everywhere except at the single vertex, where the

total angle is 6π. Later in this course we will see that this fact can be

interpreted as a particular limit case of the celebrated Gauss-Bonnet

Theorem.
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H

S′

a0 a0

Figure 2.30. The configuration a0a0.

b. Non-orientable surfaces: Classification and models. Al-

ready we have seen that non-orientable surfaces may have several

models of equal utility; while the projective plane is best represented

as aa on a 2-gon, the Klein bottle may be thought of on a 4-gon both

as abab−1 or aabb. A similar situation continues to hold as we move to

planar models with more sides; we are, however, able to use a similar

process to the one above and obtain a complete classification.

As before, we may remove spikes and reduce to the case of a

single vertex. If every pair of edges to be identified includes a sym-

bol and its inverse, then the above proof applies, and the surface is

orientable. Hence a non-orientable surface must include the configu-

ration . . . a0 . . . a0 . . . , as shown in Figure 2.30. Following the same

procedure as in the proof of the theorem, we may remove a Möbius

cap from the surface and replace it with a disc to obtain a planar

model, with fewer edges, of a surface S′.

If S′ is orientable, we apply the theorem and have that our orig-

inal surface S can be represented by the identifications

a0a0a1b1a
−1
1 b−1

1 . . . ambma−1
m b−1

m .

If S′ is not orientable, we use the same argument to remove another

Möbius cap, and continue until we obtain either an orientable surface

or the projective plane aa.
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Recall that gluing a handle to a non-orientable surface is equiv-

alent to gluing two Möbius caps. Hence we may write any non-

orientable surface in terms of the identifications

a1a1a2a2 . . . anan,

which yield a sphere with n Möbius caps. This gives a canonical

form for non-orientable surfaces, although there are others we could

choose; for instance, we can use the above observations to write any

non-orientable surface as either one or two Möbius caps attached to

a sphere with handles.

Lecture 14

a. Chain complexes and Betti numbers. We now turn our at-

tention to a concept which may at first appear quite unnatural, but

which is in fact of great utility, and is central to much of modern

mathematics; the idea of homology. As we will see, the initial def-

initions are purely algebraic, but the theory is central to modern

topology, and also has broad applications in algebra and, somewhat

surprisingly, also in analysis.

We begin with some linear algebra. Rather than considering a

single linear transformation between two linear spaces, we consider a

sequence of linear spaces with certain transformations between them.

This is made precise as follows:

Definition 2.20. A chain complex C is a sequence of linear spaces

Ck over some field (or more generally, modules over a ring) with linear

maps ∂k : Ck → Ck−1, called boundary operators, which satisfy the

identity ∂k ◦ ∂k+1 = 0.

Thus we have a picture reminiscent of an exact sequence:

0
∂m+1−→ Cm

∂m−→ Cm−1
∂m−1−→ · · · ∂2−→ C1

∂1−→ C0
∂0−→ 0.

The requirement that the composition of two consecutive boundary

operators be trivial may be expressed setwise as im ∂k+1 ⊂ ker ∂k;

that is, the image of each boundary operator is a subspace of the ker-

nel of the next. Exact sequences are characterised by the condition
                

                                                                                                               



Lecture 14 93

that this containment is in fact equality for every k. The homol-
ogy groups associated with the chain complex C will, in some sense,

measure how far it is from being exact.

Definition 2.21. Given a chain complex C, the kth homology group
is the quotient

Hk(C) = ker ∂k/ im ∂k+1.

The elements of Ck are referred to as chains. For reasons which

will become apparent when we discuss the application of chain com-

plexes and homology to surfaces, we refer to elements of ker∂k as

cycles, and elements of im ∂k as boundaries. That is, cycles are chains

which are taken to zero by the appropriate boundary operator, and

boundaries are chains which may be obtained as the image of another

chain under a boundary operator. Then the homology groups may

be thought of as comprising cycles modulo boundaries.

The homology groups are quotients of the Ck, and hence carry

the same structure. If the Ck are finite-dimensional vector spaces

over R (or C), then so are the homology groups. We refer to this as

homology with coefficients in R (or C) to indicate what structure the

Hk possess. For such spaces, the only invariant is dimension; that is,

two finite-dimensional vector spaces are isomorphic if and only if they

have the same dimension. So we may describe the homology of C by

the dimensions of the homology groups; these are the Betti numbers
βk = dimHk(C).

Similarly, if the Ck are finitely generated abelian groups (finitely

generated modules over Z), then so are the homology groups, and we

speak of Z-homology, or homology with integer coefficients. In this

case, we have the following fundamental result from algebra:

Proposition 2.2. Any finitely generated abelian group G is isomor-
phic to Zd × F , where F is finite, abelian, and may be written as the
direct product of primary cyclic groups Z/pkZ.

This provides a decomposition of G into the free part Zd and

the torsion part F . We refer to d as the rank of the free part ; the set

{d, pk1
1 , . . . , pkn

n } uniquely determines the group G up to isomorphism,

so the rank of the free part, together with the orders of the primary
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cyclic groups in the torsion part, provides us with a complete system

of invariants.

In this case, we take the Betti number βk to be the rank of the free

part of Hk(C); because this does not completely characterise Hk(C),

certain issues arise in the application of Z-homology that do not arise

when we use real or complex coefficients. This added intricacy is re-

flected in applications, where Z-homology provides more information

than homology with real or complex coefficients.

b. Homology of surfaces. With the exception of some suggestive

terminology (cycles, boundaries, etc.), we have not yet drawn any con-

nection between homological algebra and any geometrical concepts.

In fact, we will find that the connections are rich and meaningful,

and help to clarify the concepts just introduced by relating them to

things we already know from our study of surfaces.

To this end, consider a surface with a triangulation T , or more

generally, any simplicial complex. We will define a chain complex

C(T ), examine the geometric interpretation of the spaces Ck(T ) and

the boundary operators ∂k, and find a striking relationship between

the Euler characteristic χ(T ) and the Betti numbers βk. While the

algebraic definition of C assigned no particular interpretation to the

indices k, for our purposes here they are to be thought of as indicating

the dimension of the objects from which Ck, Hk, βk, etc., will be

determined.

In what follows, we will use the R-homology throughout; we could

just as well use coefficients in C, or in Z, although in this latter case,

certain technical issues arise, which were alluded to above, and we

will postpone these for the time being.

The chain complex C is given by the sequence of spaces and op-

erators

0
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ 0.

We begin by describing the space C0(T ); this is the set of linear

combinations of the vertices of T . This is on a purely formal level,

and is not to be thought of as having any geometric meaning; perhaps

the best visualisation is to put a single real number at each vertex,
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a

b

e

(a)

a

b

c

e1 e2

e3

σ

(b)

Figure 2.31. The boundary operator on (a) edges and (b) faces.

in which case each choice of real numbers corresponds to an element

of C0(T ).

Because the range of ∂0 is trivial, the map itself must be trivial,

so there is nothing to specify here.

What about C1(T )? We begin by giving each edge of T an ori-

entation; C1(T ) is generated by these oriented edges, just as C0(T )

was generated by the vertices. (In that case, we could not speak of

the orientation of a single vertex, so the issue did not arise.) If we are

doing Z-homology, then for some edge e we can think of n · e as rep-

resenting |n| journeys along e in the direction specified when n ≥ 0,

and in the opposite direction when n is negative. If the coefficients

are in R or C, then it is probably best to think of the construction in

a purely formal sense.

Our definition of ∂1 will begin to demonstrate why the maps ∂k

are referred to as boundary operators. Given an oriented edge e, we

must define ∂1(e) as a linear combination of vertices; once we have

done this for each edge, ∂1 will be defined on all of C1(T ), since the

oriented edges form a basis. Suppose our edge e runs from one vertex

a to some other vertex b, as in Figure 2.31(a). Then we may define

∂1(e) = b − a, so that ∂1 of an edge is a linear combination of the

boundaries of that edge.

Because ∂0 is the zero map, the identity ∂0 ◦∂1 = 0 is immediate,

and needs no further verification.

Given our definitions of C0(T ) and C1(T ) as the linear spaces

spanned by the oriented 0-simplices and 1-simplices, respectively, it is
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reasonable to expect that C2(T ) ought to be spanned by the oriented

2-simplices, and this is indeed the definition we make. It is important

to realise here that we do not impose any coherence requirement on

these orientations; they are simply fixed arbitrarily for each face. A

similar observation applies to the orientations of the 1-simplices.

Since ∂3 has trivial domain, it must be a trivial map, so the only

remaining piece of C to identify is the boundary operator ∂2 : C2(T ) →
C1(T ). Analogously to the case with ∂1, we will consider a 2-simplex

σ and define ∂2(σ) as a linear combination of the 1-simplices ei which

form its boundary. The sign on each edge is determined by the relative

orientations of σ and ei; the edge is given a coefficient of +1 if the

orientations agree, and −1 if they disagree. So for the 2-simplex

shown in Figure 2.31(b), we have

∂2σ = e1 − e2 + e3.

Finally, we must verify that ∂1 ◦ ∂2 = 0. (Again, ∂3 is trivial, so

∂2 ◦ ∂3 = 0 is immediate.) This is straightforward; in Figure 2.31(b),

for example, we have

∂1∂2σ = (b − a) − (b − c) + (a − c) = 0.

These definitions can, of course, be continued for k ≥ 3 in the

case of manifolds or simplicial complexes of higher dimension. The

primary difference is that the concept of orientation is no longer as

straightforward to visualise, and must be defined in terms of even

and odd permutations; this poses no additional technical difficulty,

however.

c. A second interpretation of Euler characteristic. The geo-

metric definition of Ck(T ) also lends some legitimacy to the use of

the terms chains, cycles, and boundaries for elements of Ck, ker ∂k,

and im ∂k, respectively. As a concrete example, consider an element of

C1(T ) such as 2e1 +e2−e3 +e4 as shown in Figure 2.32. The individ-

ual edges may be thought of as the links of a chain, which in general

may lie in several pieces, as for instance in the chain e3 + e4 ∈ C1(T ).

Due to the definition of the boundary operator ∂1, a chain lies in

the kernel of ∂1 iff it ‘closes up’; neither of the examples just given

lie in ker ∂1, although e1 + e2 − e3 does. Similarly, the boundaries in
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e1 e2

e3

e4

σ1

σ2

Figure 2.32. A chain of edges in C1(T ).

C1 are those chains which lie in the image of ∂2, and these are seen

to be the boundaries of a chain of 2-simplices. As always, orientation

is important; e1 + e2 − e3 is a boundary, but e1 + e2 + e3 is not.

The condition that ∂k ◦ ∂k+1 = 0 implies that every boundary is

a cycle; the question of which cycles are boundaries is precisely the

issue at the heart of homology theory.

Let Bk(T ) be the dimension of the space of boundaries im ∂k+1,

and Zk(T ) the dimension of the space of cycles ker ∂k. Then the Betti

number βk, which is the dimension of the homology group Hk(T ),

is given by Zk(T ) − Bk(T ). We will now relate this to the Euler

characteristic by determining the relationship between V , E, and F

and the values of Zk and Bk.

The above formula for the Betti numbers uses the following fun-

damental relation from linear algebra:

dimension = rank + nullity.

In our current context, this states that

dimCk = dim im ∂k + dim ker ∂k

= Bk−1 + Zk.

Note that for k = 0, we just have dimC0 = Z0 since ∂0 is the zero

map, and also that B2 = 0 since ∂3 is the trivial map. We now make

the observation that dimC0 is just the number of vertices V , dimC1

is the number of edges E, and dimC2 is the number of faces F . Hence
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we have

χ(T ) = F − E + V

= dimC2 − dim C1 + dimC0

= (B1 + Z2) − (B0 + Z1) + Z0

= (Z2 − B2) − (Z1 − B1) + (Z0 − B0)

= β2 − β1 + β0.

The Euler characteristic is the alternating sum of the Betti numbers!

This provides an alternate definition of the Euler characteristic, which

can easily be extended to higher dimensions for arbitrary simplicial

complexes.

Remark. Since we know that the Euler characteristic is independent

of a particular choice of triangulation, we obtain as a corollary that

the alternating sum of the Betti numbers does not depend of the

triangulation either. As we will soon see, the same applies to each

Betti number separately.

Lecture 15

a. Interpretation of the Betti numbers. Although we now know

that the Betti numbers tell us the Euler characteristic, we do not yet

have a sense of what topological information they may carry on their

own. This interpretation, however, turns out to be quite useful.

Proposition 2.3. Any connected surface has β0 = 1.

Proof. Consider the edges of T . Each has a boundary consisting

of two vertices; if an edge e runs between vertices a and b, then

∂1(e) = b−a, and so the sum of the coefficients of ∂1(e) is 1+(−1) =

0. It follows that the image of any linear combination of edges has

coefficients which sum to zero; that is, every boundary in C1(T ) has

coefficients which sum to zero. It may be checked that this condition is

sufficient; given a chain (of vertices) ṽ =
∑n

i=1 xivi ∈ C1(T ) such that∑n
i=1 xi = 0, find a chain (of edges) ẽ ∈ C2(T ) which corresponds to a

path from vn to vn−1. Then ∂1(xnẽ) = xnvn−1−xnvn, so ṽ+∂1(xnẽ)

also has coefficients which sum to zero, but has only n − 1 non-zero
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coefficients. We may proceed by induction in this way to show that

ṽ ∈ im ∂1, so that ṽ is in fact a boundary. �

In general, β0 is the number of connected components. We turn

next to β2, before returning to ponder the significance of β1.

Proposition 2.4. Any connected orientable surface has β2 = 1; any
non-orientable surface has β2 = 0.

Proof. Let σ̃ =
∑n

i=1 xiσi ∈ C2 be a non-trivial chain (of faces), and

consider under which circumstances we might have ∂2σ̃ = 0. For each

i, ∂2xiσi is a linear combination of three edges, each with coefficient

±xi. Since each edge e appears as a boundary of exactly two faces,

say σi and σj , the coefficient of e in ∂2σ̃ will vanish iff xiσi and xjσj

correspond to a coherent orientation of σi and σj . (Recall that in the

definition of C2, each face is assigned an arbitrary orientation, which

is preserved by positive coefficients and reversed by negative ones.)

Now if σ̃ ∈ ker ∂2, the orientations given to the faces by the

coefficients are all coherent, and so the surface is orientable. Hence a

non-orientable surface has β2 = 0.

Conversely, an orientation on the surface gives rise to an element

of the kernel, as just described. Because the surface is connected, an

orientation on one face induces an orientation on all others, and so

there is only one coherent orientation (up to sign); hence the kernel

has only a single dimension, and β2 = 1. �

Definition 2.22. An orientable surface is homeomorphic to a sphere

with handles. The number of handles is the genus of the surface. For

a non-orientable surface, which must be homeomorphic to a sphere

with Möbius caps, the genus is the number of Möbius caps.

Consider a surface S of genus m. If S is orientable, we have

χ = 2 − 2m, since each handle reduces the Euler characteristic by 2,

and also χ = β0−β1 +β2 = 2−β1. For a non-orientable surface, each

Möbius cap reduces χ by 1, and so 2 − m = β0 − β1 + β2 = 1 − β1.

We have proved the following:

Proposition 2.5. For an orientable surface, β1 is twice the genus.
For a non-orientable surface, β1 is the genus minus one.
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This development of the homology of a surface has so far de-

pended on the particular triangulation T . Indirectly, we have seen

that the Betti numbers at least are independent of the choice of trian-

gulation by giving them a topological interpretation; this is in some

sense cheating, since it only works for surfaces and is not the most

general proof.

In general, while the chain complex C depends on the triangu-

lation T , the homology sequence {Hk} does not. The proof of this

follows exactly the same lines as the proof of Theorem 2.4; we can

define all the relevant concepts for maps as well as triangulations, and

show that homology is preserved by barycentric subdivision, coarsen-

ing, and so on, as we did before. Notice that calculations with maps,

which may have few vertices and faces, are much less cumbersome

that those with triangulations.

Remark. Moving beyond surfaces, the notion of a CW-complex gen-

eralises the definition of a simplicial complex in a way which is similar

to, but more complicated than, how maps generalise triangulations.

These CW-complexes are fundamental objects in the study of modern

topology, but lie beyond the scope of this course.

b. Torsion in the first homology and non-orientability. The

above treatment has glossed over some subtle points that arise for

non-orientable surfaces. On the projective plane, for instance, we

have β1 = 0, which suggests that every cycle of edges may be the

boundary of a chain of faces. This is, however, not true; taking the

sphere with antipodal points identified as our model, consider the

path which runs halfway around the equator. This is a cycle and lies

in the kernel of ∂1, but is not in the image of ∂2.

Here we see the difference between R-homology and the richer

Z-homology; while the first R-homology group of RP 2 is trivial, the

first Z-homology group is Z/2Z, the group of two elements, whose

presence is not noticed by the Betti number.

Exercise 2.13. Calculate the Z-homology of the sphere with m

Möbius caps.
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c. Another derivation of interpretation of Betti numbers. By

considering maps rather than triangulations, we can make the geo-

metric interpretation of the Betti numbers β0, β1, and β2 somewhat

more transparent. As in the proof of Theorem 2.15, we may obtain

any closed compact surface as a planar model on some 2n-gon with

all vertices identified. Then the chain complex

0 −→ C2
∂2−→ C1

∂1−→ C0
∂0−→ 0

is given explicitly (using real coefficients) by

0 −→ R ∂2−→ Rn ∂1−→ R ∂0−→ 0

where C2 = R is the space spanned by the single face, C1 = Rn

the space spanned by the n (pairs of) edges, and C0 = R the space

spanned by the single vertex. Because all vertices are identified, ∂1 =

0; hence

H0 = ker ∂0/ im ∂1 = R/{0} = R

and so β0 = 1. Turning to the boundary operator ∂2, we see that it

takes the edges of the face and ‘forgets’ their order.3 For example, if

our model is an 8-gon σ with identifications abc−1dacb−1d, we have

∂2σ = a + b − c + d + a + c − b + d = 2a + 2d.

If our surface is orientable, it is homeomorphic to the sphere with m

handles, so n = 2m and each symbol appears in pairs a, a−1. Then

ker ∂2 = R = C2 and we have

H2 = ker ∂2/ im ∂3 = R/{0} = R,

which gives β2 = 1. In this case ∂2 = 0 implies that

H1 = ker ∂1/ im ∂2 = R2m/{0} = R2m

and so β1 = 2m is twice the genus.

If our surface is non-orientable, then ker∂2 = {0} and dim im ∂2 =

1, so we have

H2 = {0},
H1 = Rn/R = Rn−1;

3The reader with some knowledge of homotopy theory may see a relationship
between this characterisation of ∂2 and the fact that H1 is the abelianisation of the
fundamental group.
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hence β2 = 0, and β1 = n − 1 is one less than the number of Möbius

caps.

Of course, all of this relies on the fact that our development of

homology theory for triangulations can also be carried out for maps.

This extension is fairly straightforward, since any polygon has two

possible orientations, which can in particular be derived from coherent

orientations of triangles in any triangulation of the polygon. Then we

may define the chain complex associated with a map as we did before,

and proceed verbatim through the development of the theory.

                

                                                                                                               



Chapter 3

Differentiable Structure
on Surfaces: Real and
Complex

Lecture 16

a. Charts and atlases. Thus far we have considered primarily the

topological properties of surfaces, and so the key concept has been

that of a topological manifold, something locally homeomorphic to

Euclidean space. The more combinatorial concepts of triangulations

and maps have entered as auxiliary tools, giving the surface some ex-

tra structure which has proved useful in our classification programme,

but also coming with two drawbacks. The first of these is technical;

we have not established that these concepts are universally applica-

ble, that is, that every surface admits a triangulation. The second

drawback is more aesthetic, having to do with the fact that the extra

combinatorial structure is not particularly natural; triangulations are

effective theoretical tools, and maps have proved useful in performing

computations and classifications, but neither is in any sense a natural

generalisation of the definition of a topological manifold.

The purpose of the present chapter is to study an extra structure

on manifolds which is quite natural; namely, that of a differentiable
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104 3. Smooth Structure

(or smooth) manifold. We begin by recalling the definition of a man-

ifold in terms of coordinate charts, and then impose an added differ-

entiability requirement on the transition maps from one patch (set of

coordinates) to another.

Definition 3.1. A topological space S is a surface if it admits an

atlas. An atlas A on S is a collection of open sets (patches) Uα

together with maps (charts) φα : Uα → R2 such that

(1) The charts cover S; that is,
⋃

α Uα = S.

(2) φα is a homeomorphism for every α.

Given two charts φα, φβ , the transition map between them is

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ).

We say that an atlas A is differentiable (or smooth) if every transi-

tion map is differentiable and has non-vanishing Jacobian determi-

nant. Equivalently, each transition map is to be differentiable with

differentiable inverse.

Note that the collection A may be infinite, or even uncountable.

If we write φβ ◦ φ−1
α (x, y) = (f(x, y), g(x, y)), then the requirement

that the Jacobian determinant is non-vanishing may be rewritten as

det

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
�= 0

for every (x, y) ∈ R2. Given that the transition map is a bijection,

this is equivalent to the condition that the inverse be differentiable.

How differentiable is a differentiable surface? The usual meaning

of the word ‘smooth’, and the one which we will primarily use, is

C∞; that is, infinitely often differentiable. We could also consider

Cr-surfaces, for which the transition maps are only required to have

continuous derivatives up to order r.1

The definition above can be generalised by replacing R2 with Rn,

in which case we replace the word ‘surface’ with the word ‘manifold’,

1The reader should be aware that depending on the context and the author, the
word ‘smooth’ may only imply the existence of finitely many derivatives. In general,
if no further specifics are given, the most common meaning of the word is “as smooth
as need be to guarantee whatever results I’m about to claim.”
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and speak about an n-dimensional differentiable manifold (or some-

times smooth manifold).

Definition 3.2. Two smooth atlases A and B on a surface S are

compatible if the union is a smooth atlas.

In general, a single topological manifold may admit several dif-

ferent mutually incompatible smooth structures. For example, R is a

one-dimensional smooth manifold with atlas A given by a single map,

the identity Id: R → R. We may consider an atlas B = {φ} which is

also given by a single piecewise linear map

φ(x) =

{
x if x ≤ 0,

2x if x ≥ 0.

Because B comprises only a single chart, the only transition map

is the identity map φ ◦ φ−1, hence the atlas is smooth. However,

because φ ◦ Id
−1

= φ is not smooth, A and B are not compatible.

Although incompatible, these differentiable structures on the line,

along with similarly obtained structures on other manifolds, are equiv-

alent in a natural sense; namely, there exists a homeomorphism which

takes one structure into the other. It turns out that in dimensions

one (trivially) and two (via triangulation), all differentiable struc-

tures on a given manifold are equivalent in this sense. We will discuss

this in more detail later; for now we content ourselves with observing

that this fails in higher dimensions, where the situation becomes more

bizarre. The 7-dimensional sphere, for example, admits 28 mutually

non-equivalent differentiable structures.

A brief comment about the local invertibility condition is in order.

In one dimension, the requirement that the Jacobian determinant

be non-vanishing reduces to the condition that f ′(x) �= 0. Given a

map f : R → R with this property, it follows that f−1 exists and is

continuously differentiable. Notice that the inverse may exist if f ′

vanishes, but will not be C1; the standard example is f : x �→ x3, for

which the derivative of f−1 has a singularity at 0.

Moving up a dimension, the two-dimensional version of the In-

verse Function Theorem states that if f, g : R2 → R are C1, and

F = (f, g) : R2 → R2 has non-vanishing Jacobian determinant, then
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Figure 3.1. A regular map with no global inverse.

for any (u0, v0) = F (x0, y0) = (f(x0, y0), g(x0, y0)), there exists some

neighbourhood U of (u0, v0) and a continuously differentiable map

Φ = (φ, ψ) : U → R2 such that Φ ◦ F (x, y) = (x, y) for every (x, y) ∈
Φ(U), and that in addition,

( ∂φ
∂u

∂φ
∂v

∂ψ
∂u

∂ψ
∂v

)∣∣∣∣
(u0,v0)

=

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)∣∣∣∣∣
−1

(x0,y0)

.

An addendum to this theorem is that if F is in fact Ck, then so is its

inverse, so that regularity is passed to the inverse function.

Once local existence of the inverse has been established, the

formula for the Jacobian follows from differentiating the equation

Φ◦F (x, y) = (x, y). It is important to recognise, however, that in the

multi-dimensional case the theorem only guarantees local existence

of an inverse. Figure 3.1 shows an example of a continuously differ-

entiable map from the unit square to itself which has non-vanishing

Jacobian determinant but which is not globally invertible. Thus in

the definition of a smooth manifold, the existence of the global inverse

of a transition map comes not from the Inverse Function Theorem,

but from the bijective nature of the charts φα.

Finally, we note that none of this discussion has made any refer-

ence to metric properties of the surface. These will become important

when we discuss Riemannian manifolds, but play no explicit role in

the theory of differentiable manifolds.

b. First examples of atlases. We have seen a definition of smooth

charts and atlases on a compact surface; the definition works equally

well for non-compact surfaces, and it is natural to consider such cases

since individual charts are already non-compact.
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Example 3.3. The open disc D2 = { (x, y) ∈ R2 | x2 + y2 < 1 } is

a non-compact surface on which we can place a smooth atlas with a

single chart. Using polar coordinates, we may write the chart as

φ : D2 → R2,

(r, θ) �→ (ρ(r), θ),

where ρ : [0, 1) → [0,∞) is to be a smooth function chosen so as

to make φ smooth at the origin. We can play it safe and define ρ

piecewise, setting it to be the identity map on [0, ε) and then choosing

a smooth extension which goes to infinity as r → 1.

It is slightly trickier to write a single explicit formula. We of-

fer one, inspired by elementary considerations from complex analysis.

Consider the map from D2 to the upper half-plane given by the com-

plex equation

(3.1) F (z) =
1 − iz

z − i
.

In real coordinates, this becomes

F (x, y) =

(
2x

x2 + (y − 1)2
,

1 − x2 − y2

x2 + (y − 1)2

)
.

Composing this with the map (x, y) �→ (x, y − 1
y ), which maps the

upper half-plane to the entire plane, we obtain the desired formula:

(3.2) Φ(x, y) =

(
2x

x2 + (y − 1)2
,

1 − x2 − y2

x2 + (y − 1)2
− x2 + (y − 1)2

1 − x2 − y2

)
.

This example shows that if we so desire, we may use the open

disc as the local model for a surface, rather than the entire plane; we

will do this most of the time from now on.

Example 3.4. Another useful method is to use open rectangles as

patches. In this case as well, a single chart is sufficient, since the map

(3.3)

(x, y) �→
(

tan

(
πax

b − a
+

π(a + b)

2(b − a)

)
, tan

(
πcx

d − c
+

π(c + d)

2(d − c)

))
maps the rectangle (a, b) × (c, d) onto the whole plane.

Example 3.5. Any open subset U ⊂ R2 is a non-compact surface

on which we can place a smooth atlas with infinitely many charts. In
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Figure 3.2. Two charts on an annulus.

particular, since U is open, for every point x0 ∈ U there exists r > 0

such that B(x0, r) ⊂ U . Each open disc B(x0, r) is equivalent to

the standard open unit disc via translation and homothety (isotropic

expansion or contraction), whose composition forms the affine map

φx0,r : x �→ x − x0

r

Since the previous example allows us to use the standard open disc

as our model, these charts φ will form a smooth atlas provided the

transition maps are smooth. But these transition maps are just the

composition of two affine maps, and hence are affine maps themselves,

so the result follows.

These examples show that we may use any open subset of R2,

and not just the open disc or a rectangle, as our model for patches

of a surface. Of course, to transform an atlas modeled on different

open sets into an atlas modeled on the disc or the whole plane, we

may have to increase the number of charts.

The last example used infinitely many charts (one for each point)

to cover an open set; it is illuminating to consider what the minimum

number of charts we can use is for various sets.

Example 3.6. By considering the annulus, we see immediately that

it is not always possible to cover the set with a single chart. In

this case, two charts are sufficient, as shown in Figure 3.2, and polar

coordinates give a homeomorphism from each region to a rectangle in

the (r, θ)-plane.

The same result holds for a cylinder, which is homeomorphic to

the annulus. Indeed, the plane with any number of (round) holes can

be covered with two charts, as shown in Figure 3.3, but not with one.
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Figure 3.3. Two charts suffice to cover R
2 with holes.

Lecture 17

a. Differentiable manifolds. We now have in our hands the defini-

tion of a differentiable manifold. While this definition is rather more

involved than the definition of a topological manifold, it is in many

ways a better object to work with. The key property of the latter was

that at the local level, it has the topological structure of Euclidean

space; by requiring that the differentiable structure be carried over

as well, we place local coordinates on the manifold, which enable us

to use the whole arsenal of tools from multivariable calculus.

It is worth noting that a particular set of local coordinates has

no intrinsic meaning; the same smooth structure may be described by

many different sets of local coordinates around a point. This fact has

two important consequences in our treatment of smooth manifolds.

The first consequence is that we must always be concerned with

how things behave with respect to allowable changes of coordinates; it

is important to understand what happens on the regions where charts

overlap when we work in the various sets of local coordinates which

are available to us.

The second consequence is that we will eventually be motivated

to establish coordinate-free notation for the objects with which we

are concerned, and to give definitions which make no reference (or as

little reference as possible) to a particular system of local coordinates.

This will allow us to avoid the technical drudgery of working through

coordinate changes at every turn.

We recall the definition of a smooth chart on a surface S; an open

set U ⊂ S, together with a homeomorphism φ : U → D2. The local

coordinates on U are given by φ−1 : D2 → U , as shown in Figure 3.4,
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Figure 3.4. Two charts and their transition map.

and the condition that a collection of charts forms a smooth atlas is

given by the requirement that the transition maps φ◦ψ−1 be smooth

and satisfy the conditions of the Inverse Function Theorem. That

is, we require the Jacobian matrix to be invertible at each point,

from which the theorem allows us to conclude the existence of a local

inverse.

b. Diffeomorphisms. A major theme in modern mathematics is

the investigation of various sorts of structures. To wit, we begin with

a set X and proceed to list certain axioms or properties which are to

be satisfied by the elements of X; in this way we may place on X the

structure of a group, a metric space, a vector space, etc.

Having made this intrinsic definition, we must then confront the

question of just what it means for two such objects to be indistin-

guishable from this intrinsic point of view. In order to answer this

question, we must establish a particular equivalence relation on the

class of all objects endowed with the structure we defined. These

equivalence relations are fundamental to the study of these objects;

some familiar examples are shown in the table.
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Structure Equivalence relation

sets bijection

groups isomorphism

linear transformations conjugacy

metric spaces isometry

topological spaces homeomorphism

smooth manifolds diffeomorphism

If we restrict to a subclass of examples of a particular structure,

we use the same equivalence relation. So, for example, the proper

equivalence relation on the class of finitely generated abelian groups

is still isomorphism, just as it is for groups in general, and the equiva-

lence relation for topological manifolds is still homeomorphism, since

they form a subclass of the class of topological spaces.

The eventual goal, when it is possible, is to understand a partic-

ular sort of structure by obtaining a complete classification. That is,

we explicitly construct a list of examples of the structure with the

property that every other example of the structure is equivalent to

something on our list. For example, this is accomplished by Jordan

normal form in the case of (finite-dimensional) linear transformations.

It often happens that we must restrict to a subclass, as discussed

in Lecture 4, in order to have any hope of a complete classification.

For example, it is sheer folly to attempt a complete classification of

all groups, but classification theorems have been obtained for finitely

generated abelian groups, and even for finite simple groups. Similarly,

topological spaces resist a general classification, but we have seen a

classification of the subclass of two-dimensional topological manifolds;

we will now consider the specific case of differentiable manifolds.

Definition 3.7. Given two smooth surfaces S and S′ with atlases

A and A′, respectively, and a homeomorphism f : S → S′, any chart

φ : U → D2 in A can be carried to a chart φ ◦ f−1 : f(U) → D2 on

S′. If we do this for all charts in A, we obtain a smooth atlas Ã on

S′; we say that f is a diffeomorphism if Ã and A′ are compatible.

This is a rather formal definition. To make it more intuitive, we

may observe that f : S → S′ is a diffeomorphism if it is a bijection
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whose representation φ ◦ f ◦ ψ−1 in any pair of local coordinates is a

smooth function with invertible matrix of derivatives.

Exercise 3.1. Prove that the standard flat torus is diffeomorphic to

the standard torus of revolution.

We are now faced with the problem of classifying smooth surfaces

up to diffeomorphism. It is natural to ask whether all surfaces admit

a differentiable structure, and if so, whether this structure is unique.

The proof that the answer to both questions is yes will come later,

via triangulations and maps. For the time being, we investigate the

relationship between triangulations and smooth structures.

Proposition 3.6. Given a triangulation T of a surface S, there exists
a smooth atlas A on S, and vice versa.

Idea of proof. To define a smooth atlas, we must first exhibit a

chart at each point of the surface, and then show that the transition

maps are smooth. There are three kinds of points on S; those lying

in the interior of a 2-simplex, those lying on an edge, and those lying

at a vertex. Since the affine coordinates on each 2-simplex provide

a homeomorphism between its interior and the interior of a triangle,

we have a natural chart on each interior point.

Edge points are also relatively straightforward to deal with; be-

cause the barycentric coordinates on neighbouring 2-simplices must

agree on their edge of intersection, there is a natural homeomorphism

between the interior of their union and the interior of a quadrilateral

(the union of two triangles), which gives a chart at each point on the

edge.

Vertices are another matter—we want to follow the same ar-

gument that we can simply take the union of the neighbouring 2-

simplices and obtain a chart from the homeomorphism, but the näıve

approach fails. The reason for this is that the angles around our ver-

tex may not add up to 2π; recall our discussion in Lecture 3 of an ant

or some other two-dimensional creature wandering around the sur-

face of a dodecahedron. Points on an edge are indistinguishable from

points on a face, but vertices are different, precisely for the reason

that the sum of the angles may not be 2π (recall Figure 1.18).
                

                                                                                                               



Lecture 17 113

Having understood the problem, it is no great challenge to address

it properly, and we will do so in the next lecture.

The proof in the opposite direction, the construction of a trian-

gulation given a smooth structure, requires certain tools in order to

reconcile triangulations within different coordinate charts. We choose

to do it using a Riemannian metric and taking short geodesic arcs as

edges of the triangles; this will be discussed in Lecture 31. �

At this point it is natural to give an interpretation of orientability

in terms of smooth structure. There are two possible orientations on

R2, corresponding to declaring either clockwise or counterclockwise

as the positive direction of rotation.2 This orientation is naturally

inherited by a chart on a surface; orientability of a surface corresponds

to the possibility of choosing one of the two orientations on each chart

so that they match on the intersections.

Exercise 3.2. Prove that if for a particular atlas on a surface (com-

pact or not) the transition maps between any two charts have pos-

itive determinant at any point of intersection, then the surface is

orientable.

c. More examples of charts and atlases. We can interpret some

of the examples from the previous lecture as constructions of diffeo-

morphisms between various manifolds. Specifically, we proved that

the disc and rectangles are diffeomorphic to the whole plane R2,

with formulae (3.2) and (3.3) providing the corresponding diffeomor-

phisms.

More generally, we can say that a (two-dimensional) differentiable

manifold which admits an atlas consisting of a single chart is diffeo-

morphic to R2. Motivated by this observation, we may look for more

examples of this sort.

Example 3.8. Any bounded convex region U in the plane can be

covered with a single chart. Simply fix a point p ∈ U ; then the idea

is to stretch or shrink each line segment from p to the boundary of U

so that they are all the same length, and we obtain a copy of D2. If

2The definition of orientability in higher dimensions is not quite so straightfor-
ward, and requires consideration of even and odd permutations.
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we do this in the obvious linear way, we will obtain a map which is

not differentiable at p, so we must construct it piecewise, as suggested

last time for the diffeomorphism between D2 and R2; near p the map

is taken to be the identity, so that all the stretching and shrinking

happens away from a neighbourhood of p.

This argument does not use the full strength of the convexity of

U , but rather relies only on the fact that each ray from p intersects

the boundary precisely once; a region U satisfying this condition for

some p ∈ U is said to be star-shaped or convex from a point.

Passing from open subsets of the plane—where there is a natural

smooth structure provided by any covering with discs—to other more

general surfaces, we face the problem of defining a natural smooth

structure.

Consider, for example, the surface S defined by an equation of

the form F (x, y, z) = 0, where F is a smooth function with no crit-

ical points at the zero level. Then at every point of S, at least one

of the partial derivatives does not vanish, and hence by the Implicit

Function Theorem, the corresponding coordinate can be expressed as

a differentiable function of the other two. This gives a local chart in

a small neighbourhood of the point. Compatibility—that is, smooth-

ness of the transition maps between two charts—is obvious if the

charts are obtained using the same coordinate but has to be checked

if different coordinates are used. This will be done carefully in the

next lecture. In the meantime, let us consider the specific example of

the round sphere.

Example 3.9. Following the above recipe, one can try to project the

sphere to each of the coordinate planes; consider first the horizontal

xy-plane. Each hemisphere projects bijectively onto the unit disc and

is thus covered by a chart, as was shown in Figure 1.10. The equator

is not covered by either of these charts (recall that patches are open

sets), but it is covered by the four charts arising from the projections

to the four remaining vertical coordinate planes.

Now we must check compatibility of the charts by confirming that

the transition map between any two charts is differentiable. Without

loss of generality, consider the intersection of the two charts on the
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hemispheres defined by y > 0 and z > 0. In the first chart, x and

z may serve as coordinates; in the second, we use x and y. The

coordinate charts are given by the projections φ : (x, y, z) �→ (x, z)

and ψ : (x, y, z) �→ (x, y), and their inverses are

φ−1(x, z) =
(
x,
√

1 − x2 − z2, z
)

,

ψ−1(x, y) =
(
x, y,
√

1 − x2 − y2
)

.

These lead to the transition maps

ψ ◦ φ−1(x, z) =
(
x,
√

1 − x2 − z2
)

,

φ ◦ ψ−1(x, y) =
(
x,
√

1 − x2 − y2
)

,

and we see that

∂y

∂z
=

−2z√
1 − x2 − z2

< 0,

∂z

∂y
=

−2y√
1 − x2 − y2

< 0.

Since obviously ∂x/∂x = 1, these derivatives are precisely the corre-

sponding Jacobian determinants, and so the transition maps (x, z) �→
(x, y) and (x, y) �→ (x, z) from one coordinate system to the other

both satisfy the compatibility condition. A similar analysis goes

through for transition maps involving the other four charts in our

atlas.

As we have already seen, the atlas in this example is not the only

atlas we might put on the sphere. There are other, more economical,

atlases available, which turn out to generate the same differentiable

structure.

As the sphere is compact, and hence not homeomorphic to the

plane, it cannot be covered with a single chart; however, it can be

covered with just two, via stereographic projection from two antipodal

points. Notice that stereographic projection from a point p maps the

S2 \ {p} onto the plane, thus providing a chart on the sphere with a
single point removed, as was shown in Figure 1.11.
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Figure 3.5. An atlas on T
2 with four charts.

Exercise 3.3. Prove that the stereographic projections from two

antipodal points are compatible with each other and with the hemi-

spheric charts described above.

Exercise 3.4. Let F be a differentiable convex function on R3; i.e.

F (t�x + (1 − t)�y) ≤ tF (�x) + (1 − t)F (�y)

for every �x, �y ∈ R3 and t ∈ [0, 1]. Suppose that c is a regular value

of F and that the surface F = c is non-empty and compact. Show

that this surface is diffeomorphic to the standard sphere given by

x2 + y2 + z2 = 1.

Example 3.10. The standard flat torus illustrates another way to

introduce a natural differentiable structure, which is somewhat less

visual, but which does not require even elementary calculations of

the kind we performed for the sphere. Namely, one simply projects
the standard smooth structure from the plane R2 to the torus R2/Z2.

To do that, notice that every disc of radius less than 1/2 is mapped

injectively to the torus by the natural projection, and thus defines

a chart. As in the case of open subsets of the plane, the transition

maps between local coordinates coming from different discs are given

by affine maps, hence the charts are compatible.

One can immediately address the question of the minimal num-

ber of charts required. Four is obviously sufficient (Figure 3.5)—the

torus is covered by the discs of radius 2/5 centered in the center of

the square, at the midpoints of two non-identified sides, and at the

vertex. If instead of discs one uses certain other domains in the plane

which allow a single chart, one can reduce this number to three. Two

charts are not sufficient to cover the torus, but the proof is far from

straightforward.
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Lecture 18

Until the last few examples of the preceding lecture, we had dealt

primarily with smooth manifolds in the abstract. Those examples

illustrated some possible techniques for defining smooth structures on

particular sorts of manifolds; we will now examine systematic methods

for this process. Since the definition of a smooth surface is given in

terms of charts from the surface to the plane, the first idea is of course

to inherit a smooth structure directly from the plane by defining the

charts explicitly. We will also see examples in which a surface inherits

its smooth structure from another surface with which we are already

familiar.

a. Embedded surfaces. First, consider embedded surfaces in R3.

That is, let F : R3 → R be a smooth function, let S = { (x, y, z) ∈
R3 | F (x, y, z) = 0 } be its zero set, and assume that 0 is a regular

value for F . There are two basic methods of associating a smooth

atlas with this surface.

Coordinate projections. Each (x, y, z) ∈ S is a regular point, and

hence the gradient ∇F (x, y, z) �= 0, so the Implicit Function Theo-

rem gives us coordinate charts around each point via projection to

one of the three coordinate planes in R3, as we have already seen.

The Implicit Function Theorem also guarantees smoothness of the

transition maps, and it follows that these projections define a smooth

atlas on S.

Tangent plane projections. We may also take a more symmetric and

geometrically natural approach and project not to the coordinate

planes, but to the tangent planes at each point. Aside from an in-

trinsic aesthetic appeal, this method has an advantage of distorting

geometry of the surface in the minimal possible way, since projection

carries a neighbourhood of each point to the plane best fitted to the

surface at that point. A disadvantage of this method is that it is more

complicated computationally.

b. Gluing surfaces. A second method for obtaining a smooth struc-

ture is to take two or more surfaces on which we have a known smooth

structure, cut a certain number of holes in each of them, and then
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Figure 3.6. Gluing to get a sphere with two handles.

glue along these holes. This is illustrated in Figure 3.6, which shows

two copies of a sphere with three holes being glued together to obtain

a surface of genus two.

Topologically, a sphere with a hole is simply a disc, so a sphere

with n holes is homeomorphic to a disc with n− 1 holes (Figure 3.7).

There is a natural smooth structure on the disc, coming from the

plane, and so each of the two pieces in Figure 3.6 has a smooth struc-

ture. If we are careful in how we glue the two pieces together, and

glue along a neighbourhood of the boundary (since the patches need

to overlap), then it may be checked that these give rise to a smooth

structure on the union, which in this case is a sphere with two handles.

Since we saw in the previous lecture that a disc with any number

of (circular) holes can be covered with two charts, this construction

shows that a sphere with any number of handles admits an atlas with

four charts; by the classification theorem, we can now put a smooth

structure on any orientable surface which admits a triangulation.

c. Quotient spaces. A third construction is available any time we

are considering a quotient space and already have a smooth structure

on the covering surface. This was the case in the example at the
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Figure 3.7. A sphere with three holes.

end of the previous lecture, where the torus was to inherit its smooth

structure from the plane, its cover.

Suppose π : S̃ → S is a quotient map. We would like to define

charts on S as images of charts on S̃; unfortunately, this fails in

general, because if we begin with ‘too large’ a patch U on S̃, the map

π : U → π(U) may not be injective. However, because open subsets of

patches can also be used as patches, we can guarantee injectivity by

only considering images of charts whose patches are ‘small enough’ in

precisely that sense.

For the example of the flat torus T2 = R2/Z2, the covering space

was R2, and the quotient map π was the map taking each point to its

equivalence class under integer translations. Then the condition that

a patch on R2 be ‘small enough’ is the requirement that it contain

no more than one element from each equivalence class; for example,

a disc of radius >
√

2 is mapped to the whole torus by π, and is too

large, while any disc of radius < 1/2 works just fine.

Applying this approach to the sphere with six charts given by

projecting each hemisphere to the appropriate coordinate plane, we

obtain a smooth atlas on the projective plane which consists of three

charts, since each pair of opposite hemispheres need only be covered

once in the quotient space. This same technique lets us put a smooth

atlas on any non-orientable surface admitting a triangulation, since

any such surface is has an orientable double cover, which admits a

smooth structure as discussed above.
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Figure 3.8. Patches for a planar model on the octagon.

We will show later that any compact surface admits a smooth

atlas with just three charts. It is much more difficult to prove that

this is nearly always optimal, in that except in the case of the sphere

(which can be covered with just two charts via stereographic projec-

tion), no smooth atlas with two charts exists.

d. Removing singularities. Suppose we wish to put a smooth

structure on a sphere with two handles via the standard planar model

on an octagon, using the method just described for quotient spaces.

At points in the interior of the octagon, and along the edges, there

is no trouble; as shown in Figure 3.8, we may simply take as a patch

containing the point a small disc which does not contain any vertices

of the octagon, and use as our chart the standard affine map between

our disc and the standard one.

Around the single vertex v (recall that all eight vertices of the

octagon are identified), things do not work out quite so neatly. A

small disc around v has eight components in the planar model, each

of which is a pie piece subtending an angle of 3π/4. Combinatorially,

they are to be ordered cyclically to give a neighbourhood homeomor-

phic to a disc, but this cannot be carried out näıvely since their angles

sum to 6π, rather than 2π. Thus it is not immediately obvious what

the homeomorphism between the disc around v and the standard disc

ought to be.

There are several ways of resolving this difficulty, which is repre-

sentative of a whole class of situations where a natural structure pos-

sesses isolated singularities. One particularly elegant solution comes

from complex analysis.
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The map z �→ z3 is a smooth map from the unit disc in the

complex plane to itself under which each point (besides the origin)

has exactly three preimages. We may choose a particular branch of

the inverse function z �→ z1/3 so that the wedge{
z ∈ C

∣∣∣ |z| < 1, arg z ∈
[
0,

3π

4

]}

is mapped to the wedge{
z ∈ C

∣∣∣ |z| < 1, arg z ∈
[
0,

π

4

]}
.

If we ‘squeeze’ each of the eight wedges in this way (after a suit-

able rescaling to obtain a radius of 1), their union is precisely the unit

disc (after appropriate rotations), as shown in Figure 3.8. Notice that

the transition maps between this chart and the charts around nearby

points in the interior are in fact smooth. This can be easily seen since

the interior and edge charts are obtained from the standard Euclidean

coordinates by affine transformations, so the transition functions to

and from the vertex chart are given by compositions of affine trans-

formations with the coordinate expression of the function z �→ z3 and

its inverse away from the origin, which satisfy both differentiability

and Jacobian invertibility conditions.

A version of this method allows us to introduce a smooth struc-

ture on a surface with a triangulation; by adjusting angles of triangles

near a vertex, their sum may be made equal to 2π in a way compati-

ble with the natural smooth structure inside the triangles and around

the edges.

Lecture 19

a. Riemann surfaces: Definition and first examples. The idea

of using one complex variable rather than two real ones for our co-

ordinate charts has very rich results, and the method of the previous

example bears more fruit than one might at first expect. We must

begin our (brief) foray into the subject of complex manifolds with a

definition from basic complex analysis.
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Definition 3.11. Given an open domain U ⊂ C, a map f : U → C
is holomorphic if the derivative

f ′(z) = lim
h→0

1

h
(f(z + h) − f(z))

exists for every z ∈ U .

For computational purposes, existence of f ′ is often checked via

the Cauchy-Riemann equations. Geometrically, the requirement is

that f preserve (signed) angles between smooth curves as a map from

R2 to R2; such a map is called conformal.

In striking contrast to the real case, existence of a single complex

derivative is enough to guarantee that f is smooth, and even analytic;

not only must f have infinitely many continuous derivatives, but there

is a neighbourhood around each point z ∈ U on which the power

series expansion of f converges absolutely to f . This equivalence of

holomorphicity and analyticity for complex functions is one of the

most fundamental theorems in complex analysis.

A consequence of this is that the class of holomorphic functions

C → C is in some sense smaller and more rigid than the class of

differentiable, or even smooth, functions R2 → R2. Given two smooth

functions f and g on separated domains U, V ⊂ R2, we can ‘glue’

them together to obtain a smooth function h : W → R2, where W ⊃
U ∪V , with h|U = f , h|V = g. The principle of analytic continuation

prevents a similar procedure from being possible in the complex plane.

Definition 3.12. A complex manifold is a topological space equipped

with a holomorphic atlas; that is, each point has a neighbourhood

homeomorphic to the open disc in C, such that the transition maps

between charts are holomorphic. A one-dimensional complex mani-

fold is called a Riemann surface.

Note that a Riemann surface has one complex dimension, and

hence two real dimensions, so it is in fact a surface in the sense that

we have been discussing.

There is a natural complex structure on R2 making it into the

Riemann surface C. Notice that since the model for a chart is a unit

disc and not C itself (a distinction which will have a significance here
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that it did not in the real case), we need to produce an atlas. We

can of course cover C by infinitely many discs and observe that the

transition maps are translations, which are obviously holomorphic.

More interestingly, one can produce a finite atlas by noticing that

there is an invertible holomorphic function which maps any half-plane

onto the unit disc. For the upper half-plane, this function is given by

the inverse F−1 of equation (3.1), and for an arbitrary half-plane H

by the composition of F−1 with a complex affine map taking H into

the upper half-plane. Thus one can take two half-planes Im z > 0 and

Im z < 1 as charts.

Any connected open domain in C inherits a complex structure

from C itself, and hence is a Riemann surface. Together with the

above observation, this shows, as in the real case, that we can use

any simply connected open subset of C, including C itself, as the

model for our atlas, rather than restricting ourselves to the unit disc.

Another set of examples are the flat tori C/L introduced in Ex-

ercise 1.22, since transition maps are given by translations, which in

complex notation have the form z �→ z + c and are obviously differ-

entiable as complex functions. We consider these surfaces in more

detail later.

The next example is the sphere S2, which can be made into the

Riemann sphere by equipping it with a complex structure as follows:

As a topological space, the sphere is the one-point compactifica-

tion of the plane. Setwise, we write this as S2 = C ∪ {∞}; that is,

we obtain the Riemann sphere by adding a point at infinity to the

complex plane. Then we have an atlas consisting of two charts; the

first is given by the identity map C → C, and the second is given by

the reciprocal map

S2 \ {0} → C,

z �→ 1

z
.

These are very closely related to stereographic projection; topolog-

ically speaking, the atlases are equivalent, and a comparison of the

formulae is left as an exercise.
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The Riemann sphere is arguably the most important example of

a Riemann surface, even more so than C itself. As justification for

this claim, consider a fractional linear transformation of the form

f : z �→ az + b

cz + d

where a, b, c, d ∈ C. As a map from C to itself, f has a pole at

z = −d/c, where the transformation is undefined, and the range of the

transformation is not the entire complex plane, but rather C−{a/c}.
However, if we consider f as a transformation of the Riemann sphere

S2, then it is in fact a bijection, with f(−d/c) = ∞ and f(∞) = a/c.

A similar consideration applies to any rational function

f : z �→ P (z)

Q(z)

where P, Q are polynomials in z. By including the point at infinity in

our space, we allow the map to be well-defined everywhere, although

for non-linear polynomials it will no longer be one-to-one.

So the sphere is a Riemann surface; what about the other compact

surfaces? Consider the construction in the last lecture of a smooth

structure on the surface of genus two via its planar model on the

octagon with pairs of opposite sides identified. In light of our subse-

quent definition of complex structure, we see that this is in fact what

we constructed, and so the surface of genus two can be made into a

Riemann surface. An immediate generalisation of this procedure to

polygons with more sides shows that any compact orientable surface,

whatever its genus, can be made into a Riemann surface.

This leaves the non-orientable surfaces to be considered. We

know that every non-orientable surface has an orientable double cover,

which admits a complex structure by the above discussion. It is nat-

ural to ask whether this structure is inherited by the non-orientable

quotient space; for example, is RP 2 a Riemann surface, inheriting

a complex structure from the Riemann sphere? In fact, it is not;

because holomorphic maps preserve signed angles (which we will see

later in this lecture), it can be shown that any surface admitting a

holomorphic structure is in fact orientable, which prohibits the exis-

tence of such a structure on the projective plane, or any other non-

orientable surface. The essential obstacle is the fact that complex
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conjugation, z �→ z̄, is not a holomorphic map, because while it pre-

serves the magnitude of angles, it does not preserve their sign.

b. Holomorphic equivalence of Riemann surfaces. Just as the

notion of diffeomorphism provided an equivalence relation for real dif-

ferentiable surfaces, there is a notion of holomorphic equivalence for

complex (Riemann) surfaces. As we will soon see, rigidity of holo-

morphic functions implies that complex manifolds which are diffeo-

morphic as real differentiable manifolds may not be holomorphically

equivalent. In particular, the unit disc is not holomorphically equiv-

alent to C.

The existence of Riemann surfaces which are not holomorphi-

cally equivalent despite being diffeomorphic means that holomorphic

equivalence is stronger than diffeomorphism. Thus, although a given

surface admits only one smooth structure up to diffeomorphism, it

often admits many different non-holomorphic complex structures.

As a first example of this phenomenon, we demonstrate that al-

though the disc D2 and the plane C are equivalent as smooth mani-

folds, they are not equivalent as complex manifolds. We demonstrated

that they are diffeomorphic by showing that D2 is diffeomorphic to

the upper half-plane, which is in turn diffeomorphic to C. The first

of these diffeomorphisms can in fact be chosen to be a holomorphic

equivalence, as in equation (3.1), so that D2 is equivalent to the upper

half-plane as a Riemann surface. However, the diffeomorphism from

the upper half-plane to C is not a holomorphic equivalence, and in

fact, no such equivalence exists.3

The fact that D2 and C are not holomorphically equivalent is a

consequence of Liouville’s theorem, which states that any function on

the entire complex plane C which is both holomorphic and bounded

must in fact be constant; this is in turn a consequence of Cauchy’s

integral formula, one of the fundamental results in complex analysis.

Once this theorem is known, we can simply observe that any polyno-

mial p(z) is holomorphic and bounded on D2, so that if ψ : C → D2

were a holomorphic equivalence, then ψ ◦p would be a bounded holo-

morphic function on C, contradicting the theorem.

3The reader with some knowledge of hyperbolic geometry may wish to consider
the ramifications of this paragraph in that context.
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Using various elementary functions, one can construct holomor-

phic equivalences between the unit disc and a variety of plane do-

mains.

Exercise 3.5. Construct a holomorphic equivalence between the unit

disc D2 = { z ∈ C | |z| < 1 } and

(1) the strip { z ∈ C | 0 < Re z < 1 };
(2) the half-strip { z ∈ C | 0 < Re z < 1, 0 < Im z };
(3) the unit square { z ∈ C | 0 < Re z < 1, 0 < Im z < 1 };
(4) the exterior of an ellipse, together with the point at infinity.

In fact, the holomorphic non-equivalence between the complex

plane and the disc (and hence any of the domains listed above) makes

the whole plane rather an exception. The celebrated Riemann Map-
ping Theorem asserts that any proper subset of C homeomorphic to

the unit disc is, in fact, holomorphically equivalent to it.

A further example of diffeomorphic Riemann surfaces which are

not holomorphically equivalent is given by complex tori. As in Exer-

cise 1.22, consider any lattice in the complex plane given by

L = {mu + nv | m, n ∈ Z }

where u, v ∈ C = R2 are linearly independent over R. Then C/L is

a Riemann surface which is diffeomorphic to the standard flat torus

T2 = C/Z2, but which may carry a different complex structure.

Proposition 3.7. Given two lattices L1, L2 ⊂ C, the tori C/L1 and
C/L2 are equivalent as Riemann surfaces if and only if there is a
linear holomorphic function F such that FL1 = L2.

Proof. We will use Liouville’s theorem once again.

Let f : C/L1 → C/L2 be a holomorphic equivalence. Extending

to the covering space C, we obtain a holomorphic function F on C
which maps each translation of L1 onto a translation of L2. Take

two generators u and v of L1. Then F (z + u) − F (z) ∈ L2 and

F (z + v) − F (z) ∈ L2 for every z ∈ C, hence both differences are

constant because they vary continuously within the discrete set L2.

Differentiating, we obtain F ′(z) = F ′(z + u) = F ′(z + v), and so F ′
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is holomorphic and doubly periodic, hence bounded. By Liouville’s

theorem, it is a constant, and hence F is a linear function. �

There are other interesting examples of holomorphic equivalence.

For example, since holomorphic maps act transitively on the Riemann

sphere, the Riemann sphere with any point removed is holomorphi-

cally equivalent to C.

The exponential function has period 2πi and misses the values

0 and ∞. Moreover, it takes every other value exactly once in the

domain 0 ≤ Im z < 2π. Thus it gives a holomorphic equivalence

between the cylinder C/2πiZ and the Riemann sphere with the two

points 0 and ∞ removed.

Exercise 3.6. Prove that the Riemann sphere with any two points

removed is holomorphically equivalent to the cylinder C/uZ for any

u ∈ C.

Exercise 3.7. Prove that the Riemann spheres with any three points

removed are all holomorphically equivalent.

c. Conformal property of holomorphic functions and invari-
ance of angles on Riemann surfaces. It is instructive to con-

sider the geometric significance of all this; what geometric structure

is preserved by complex equivalence that is not preserved by smooth

equivalence?

We began our discussion of surfaces with purely topological con-

siderations; at the local level, a surface looks like R2, so we can define

coordinates on the surface. By adding a smooth structure and re-

quiring that the transition maps φ ◦ ψ−1 be not only continuous,

but differentiable, we gave meaning to the notion of direction on the

surface; we will soon examine this in more detail when we consider

tangent spaces. Most recently, we have added a complex structure,

which demands that the transition maps be holomorphic; geometri-

cally, they must preserve signed angles, so we can now speak about

angles on the surface without reference to a particular coordinate

chart.

Let us make this more explicit. Given two smooth curves γ and η

on our surface which intersect in a point p, we may take a chart φ on
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Figure 3.9. Conformal maps preserve angles.

a neighbourhood of p. Then φ(γ) and φ(η) are smooth curves in the

complex plane which intersect at 0. We may take the tangent lines

to these curves, measure the (signed) angle between them, and then

declare this to be the angle between γ and η at p. Had we taken some

other chart ψ, we would have measured the angle between the two

curves ψ(γ) and ψ(η) in C; however, because these are the images of

the curves φ(γ) and φ(η) under the transition map ψ ◦ φ−1, which

preserves signed angles because it is holomorphic, we would obtain

the same measurement. Thus our definition is independent of the

particular choice of coordinate chart.

The fact that holomorphic functions preserve angles is a standard

one from complex analysis, and is not difficult to see using some basic

ideas from calculus. In the context of functions of one real variable,

the usual linear approximation to f : R → R at a point x0 is given by

the map

x �→ f(x0) + f ′(x0)(x − x0)

and has a graph which is simply the tangent line at (x0, f(x0)) to the

graph of f . In higher dimensions, the derivative f ′(x0) is replaced by

the Jacobian matrix; in the case of a map φ : C → C in one complex

variable (for example, the transition map between two charts), we

have the complex derivative φ(z0) (which may be thought of as a 2×2

real matrix in a standard way). Because φ is analytic, we may use

the power series expansion around z0 on some small neighbourhood:

φ(z) = φ(z0) + φ′(z0)(z − z0) + (higher order terms).

Given two curves through z0 meeting at an angle θ, we want to confirm

that their images under φ also meet at the angle θ. The constant term

φ(z0) merely gives the point of intersection, and does not affect the

angle. The higher order terms also have no effect on the angle, since
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0

i

M

Figure 3.10. Fundamental domain for the modular surface.

they do not affect the tangent lines to the images of the curves at

φ(z0).

Hence we need only examine the effect of multiplication by the

complex number φ′(z0). The geometric effect of multiplication by

a complex number is homothety (expansion or contraction by the

modulus of the number) followed by rotation (by the number’s argu-

ment); both of these preserve the angle between two lines, and hence

holomorphic maps preserve angles.

d. Complex tori and the modular surface. We will now build

upon the classification of the complex tori given by Proposition 3.7.

Exercise 3.8. Let L1 and L2 be two lattices in C. Show that the

tori C/L1 and C/L2 are holomorphically equivalent if and only if the

angle from a shortest vector to a shortest non-collinear vector in each

of the lattices is the same and the ratios of the lengths of those vectors

are equal.

This exercise shows that there is a two-parameter family of differ-

ent complex tori; one parameter is the angle between the generating

vectors, and the other is the ratio of their lengths. The next exer-

cise examines a standardised way of choosing the generators for the

lattice.

Exercise 3.9. Show that one can choose the shortest vector u in a

lattice to be 1, and the second shortest v to be in the region

(3.4) M = { z ∈ C | |z| ≥ 1, |Re z| ≤ 1/2 }
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shown in Figure 3.10. In addition, show that this requirement de-

termines v uniquely if it lies in the interior of M, and that if it

lies on the boundary, then it is determined up to the identifications

−1
2 + it ∼ 1

2 + it on the vertical boundary and z ∼ −1/z on the

circular part.

Notice that since z �→ z +1 and z �→ −1/z are holomorphic func-

tions, the domain M with the given identifications possesses a natural

complex structure, with the exception of the two ‘conic’ points i and
±1+

√
3i

2 , where the total angle after making identifications collapses

to π and 2π/3, respectively. This can be relieved by introducing the

coordinates w = (z − i)2 and w = (z − 1+
√

3i
2 )3 near those points.

However, it turns out to be more useful to keep the conic points

and consider M as a complex surface with two conical singularities

somewhat similar to the standard cone (1.3). It is called the modular
surface, and plays an extraordinarily important role in number theory

and the theory of group representations.

We have thus encountered a very interesting phenomenon: the

collection of classes of Riemann surfaces on the torus (up to holo-

morphic equivalence) is itself naturally endowed with the structure

of a Riemann surface! The presence of a complex structure on this

collection of equivalence classes, called Teichmüller space, is a sim-

ple, albeit highly non-trivial, manifestation of a general phenomenon

seen throughout different areas of mathematics, wherein the set of

invariants of a structure of a certain kind itself possesses a similar

structure.

Lecture 20

a. Differentiable functions on real surfaces. In various aspects

of the study of surfaces, an important role is played by the class of

‘nice’ functions on a given surface. For complex (Riemann) surfaces,

the natural class to consider is the set of compex-valued holomorphic

functions, while for real smooth surfaces, one considers differentiable

real-valued functions. There is an important difference here; in the

complex case, we deal with functions of one (complex) variable, and

so the dimensions of the domain and the range are same, while in
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the real case, we consider functions of two (real) variables. In the

complex case, then, the level set of a given value z, that is, the set

of points on the surface at which f takes the value z, is generally a

discrete set of points, while in the real case, the level set is usually

a smooth curve. In particular, this allows the possibility of ‘building

up’ a real smooth surface by considering the level sets of a sufficiently

nice function; this procedure, which we will do later on in this lecture,

is one of the basic constructions of Morse theory.

Definition 3.13. Given a function f : S → R on a smooth surface,

we say that f is differentiable if its coordinate representation f ◦
φ−1 : R2 → R is differentiable for every chart φ : U → R2.

We first note that if f is differentiable in one coordinate chart on

a neighbourhood, then it is differentiable in any other chart on that

same neighbourhood. Indeed, if we have two charts φ : U → D2 and

ψ : V → D2, the coordinate representation of f using φ is given by

fU = f ◦ φ−1 : D2 → R

and the representation using ψ is

fV = f ◦ ψ−1

= (f ◦ φ−1) ◦ (φ ◦ ψ−1)

= fU ◦ (φ ◦ ψ−1).

The transition map φ ◦ψ−1 is smooth and has smooth inverse, so fV

is differentiable on ψ(U ∩ V ) iff fU is differentiable on φ(U ∩ V ).

Definition 3.14. Given a chart φ : U → D2 and a function f : S →
R, the point p ∈ U is a critical point for f if the gradient ∇(f ◦ φ−1)

vanishes at p. If the gradient is non-zero at p, we say that p is a

regular point.

Differentiating the above formula relating fV and fU , we have

∇fV = D(φ ◦ ψ−1)∇fU

where D(φ◦ψ−1) is the Jacobian of the transition map. By the axioms

of a smooth manifold, this has non-zero determinant and hence is

invertible, so ∇fV = 0 if and only if ∇fU = 0. We have proved the

following lemma.
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Lemma 3.15. The critical points of a differentiable function are in-
dependent of the particular choice of coordinate chart.

We now show that away from its critical points, any function

can be made to assume a standard form by choosing an appropriate

coordinate chart.

Lemma 3.16. Given a differentiable function f : S → R and a reg-
ular point p ∈ S, there exists a chart φ : U → D2 around p in which
fU (x, y) = f(φ−1(x, y)) = f(p) + x.

Proof. Take any coordinates (u, v) around p; because p is not a crit-

ical point, we may assume without loss of generality that
∂f
∂u �= 0.

(Here we are abusing notation by using f to stand for both the func-

tion S → R and its coordinate representation D2 → R.)

Then by the Implicit Function Theorem, we may write v as a

function of f and u, and hence we can use these as our coordinates.

�

The next exercise establishes a similar result in the complex case.

Exercise 3.10. Given a holomorphic function f on a Riemann sur-

face and a point p such that f ′(p) �= 0 for some choice of local coor-

dinate, show that one can find a holomorphic chart φ around p such

that f(w) = f(p) + φ(w).

So much for the regular points. But what happens at the critical

points? We cannot hope for a single standard sort of chart around

critical points in the same manner as we just obtained for regular

points, because critical points of f have various properties which must

remain invariant under changes of coordinates. For example, some

critical points are isolated, while others are not. For the time being,

we consider only isolated critical points; that is, points p ∈ S such

that for some neighbourhood U , p is the only critical point contained

in U .

Even so, there are various possibilities. We typically use critical

points as a tool to optimise the value of f ; we may find that a partic-

ular critical point is a local maximum, a local minimum, or neither,

and this classification is independent of our choice of coordinates. In
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the one-dimensional case, we classified critical points by looking at

the second derivative; in two dimensions, the object of interest is the

Hessian matrix

D2f(p) =

(
∂2f
∂x2 (p)

∂2f
∂x∂y (p)

∂2f
∂y∂x (p) ∂2f

∂y2 (p)

)
.

Note that the form of this matrix will only be meaningful if p is a

critical point, since otherwise the Hessian vanishes in the coordinate

system specified by the above lemma.

Recall from linear algebra that given a symmetric 2 × 2 matrix

A =

(
a b

b c

)

such as the one above, we can either use A to define a linear trans-

formation R2 → R2 by

(3.5)

(
x

y

)
�→ A

(
x

y

)
=

(
ax + by

bx + cy

)

or to define a quadratic form R2 → R by(
x

y

)
�→
(

x

y

)T

A

(
x

y

)
=
(
x y

)(a b

b c

)(
x

y

)
= ax2 + 2bxy + cy2.

For the Hessian, it is the latter meaning which is relevant here, rather

than the more familiar use as a linear transformation. For a linear

transformation, the matrix A transforms under a change of coordi-

nates to the matrix C−1AC, where C is the matrix specifying the

new coordinates; for a quadratic form, A becomes instead CT AC.

It is a basic property of the determinant that detCT = detC, and

so det(CT AC) = det(C)2 det A. Thus the sign of the determinant is

preserved by changes of coordinates. Assuming the matrix D2f(p) is

non-degenerate, we have three possibilities:

(1) detD2f(p) > 0 and D2f(p) is positive definite. Then p is a

local minimum for f .

(2) detD2f(p) > 0 and D2f(p) is negative definite. Then p is

a local maximum for f .
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Figure 3.11. Three non-degenerate critical points.

(3) detD2f(p) < 0. Then p is a saddle; neither a minimum nor

a maximum.

We can now make a linear change of coordinates which brings the

quadratic part of the function to a particularly simple form, so that

the graph is as shown in Figure 3.11. In all cases the remainder term

will be o(x2 + y2).

(1) In the first case, there exists a local coordinate system in

which f(x, y) = f(0, 0) + x2 + y2 + o(x2 + y2).

(2) In the second case, there exists a local coordinate system in

which f(x, y) = f(0, 0) − (x2 + y2) + o(x2 + y2).

(3) In the third case, there exists a local coordinate system in

which f(x, y) = f(0, 0) + x2 − y2 + o(x2 + y2).

Exercise 3.11. Prove that any critical point p with detD2f(p) �= 0

is isolated from other critical points.

In fact, the consideration of the behavior of a function near a

non-degenerate critical point is made more convenient by a useful

technical result called the Morse lemma, which states that under an

appropriate choice of local coordinates, the error term in the above

representation can be eliminated. We present the proof in the most

interesting case, that of a saddle, as a series of exercises.

Exercise 3.12. Let p be a non-degenerate saddle point of the func-

tion f . Show that locally, the level set { (x, y) | f(x, y) = f(p) } is

a union of two smooth curves which are tangent at the origin to the

diagonals y = x and y = −x.
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Figure 3.12. Two spheres with different height functions.

Exercise 3.13. Under the same assumption, show that there exist

local coordinates (x′, y′) such that locally, the set { (x, y) | f(x, y) =

f(p) } is a union of the diagonals y′ = x′ and y′ = −x′ themselves.

Exercise 3.14. Show that there exists a smooth map in a neighbour-

hood of p which is the identity on the diagonals y′ = x′ and y′ = −x′,

and which maps the curves f = c to hyperbolas x′y′ = c for every

constant c.

For the other two cases, we will need only a weaker statement

which parallels that of Exercise 3.12.

Exercise 3.15. Let p be a non-degenerate minimum of the function

f . Show that there exists ε > 0 such that for any c with f(p) < c <

f(p) + ε, the level set f(x, y) = c is locally a smooth curve which

intersects every ray in the (x, y) coordinates at a single point, and

which is transversal (not tangential) to those rays.

b. Morse functions. Given a compact surface S and a smooth

function f : S → R, basic topological arguments imply that f achieves

its maximum and minimum on S; since the gradient of f in any coor-

dinate representation vanishes at each of these, f must have at least

two critical points.

We can easily construct an example where f has no other critical

points aside from these two; consider the sphere S2 = { (x, y, z) ∈
R3 | x2 +y2 + z2 = 1 } and the height function f : (x, y, z) �→ z. Then
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Figure 3.13. Defining a Morse function on a sphere with one
or two handles.

f has a maximum at the north pole (0, 0, 1), a minimum at the south

pole (0, 0,−1), and no other critical points.

If we perturb the sphere slightly, as shown in Figure 3.12, we will

introduce a new pair of local extrema; one local maximum and one

local minimum. Along with these we will create two saddle points,

so that all in all the perturbed sphere has six critical points; two

maxima, two saddles, and two minima.

Another interesting example is given by the standard torus of

revolution standing sideways as shown in Figure 3.13, again with the

height function f : (x, y, z) �→ z. Now f has one maximum and one

minimum, along with two saddles at (0, 0,±1). A similar procedure

yields a smooth function on the sphere with m handles having one

maximum, one minimum, and 2m saddles; the case m = 2 is shown,

with critical levels drawn for the four saddle points.

Definition 3.17. Let S be a smooth surface and f : S → R a smooth

function. f is called a Morse function if every critical point p of f is

non-degenerate; i.e. the Hessian matrix D2f(p) is invertible.

It follows from the definition that every critical point of a Morse

function is either a maximum, or a minimum, or a saddle.
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Exercise 3.16. Represent the second surface shown in Figure 3.13

(or one homeomorphic to it) as a regular level set of a smooth func-

tion, and prove that the height function is indeed a Morse function

with one minimum, one maximum, and four saddles.

We will find that looking at the level sets of a Morse function

f : S → R and how they change from one level to another reveals a

great deal of information about the surface S. In fact, we can describe

a procedure to reconstruct S (up to diffeomorphism) from knowledge

of just the critical points of f .

First suppose that for a particular c ∈ R the level set f−1(c) ⊂ S

has no critical points (that is, c is a regular value). Then by the same

argument used to establish that the level set F−1(c) is a surface (2-

dimensional manifold) whenever c is a regular value of F : R3 → R,

we can deduce from the Implicit Function Theorem and the Inverse

Function Theorem that f−1(c) is a 1-dimensional submanifold of S.

Since every compact 1-dimensional manifold is a disjoint union of

circles, it follows that f−1(c) has this form.

Now what happens if c is a critical value? Let p ∈ f−1(c) be a

critical point; then by the Morse lemma we may choose local coordi-

nates around p such that f takes a standard form.4 There are three

possibilities:

(1) p is a local minimum, f = c + x2 + y2. Then for c′ slightly

smaller than c, the level set f−1(c′) does not contain any

points near p. For c′ = c, it contains just one point, p, and

for c′ slightly greater than c, x2 +y2 = c′−c defines a circle.

Thus as we increase the value of c′ through c, a circle is born

around the critical point p.

(2) p is a local maximum, f = c − (x2 + y2). The reverse of

the above process occurs; the circle which exists for c′ < c

shrinks to a point at c′ = c and then vanishes for c′ > c. As

we increase the value of c′ through c, a circle dies around p.

4The use of the Morse lemma in our considerations is convenient, but not essential.
In the minimum and maximum cases, we only need Exercise 3.15, while Exercise 3.12
suffices for the case of a saddle.
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Figure 3.14. Level sets f−1(c′) passing through a saddle point.

(3) p is a saddle, f = c + x2 − y2. For c′ < c, the (local) level

set is a hyperbola opening left and right; for c′ = c it is

two lines intersecting at p, and for c′ > c it is a hyperbola

opening up and down. At the global level, we know that

between critical points, the level sets are unions of circles,

so there are two possibilities, as illustrated in Figure 3.14;

as we pass through c, two circles may join and become one,

or one circle may split and become two.

With these in mind, we may reconstruct S by increasing c through

the range of f ; this is the central idea of Morse theory, which has

very powerful applications in a more general setting than we will con-

sider here. Although the process is much more complicated in higher

dimensions, the techniques developed from this theory are involved

in the proof of the generalisation of the famous Poincaré conjecture

for manifolds of dimension ≥ 5, one of the landmark achievements

of mathematics in the third quarter of the twentieth century.5 The

very rough outline of the method is to start from a Morse function

on a given manifold which satisfies the assumptions of the Poincaré

conjecture—i.e. has certain invariants identical to those of a sphere—

and modify it to decrease the number of critical points until only one

maximum and one minimum remain.

c. The third incarnation of Euler characteristic. At a more

down-to-earth level, we will now show how to use Morse functions to

describe a third incarnation of the Euler characteristic χ for surfaces.

5This brought a Fields Medal to Stephen Smale in 1966; the solution of the
conjecture in the two remaining dimensions—first in dimension four, and then in the
original three—resulted in two more Fields Medals later.
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If we count the various sorts of critical points on the surfaces we have

examined so far (using the height function as our Morse function each

time), we have the following:

Surface maxima saddles minima χ

sphere 1 0 1 2

(perturbed) sphere 2 2 2 2

torus 1 2 1 0

sphere with m handles 1 2m 1 2 − 2m

Note that in each case, the Euler characteristic χ is equal to the

alternating sum of the three columns; in fact, this is true in general.

Theorem 3.18. For any Morse function f : S → R, the Euler char-
acteristic is related to the number of critical points by the formula

(3.6) χ = (# of maxima) − (# of saddles) + (# of minima).

Before proving the theorem, we describe the general method and

examine what happens in the case of the torus. We proceed by ex-

amining the sublevel sets

Sc = f−1((−∞, c]) = {x ∈ S | f(x) ≤ c }.

Let m and M be the minimum and maximum values, respectively,

assumed by f on S. Then for c < m, we have Sc = ∅, and for c ≥ M ,

Sc = S. The real story is what happens in between m and M . . .

The next observation to make is that nothing interesting happens

at non-critical levels. This is the content of the following lemma,

which intuitively looks quite plausible, although a rigorous proof re-

quires certain tools which we will not develop until later (see Lec-

ture 36(b)).

Lemma 3.19. Given a Morse function f : S → R and a, b ∈ R such
that every c ∈ (a, b) is a regular value (f−1(c) contains no critical
points), then Sc and Sc′ are diffeomorphic for every c, c′ ∈ (a, b).

Thus for the torus shown in Figures 3.13 and 3.15, with inner

radius 1 and outer radius 2, all the action happens at f(x) = ±1,±3.

In between those points, the boundary of Sc is the level set f−1(c),

which we know to be a disjoint union of circles. The four critical
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Figure 3.15. Sublevel sets on the vertical torus.

points run through the four possibilities enumerated in our earlier

discussion:

(1) At c = −3, a circle is born, so the empty set is replaced by

a disc.

(2) At c = −1, one circle splits into two, so the disc is replaced

by a cylinder.

(3) At c = 1, the two circles rejoin and become one, so the

cylinder is replaced by a torus with a hole.

(4) At c = 3, the circle dies, so the hole is filled with a cap, and

we obtain the entire torus.

Proof of Theorem 3.18. It follows from Lemma 3.19 that between

critical levels, the changes in Sc are only quantitative, not qualitative,

and have no effect on the Euler characteristic; in order to prove the

theorem, therefore, it suffices to examine the change in χ as we pass

through each of the various sorts of critical points. To accomplish

this, we first extend the definition of χ to allow non-connected mani-

folds; this will allow examples with χ > 2, which is impossible in the

connected case.

Now there are three cases to examine. If f−1(c) contains a local

minimum of f , then passing through c corresponds to adding a new

disc, as we saw, and hence increases χ by one. Similarly, passing

through a local maximum corresponds to filling in a hole with a disc,

which involves adding a face and leaving the number of edges and

faces unchanged, and so also increases χ by one.

It remains only to show that passing through a saddle point de-

creases χ by one. Figure 3.16 shows the sublevel sets Sc′ (viewed from
                

                                                                                                               



Lecture 21 141

c′ < c c′ = c c′ > c

Figure 3.16. Sublevel sets near a saddle.

above) for values of c′ near the critical value c. Upon passing through

the saddle, the number of edges and vertices remains the same, but

two faces which previously were separate are joined into one. Hence

the alternating sum χ = V − E + F is decreased by one. �

If we carry out this construction a bit more carefully, we can actu-

ally obtain a complete classification of smooth surfaces using Morse

functions as our tool; this was in fact the inspiration for the proof

we gave of the classification theorem for compact orientable surfaces

(Theorem 2.15), and is a ‘baby version’ of the arguments used in

higher dimension, like those on which the afore-mentioned proof of

the Poincaré conjecture in dimensions five and above is based.

Exercise 3.17. Consider the function f(x, y) = sin(4πx) cos(6πy)

on the standard flat torus R2/Z2.

(1) Prove that it is a Morse function, and calculate the number

of minima, saddles, and maxima.

(2) Describe the evolution of the sublevel sets f−1((−∞, c)) as

c varies from the lowest minimum value to the highest max-

imum value.

Lecture 21

a. Functions with degenerate critical points. Having success-

fully used the ideas of Morse theory to reconstruct the surface S and

run across our old friend, the Euler characteristic, we would now like

to extend the same ideas and techniques to the case where our func-

tion f : S → R may fail to be Morse by having degenerate critical

points.
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We begin by noting that in the non-degenerate Morse case, we ob-

tained the Euler characteristic by giving each critical point a ‘weight’

of either +1 (for a maximum or a minimum) or −1 (for a saddle),

and then summing over all critical points. In order to extend our

calculations to include degenerate critical points (for which the Hes-

sian matrix D2f has zero determinant), we must similarly define the

Morse index for these points. The goal will be to define for each

critical point p, degenerate or not, the Morse index indf (p) in such a

way that the following formula holds:

(3.7) χ =
∑

∇f(p)=0

indf (p).

It is instructive to begin by considering degenerate critical points

in one dimension. Given a smooth function f : R → R, non-degenerate

critical points of f will be either minima or maxima, near which f

will behave like x �→ ±x2. An example of a degenerate critical point

is given by f : x �→ x3, which has f ′(0) = f ′′(0) = 0. 0 is a critical

point since f ′ vanishes, and it is degenerate since the Hessian, which

in this case is just the 1 × 1 matrix [f ′′], has zero determinant.

What happens to the critical point at 0 if we perturb the func-

tion f slightly? For concreteness, let ε be small (either positive or

negative) and let fε(x) = x3 + εx, so that f0 is our original function

f . Then f ′
ε = 3x2 + ε; for ε > 0, we have f ′

ε(x) > 0 everywhere,

and hence f has no critical points. For ε < 0, fε has two critical

points at ±
√

−ε/3; one of these is a local maximum and the other is

a minimum.

We note that the above analysis goes through no matter how

small the perturbation is; the degenerate critical point either vanishes

or splits into two non-degenerate critical points. This is in sharp

contrast to the case where the critical point is already non-degenerate;

because the condition det(D2f) �= 0 is an open condition, sufficiently

small perturbations will not effect any qualitative changes. Near a

degenerate critical point, though, perturbing f will result in some

sort of bifurcation, as we have just seen.

We now examine a two-dimensional example of this sort of be-

haviour. The function f(x, y) = xy(x + y) has the level set f−1(0)
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Figure 3.17. Perturbing f near a degenerate critical point.

shown in the first graph in Figure 3.17, and takes the signs indicated.

Differentiating, we have

Df = (2xy + y2, x2 + 2xy),

D2f =

(
2y 2x + 2y

2x + 2y 2x

)
,

det(D2f) = 4(xy − (x + y)2)

= −4(x2 + xy + y2).

Thus the critical point (0, 0) is degenerate;6 we can perturb f by

adding εx, and obtain

f(x, y) = xy(x + y) + εx,

Df = (2xy + y2 + ε, x2 + 2xy).

Because the perturbation was linear, D2fε = D2f . To find the critical

points, we observe that Df = 0 implies x = 0 or x = −2y; in the

former case, we have y2 +ε = 0, and in the latter, we have −3y2 +ε =

0. Hence the fixed points are given by

parameter fixed point(s)

ε < 0 (0,±
√
−ε)

ε = 0 (0, 0)

ε > 0 (∓2
√

ε
3 ,±
√

ε
3 )

The second graph in Figure 3.17 shows the situation for ε < 0,

where the single degenerate critical point has bifurcated into two non-

degenerate critical points, both saddles since det(D2fε) = 4ε < 0. A

precise visualisation of the case ε > 0 is left for the reader.

6A degenerate critical point of this nature is sometimes known as a ‘monkey
saddle’ because of the extra depression in the graph, which could accomodate a simian
tail.
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Now if we think of our function f as a height function on S as

we did for the sphere and the vertical torus, then small perturbations

of f in the neighbourhood of a critical point correspond to ‘warping’

S slightly, which ought to have no effect on the Euler characteristic.

Then the above example leads us to expect that the complicated

saddle exhibited by f(x, y) = xy(x + y) ought to be counted as two

regular saddles, and so the Morse index of this particular degenerate

critical point ought to be −2. In fact, an argument analogous to the

one given last time shows that passing through a saddle of this form

corresponds to joining three faces into a single face, while leaving the

number of edges and vertices constant, and hence decreases χ by 2.

How are we to make this general, though? Our approach so far

has been relatively ad hoc; we will now develop in a more systematic

manner a theory which will allow us to assign an index to each isolated

critical point and hence find the Euler characteristic of a surface in

terms of any smooth function with isolated critical points, whether

degenerate or not.

The first step will be to define the degree of a map from the circle

to itself. We will then consider vector fields on a surface, in particular

the points where they vanish, and use this notion of degree to define

the index of the vector field at such a point. Finally, we will observe

that associated to every smooth function f : S → R is a natural vector

field given by the gradient of f , and hence define the index of a critical

point p as the index of the gradient vector field around p.

As we do all this, it ought to be remembered that while the details

of the construction depend upon a particular choice of coordinates on

the surface, the final result, the value of the index, will be independent

of our choice of chart.

Exercise 3.18. Consider the function f(x, y) = xy(x + y)(x − y)

in a neighbourhood of the origin. Construct a perturbation of this

function which has only non-degenerate critical points, and use this

perturbation to calculate the change in Euler characteristics of the

sublevel sets effected by the passage through such a critical point.

Exercise 3.19. Consider the function f(x, y) = xy(x + y) + r(x, y)

where r is a function which vanishes at the origin, together with all

its partial derivatives of orders one, two, and three.
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(1) Prove that in a neighbourhood of the origin, the level set

f(x, y) = 0 is a union of three smooth curves tangent at the

origin to the x-axis, the y-axis, and the diagonal y = −x.

(2) Prove that the Euler characteristic of the sublevel set Sc =

f−1((−∞, c]) for this function decreases by two as c passes

through the zero level from negative to positive, and argue

that the same result holds on a compact surface with a func-

tion which has the local form given above, and has no other

critical points with the same value.

b. Degree of a circle map. Given a map f : S1 → S1 from the

circle to itself, we can think of the circle as being wrapped around

itself a number of times by f ; we will call this number the degree of

the map. This is made precise as follows.

Recall that S1 can be given as the quotient space R/Z, or the

unit interval [0, 1] with ends identified. Then we can think of f as a

function not on the circle, but on the real line. That is, we can define

a function F : R → R (called the lift of f) such that

f(x + Z) = F (x) + Z.

(Recall that points in the quotient space R/Z are equivalence classes

x + Z = {. . . , x− 1, x, x + 1, . . .}.) First choose any F (0) ∈ f(0 + Z);

once F (0) is fixed, the requirement that F be continuous determines

F (x) for every x ∈ R.

Passing once around the circle brings us back to where we began;

this corresponds to increasing x by 1, and when we return to the

starting point, we must have the same value of f , hence F (1) ∈
F (0)+Z, so F (1)−F (0) ∈ Z. Notice that any given continuous circle

map f has infinitely many different lifts, and any two lifts differ by

an integer constant.

Definition 3.20. Given f : S1 → S1 and F : R → R defined as

above, the integer F (1)− F (0) is the degree of the circle map f , and

is denoted by deg f .

The first half of Figure 3.18 shows a circle map f (actually, a

graph of the lift F ) with degree 2.
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Figure 3.18. A circle map is homotopic to a linear map.

For our purposes, the most important property of the degree is

that it is continuous in the uniform C0 topology; in other words,

changing the image of the function f by an amount < ε at each point

of S1 will only change the degree of f by an amount < ε. Since the

degree takes integer values, this implies that it must in fact remain

the same; we say that it is locally constant.

In particular, if {ft}t∈[0,1] is a continuous family of maps, the

degree of ft is constant with respect to t. If two functions f0, f1 : S1 →
S1 can be connected by such a continuous family, we say that they

are homotopic; what we have just shown is that degree is a homotopy
invariant.

Further, as shown in the second half of Figure 3.18, we can con-

struct a linear homotopy from any circle map with degree n to the

linear map En : x �→ nx via the family of functions

Ft(x) = (1 − t)F (x) + tnx

with F0 = F and F1 : x �→ kx. This shows that two circle maps

with the same degree are homotopic to each other, and so degree

completely classifies circle maps up to homotopy, with representatives

of each homotopy class being given by the standard linear maps En

for n ∈ Z. The map En wraps the circle around itself n times, and in

additive notation (S1 = R/Z) is written as

En(x) = nx mod 1.
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In multiplicative notation (S1 = { z ∈ C | |z| = 1 }), this becomes

En(z) = zn.

We may think of a circle map f as recording the progress of a

runner around a track. At time t = 0, he is at the start line, and

then proceeds around the track with direction and speed determined

by f ′.7 At time t = 1, he crosses the finish line (which is in the same

place on the track as the start line)—the degree of the map f is just

the number of laps he has completed in between.

In these terms, our current method of measuring degree corre-

sponds to the point of view of the runner; he keeps track of the

distance he has run, counting counterclockwise as positive and clock-

wise as negative, and after completing the race tells us how far he

has gone. An equally valid point of view is that of a spectator sit-

ting in the stands somewhere along the track, counting the number

of times the runner goes by. If the runner passes the spectator going

counterclockwise, the count increases by one; if the runner passes in

a clockwise direction, the count decreases by one. Then at the end of

the race, the spectator will also have an accurate count of the number

of laps the runner has completed.

In terms of the function f , this point of view amounts to choosing

a point y ∈ S1, looking at the set of preimages f−1(y), assigning each

the value ±1 based on the sign of f ′ at that point, and then summing

over these values; the sum will be the degree of f .

Exercise 3.20. Prove that the degree of the composition f ◦g of two

circle maps f and g is equal to the product of the degrees of f and g.

Exercise 3.21. Prove that a continuous circle map of degree d has

at least |d − 1| fixed points.

It is not immediately obvious what the higher-dimensional gener-

alisation of all this ought to be. The two n-dimensional analogues of

the circle S1 are the n-torus, which is the direct product of n circles,

and the n-sphere Sn. We might attempt to generalise the definition

of degree to maps of either of these manifolds.

7Note, though, that the definition of degree goes through even if f is only con-
tinuous, and not differentiable.
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There are some mathematical contexts, such as Fourier analysis,

in which the torus is the natural generalisation of the circle, and the

definition of degree extends quite naturally in this direction. For a

map f : Tn → Tn, we could essentially repeat the above discussion,

noting that the n-torus is the quotient space Rn/Zn, lifting the map

f to F : Rn → Rn, and obtaining a vector in Zn as the degree.

It turns out, though, that for our purposes here, the n-sphere is

the relevant manifold.8 Because Rn is not a covering space of Sn, the

definition above does not generalise in the näıve way, and it is not at

first apparent how we ought to count the number of times that the

sphere wraps around itself under the action of f .

Despite this, we can in fact generalise the concept of degree to

higher dimensions, and this is a fundamental definition in algebraic

and differential topology. However, it requires us to define and work

with the homology groups of the sphere, and all in all would get us

into deeper waters than we are prepared for at the moment.

A somewhat more manageable approach works for smooth maps.

In this case we can adopt the second point of view, which in the one-

dimensional case was that of the spectator watching the runner go

by, and involved using the notion of ‘positive’ and ‘negative’ regular

preimages of a given point. This works in higher dimensions as well,

and we may once again define the degree as the number of positive

preimages minus the number of negative ones, just as for the circle.

One must, however, justify this procedure by showing that for

any smooth map f : Sn → Sn, there are indeed points in Sn whose

preimages are all regular (the matrix of partial derivatives in local

coordinates has non-zero determinant), and then show that the degree

so defined is the same for all regular values. To appreciate the subtlety

of this procedure, the reader is encouraged to work out the details for

the one-dimensional case.

8This is because we will eventually use the degree of a circle map to define the
index of a vector field, and then use the index of the gradient vector field to define
the Morse index of a degenerate critical point. Defining the index of a vector field at
a critical point involves obtaining a map on the boundary of a small neighbourhood of
that point, which topologically is a sphere rather than a torus.
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f(x)
x

r(x) f(y)

y = r(y)

Figure 3.19. Proof of Brouwer’s theorem.

c. Brouwer’s fixed point theorem. Before using the notion of

degree to define the index of a zero for a vector field, we will present

a remarkable application of degree theory which is of a purely topo-

logical nature.

Theorem 3.21 (Brouwer’s fixed point theorem in dimension two).
Let X be any space homeomorphic to the closed disc D2. Then any
continuous map of X into itself has a fixed point.

Proof. We consider the standard closed disc

D2 = { (x, y) ∈ R2 | x2 + y2 ≤ 1 }

and argue by contradiction. Suppose f : D2 → D2 is a continuous

map without fixed points. For p ∈ D2 consider the open half-line

(ray) beginning at f(p) and passing through the point p. This half-

line intersects the unit circle S1, which is the boundary of the disc D2,

at a single point which we will denote by r(p). Notice that r(p) = p

for p ∈ ∂D2 = S1, and that the map r : D2 → ∂D2 thus defined is

continuous (because f has no fixed points).

Now for each t ∈ (0, 1], consider the circle map rt : S1 → S1 given

by restricting r to the circle of radius t around the origin. As we have

already seen, r1 = Id and hence has degree one. As t → 0, the map rt

converges to a constant map, and hence for small enough t, we must

have deg rt = 0. Since the degree of rt depends continuously on t,

this is impossible, and we have our contradiction. �
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Brouwer’s theorem holds for discs in any dimension. In dimension

one, the statement is a trivial corollary of the Intermediate Value

Theorem. In higher dimensions, the scheme of the proof remains the

same, but it uses the more complicated notion of degree for a sphere

map.

Lecture 22

a. Zeroes of a vector field and their indices. We end this chap-

ter by applying the notion of degree to a continuous vector field. A

precise definition of the phrase vector field, and the accompanying

notions of tangent vectors, tangent spaces, etc., will come later in

the lecture. For the time being, we consider a particular set of local

coordinates which uses as its patch the open set U ⊂ R2. Then a

vector field assigns a vector to each point of U , and so we denote it

by

X : U → R2,

(x, y) �→ (u, v).

In this way, X specifies a direction and magnitude at each point

(x, y) ∈ U , and we say that the vector field is continuous, smooth,

etc. if the map X is continuous, smooth, etc.

The idea is to look at the rotation of the vector field around a

point where it vanishes. First we note that around a point where the

vector field is non-zero, it is nearly constant on a small neighbourhood

(in fact, it can be made exactly constant by an appropriate choice

of coordinates), and hence points in a particular direction, without

any rotation. Around a point where the vector field (u, v) vanishes,

however, the situation is different.

Let p = (x0, y0) be an isolated zero of X, and consider a small

circle going counterclockwise around p, parametrised by γ : S1 → U .

To each point (x, y) on the circle the vector field assigns a vector

(u, v), and by normalising (u, v), we obtain a unit vector, which is

just a point on the unit circle. In this way the vector field near p

defines a circle map φγ : S1 → S1 by

(3.8) φγ : t �→ (u(γ(t)), v(γ(t)))

‖(u(γ(t)), v(γ(t)))‖ .
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0 2π

t

Φγ

Figure 3.20. A critical point of a vector field with degree one.

Figure 3.20 shows an example of a vector field, its normalisation

along the curve, and the lift Φγ of the circle map.

Definition 3.22. The index of a critical point p = (x0, y0) of a vector

field is the degree of the circle map φγ in (3.8). We denote this value

by indp X.

It is vital to our definition that γ does not go through any critical

points of X; that is, the vector field must be non-vanishing along the

curve (otherwise we would not be able to normalise). Further, X

should not vanish at any other point in the region bounded by γ

other than (x0, y0), or the value we derive for the index will not be

accurate; we will see why this is so in Lecture 36, when we consider

indices for curves enclosing more than one point.

Thus we see that we must take some care in our choice of γ;

on the other hand, nothing in this definition actually uses the fact

that we took the image of γ to be a circle of a particular radius. By

continuously deforming γ into a circle of a different radius, or any

other simple closed curve around p, we vary the induced circle map

φγ , and hence the index indp X, continuously, provided all the curves

through which we deform satisfy the two conditions of the previous

paragraph. Since the index is an integer, it remains constant, and

hence is the same for any such curve. This also shows that the index

is invariant under a change of coordinates, since such a change merely

takes the circle to some other valid curve.

Is there any condition which characterises a ‘valid curve’, beyond

the above requirements that X be non-vanishing on the curve and

its interior, except at p? If we draw various curves which can be
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reached via permissible deformations, we see that they all ‘go around

p exactly once counterclockwise’. It turns out that a formalisation of

this notion is the proper condition, and that any curve satisfying it

can be permissibly deformed into a small circle around p.

This leads us to the definition of the index of a curve with respect

to a point. To this end, let γ be a closed curve in the plane (which

may be self-intersecting), and let p be any point not on the curve.

Then we may define a circle map φ by

φ : t �→ γ(t) − p

‖γ(t) − p‖ .

Definition 3.23. Given γ, p, φ as above, the index of γ with respect

to p, also called the winding number, is the degree of φ, and is denoted

by indp γ.

In light of this definition, the rather vague statement that ‘γ goes

around p once’ ought to be replaced by the requirement that indp γ =

1. Note that the index may depend on our choice of coordinates;

consider the equator of the sphere, and a point not on the equator.

Then in one of the charts of stereographic projection, the index will be

0, while in the other, it will be ±1. For this reason, we should speak

about the index of a curve in the plane, rather than on a surface,

unless we have fixed a coordinate chart.

This notion of index is central to complex analysis, where it comes

into play in the statement (and proof) of the residue theorem, which

generalises Cauchy’s integral formula. It also plays a somewhat sur-

prising role in the proof of the Fundamental Theorem of Algebra,

which we will investigate in Lecture 33, and we will use it in our

proof of the Jordan Curve Theorem in Lectures 34 and 35.

For the time being, the salient fact is that we can now apply

this theory to the gradient vector field ∇f in order to define the

index of any isolated critical point of f . Of course, the theory works

for any vector field, whether or not it arises as the gradient of a

smooth function; this will eventually lead us to discover yet another

incarnation of the Euler characteristic in Lecture 36.
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∇f = (2x, 2y) ∇f = (2x,−2y) ∇f = (−2x,−2y)

Figure 3.21. Three gradient vector fields around a critical point.

b. Calculation of index. We now turn to the case which served as

a motivation for introducing the index for a vector field. Take a non-

degenerate critical point of a function f , introduce local coordinates

in which the function is quadratic, and consider the gradient vector

field ∇f = (∂f
∂x , ∂f

∂y ).

Then ∇f is equal to one of (2x, 2y), (2x,−2y), or (−2x,−2y), as

in Figure 3.21, depending on whether the critical point is a minimum,

a saddle, or a maximum. As a reference curve γ, consider a small circle

parametrised by t, which we take to be the argument (angle) divided

by 2π. For the three cases shown, the maps φγ are

φγ(t) = t, φγ(t) = −t, and φγ(t) = t + 1/2.

The degree in the first and last cases is equal to 1, and in the second to

−1, which is in complete agreement with the derivation of the index

formula (3.7) from the counting formula (3.6) for critical points.

More generally, if the vector field is transversal (not tangent) to

a curve γ at every point, as in the first and third cases above, then

the index of the critical point is equal to one. This is obvious for a

circle (or for any star-shaped curve), since in this case the map φγ is

homotopic to the identity.

Notice that in our three standard cases, the gradient vector fields

turned out to be linear. One can consider more general linear vector

fields of the form (ax + by, cx + dy). Let A =
(

a b
c d

)
—then the origin

is an isolated zero if and only if detA �= 0.

By a linear coordinate change, the matrix A, and hence the vector

field as well, can be brought either to diagonal form (if the eigenvalues

are real), or to the form λR (if the eigenvalues are complex), where λ
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is a positive scalar and R is the matrix of a rotation. Notice that in

all cases except that of one positive and one negative eigenvalue, the

vector field is transversal to a circle γ around the origin, and hence

the index is equal to one. In the remaining case, the diagonal vector

field can be deformed to (x,−y), and hence the map φγ is homotopic

to t �→ −t. Thus the index is equal to −1, and we have completely

categorised the linear case.

Notice furthermore that a non-linear vector field near a critical

point can be split into the sum of its linear part and an error term,

which is of the size o(|x|+|y|). If the linear part is non-degenerate (its

matrix is invertible), then on a small enough circle, the vector field

is homotopic to the linear part. Thus we have proved the following

statement.

Proposition 3.8. Let p be an isolated zero of a vector field X, and
let DpX be the linear part of X at p. If DpX has matrix A in a local
coordinate system, then the index of X at p is equal to the sign of the
determinant of A.

On the other hand, if the linear part is degenerate, it is of no

use in studying the non-linear vector field. The extreme case appears

when the linear part vanishes completely, as for the gradients of the

functions xy(x + y) and xy(x + y)(x − y), which were discussed in

Lecture 21(a). For these examples, one can explicitly construct the

maps φγ for a small circle γ, and prove by brute force that the index

is equal to 2 for the first, and 3 for the second, as expected. Later,

in Lecture 36, we will be able to see this by perturbing a degenerate

critical point into several non-degenerate ones, and using additivity

of the index for a curve which winds around several critical points.

Finally, we have to address the fact that our considerations so

far have depended on a choice of coordinates. There are two aspects

to this. In the first place, because our definition of vector fields was

given in terms of local coordinates, we need to see what happens when

the coordinate system changes. We will take up this issue momen-

tarily, and our conclusion will be entirely satisfactory—vector fields

can be defined independently of local coordinates, and in particular,

coordinate changes carry zeroes into zeroes, nice curves surrounding

isolated zeroes into other such curves, and preserve the index.
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The second issue has to do with calculating the index of an iso-

lated critical point for a function. For that purpose we used the

gradient vector field ∇f = (∂f
∂x , ∂f

∂y ), which depends on the choice of

coordinates. Fortunately, the transformation of the gradient vector

field under a coordinate change is not too drastic, and in particular,

it does not affect the index. To see that, notice that in any coordinate

system, the gradient points in the direction in which the function in-

creases most quickly. The tangent to the level curve of the function

divides the tangent space into two half-planes, and the fact that the

function increases in the direction of the gradient specifies in which

half-plane the gradient vector lies. Because the level curve and its

tangent are naturally defined independently of a coordinate system,

this half-plane is too, and so the independence of the index of a gra-

dient vector field from a particular choice of coordinates follows from

the following fact.

Proposition 3.9. Let X and Y be vector fields with the same isolated
fixed point p, such that in a small neighbourhood of p, the directions
of X and Y are never opposite. In other words, the angle between X

and Y is strictly between −π and π. Then

indp X = indp Y.

Proof. Consider the continuous family of vector fields given by Xt =

(1−t)X+tY for 0 ≤ t ≤ 1. Our condition implies that p is an isolated

fixed point for all Xt, and so for a small circle γ the map φγ may be

constructed for Xt. Then indp Xt depends continuously on t, and is

thus constant. �

c. Tangent vectors, tangent spaces, and the tangent bundle.
We have been using the terminology of vector fields and tangent vec-

tors rather carelessly up to this point, and so it is time to make these

notions more precise.

Given a smooth surface S embedded in R3, we have a clear geo-

metric definition of the tangent plane to S at a point p ∈ S. We

would like to generalise this definition to an arbitrary smooth surface

(or indeed, a smooth manifold of any dimension) without reference to

a particular embedding in Euclidean space. To do this, we will need

to give a definition of tangent vectors and tangent spaces in terms of
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Figure 3.22. Defining the tangent space using coordinates.

the various coordinate patches and charts which make up a smooth

atlas. First we will define tangent vectors at a point p, then we will

define the tangent space TpS as the linear space comprising all such

vectors; finally, the tangent bundle TS will be the disjoint union of

all the tangent spaces.

We begin by considering a single chart φ : U → R2; to each point

p ∈ S, we want to somehow associate a two-dimensional linear space

(since our surface is two-dimensional). We will also require that this

space behave well under coordinate changes, in that such changes

must preserve its linear structure. There are two ways of accomplish-

ing this, neither of which is entirely satisfactory from a visual point of

view. Consequently, the reader is advised to approach the following

as being, to some degree at least, a purely formal construction, the

geometric meaning of which will become apparent in time.

The first idea is to look at the two coordinate axes in R2 and to

consider their preimages in S, which are smooth curves intersecting at

p. We expect a smooth curve to have a tangent vector at each point,

so we may write ∂
∂x and ∂

∂y for the tangent vectors to the preimages

of the x-axis and the y-axis, respectively.

As the notation suggests, this has an interpretation in terms of

directional derivatives; for the time being, we treat these as formal

symbols, and call any linear combination of them a tangent vector to

S at p. Then the tangent plane at p is

TpS =

{
t

∂

∂x
+ s

∂

∂y

∣∣∣ (t, s) ∈ R
}

.
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Figure 3.23. A coordinate-free definition of the tangent space.

What happens to this definition under a change of coordinates

F : (x, y) �→ (u, v)? We will see in the next lecture that as one might

expect, we transform the tangent vectors according to the rule

∂

∂u
=

∂x

∂u

∂

∂x
+

∂y

∂u

∂

∂y

which will allow us to write the change of coordinates in the tangent

space as a linear map in terms of the Jacobian of F .

The second possible idea to follow in constructing the tangent

spaces, which we mention only briefly here, is to consider equivalence

classes of curves through p. Given two smooth curves γ and η which

pass through p at time 0, we say that γ and η are tangent at p if

‖φ(γ(t)) − φ(η(t))‖ = o(t),

that is, if

lim
t→0

‖φ(γ(t)) − φ(η(t))‖
t

= 0,

where ‖ · ‖ is the norm in the coordinate space R2. Then the tangent

space TpS is given as the set of equivalence classes of smooth curves up

to tangency; this definition is in some sense coordinate-free, because

the equivalence classes will be the same for any choice of coordinates

and any choice of norm.

In the next chapter, we will use the idea of tangent spaces to de-

fine a notion of Riemannian metric on a surface. From the geometric

point of view, this is the most important structure carried by a sur-

face, and so we will devote all of Chapter 4 to Riemannian metrics

and geometry.
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Figure 3.24. Some integral curves for a vector field.

Our business with other aspects of smooth structure is far from

over, however. For example, we only briefly mentioned some impor-

tant results such as the expression of the Euler characteristic as the

sum of the indices of zeroes for a vector field (the fourth incarnation

of Euler characteristic). Further, we have not developed our under-

standing of vector fields themselves far enough. There are two main

directions in which this theory is developed. The integration of vector

fields to produce flows (one-parameter groups of diffeomorphisms of

surfaces), along with the study of such flows, is the beginning of the

qualitative theory of ordinary differential equations (ODEs); we will

not devote much time to this topic, but will spend some time in the

final chapter pursuing a second direction, examining the structure of

vector fields near non-degenerate zeroes. In that discussion, Riemann-

ian metrics will provide a useful auxiliary tool, letting us associate a

vector field to certain functions and maps in Lecture 36. They will

also prove useful in dealing with topological questions, when we prove

the existence of tubular neighbourhoods in Lemma 5.6.

Exercise 3.22. An integral curve of a vector field X is a smooth

curve such that X is tangent to the curve at any point of the curve,

as shown in Figure 3.24.

Construct a smooth vector field on the torus without zeroes and

without closed integral curves.

Exercise 3.23. Construct an example of a vector field on the sphere

with a single zero, and calculate the index of this zero.

Exercise 3.24. Prove that the index of an isolated zero of a smooth

vector field can take any integer value.

                

                                                                                                               



Chapter 4

Riemannian Metrics and
Geometry of Surfaces

Lecture 23

a. Definition of a Riemannian metric. The definition of the tan-

gent space given in the previous lecture formalises the idea of being

able to discuss directions on a manifold. In order to formulate and

address problems of a geometric nature, we must also have a notion of

distance. To this end, we will now give the definition of a Riemannian
metric, one of the core ideas in modern geometry.

Consider a surface S embedded in R3. We have a natural metric

(notion of distance) in R3 given by Pythagoras’ formula, which is to

be inherited by S in some fashion; that is, we want to define distances

on S in terms of the ambient metric in R3. Given two points x, x′ ∈ S,

the most obvious way to do this is to declare their distance to be equal

to the Euclidean distance in R3:

d(x, x′) =

√
(x1 − x′

1)
2 + (x2 − x′

2)
2 + (x3 − x′

3)
2.

This idea, however natural, is not the correct one. If we think of x

and x′ as two cities on the surface of the earth, what we are really

interested in is not the length of the shortest tunnel through the earth

from one to the other, which is what this formula gives us, but the

distance we must travel along the surface to get from one to the other.

159
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Hence the proper definition of d(x, x′) is as the length of the

shortest path γ : [0, 1] → S with γ(0) = x, γ(1) = x′. For a surface in

R3, we can determine this length via the arclength integral

�(γ) =

∫ 1

0

‖γ′(t)‖ dt =

∫ 1

0

√
〈γ′(t), γ′(t)〉 dt.

For a general surface defined without reference to a particular em-

bedding, we need a way of defining the length of the tangent vector

γ′(t), and this is what a Riemannian metric will give us.

Recall that for a point p on a smooth surface S, we denote the

tangent space at p by TpS. For an embedded surface in R3, we usually

picture the tangent plane as also lying in R3 and being somehow at-

tached to the surface at p. The problem with this picture is that this

plane may intersect the surface at other points as well, and will cer-

tainly intersect other tangent planes, even though we want to think of

the tangent bundle as being the disjoint union of the tangent spaces.

This is easier to visualise if we consider a one-dimensional mani-

fold, the circle. Then the tangent space at each point is simply a line,

and if we attach disjoint lines to each point on a circle, we obtain

a cylinder, a non-compact two-dimensional manifold, as the tangent

bundle of S1. The tangent bundle of a surface will be a non-compact

four-dimensional manifold, which is locally (but not necessarily glob-

ally) the direct product of the surface and R2.

Given an atlas A on S, we obtain an atlas on the tangent bundle

TS with charts given by

φ × Id : U × R2 → R4 = R2 × R2,

(p, u∂x + v∂y) �→ (x, y, u, v),

where φ : p �→ (x, y) is a chart on U , and we use the notation ∂x = ∂
∂x ,

∂y = ∂
∂y for the basis vectors in the tangent space TpS.

To give the definition of a Riemannian metric, we must first recall

the definition of an inner product on the vector space TpS.

Definition 4.1. An inner product on TpS is a function

〈·, ·〉p : TpS × TpS → R,

(u, v) �→ 〈u, v〉p
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with the following properties:

(1) Symmetry: 〈u, v〉p = 〈v, u〉p for all u, v ∈ TpS.

(2) Bilinearity—that is, linearity in each argument:

〈λu1 + u2, v〉p = λ〈u1, v〉p + 〈u2, v〉p,
〈u, λv1 + v2〉p = λ〈u, v1〉p + 〈u, v2〉p

for all u, v, ui, vi ∈ TpS, λ ∈ R.

(3) Positive definiteness: 〈u, u〉p ≥ 0, with equality iff u = 0.

Such a function is called a positive definite symmetric bilinear
form. Note that given symmetry, bilinearity follows from linearity in

the first variable.

Definition 4.2. A Riemannian metric on a surface S is a family of

inner products on the tangent spaces TpS which depend smoothly on

the point p.

This definition can of course be made for a manifold in any di-

mension, not just a surface; a manifold equipped with a Riemannian

metric is known as a Riemannian manifold.

What does ‘smooth’ mean in this context? If we write the Rie-

mannian metric in terms of local coordinates, a tangent vector u may

be written in terms of its coordinate representation with respect to

the standard basis {∂x, ∂y} as u = u1∂x + u2∂y. If instead of think-

ing of u1 and u2 as fixed real numbers, we allow them to be smooth

functions of the coordinates x and y, we obtain a smooth vector field
u(x, y) = u1(x, y)∂x + u2(x, y)∂y which comprises one tangent vector

in each tangent space TpS, where p varies over the patch U . Now

given two such vector fields u and v, we may write the inner products

of u(p) and v(p) at any point p = φ−1(x, y) ∈ U in terms of the Rie-

mannian metric, using the assumption of bilinearity and symmetry:

〈u, v〉p = 〈u1∂x + u2∂y, v1∂x + v2∂y〉p
= u1v1〈∂x, ∂x〉p + (u1v2 + u2v1)〈∂x, ∂y〉p + u2v2〈∂y, ∂y〉p

=
(
u1 u2

)(a(x, y) b(x, y)

b(x, y) c(x, y)

)(
v1

v2

)
,
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where a, b, c : R2 → R are given by

a(x, y) = 〈∂x, ∂x〉p,
b(x, y) = 〈∂x, ∂y〉p = 〈∂y, ∂x〉p,
c(x, y) = 〈∂y, ∂y〉p.

Then the condition that the metric be smooth may be given by requir-

ing a, b, c to be smooth functions; equivalently, given any two smooth

vector fields u, v, we require the map p �→ 〈u, v〉p to be smooth.

What does it mean in terms of the above discussion to require that

the metric be positive definite? Clearly 〈∂x, ∂x〉p > 0, and similarly

for ∂y, so we have a, c > 0. This is necessary but not sufficient; it

turns out that in addition,
(

a b
b c

)
must have positive determinant.

Note that this is an open condition; given a matrix A with positive

determinant and positive diagonal terms, a small perturbation of A

will still have positive determinant and positive diagonal terms, and

so small perturbations of our metric will still be positive definite.

One can also check that the matrix A which defines the metric

transforms under a change of coordinates to the matrix CT AC, where

C is the Jacobian matrix of the transition map. To see this, let (x, y)

and (x′, y′) be two coordinate systems on a neighbourhood of S, with

the transition map given by φ : (x, y) �→ (x′, y′). To determine the

change of coordinates on the tangent space, we suppose that (u, v) =

u∂x + v∂y is mapped to (u′, v′) = u′∂x′ + v′∂y′ . Then

u′∂x′ + v′∂y′ = u∂x + v∂y

= u

(
∂x′

∂x
∂x′ +

∂y′

∂x
∂y′

)
+ v

(
∂x′

∂y
∂x′ +

∂y′

∂y
∂y′

)

=

(
∂x′

∂x
u +

∂x′

∂y
v

)
∂x′ +

(
∂y′

∂x
u +

∂y′

∂y
v

)
∂y′ ,

which we may write more succinctly as(
u′

v′

)
= Dφ

(
u

v

)
,

where Dφ is the Jacobian of the transition map φ. Hence since for two

vector fields u = (u1, u2) and v = (v1, v2) we have 〈u, v〉p = uT Av,

the change of coordinates which gives u′ = (Dφ)u and v′ = (Dφ)v
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leads to

〈u′, v′〉p = 〈(Dφ)u, (Dφ)v〉p
= uT (Dφ)T A(Dφ)v

which is the change of coordinates formula mentioned above.

Exercise 4.1. Express the Riemannian metric on the round sphere

in the following coordinate systems:

(1) geographic coordinates;

(2) polar coordinates in the planes of stereographic projections;

(3) polar coordinates in the planes of coordinate projections.

Exercise 4.2. Express the Riemannian metric on the torus of revo-

lution (1.5) in the ‘geographic’ coordinates (θ, φ), where θ is the angle

between a plane section passing through the z-axis and the xz-plane,

and φ is the angular coordinate on a plane section.

Exercise 4.3. Consider the regular octagon with pairs of opposite

sides identified, with the smooth structure defined in Lecture 19(d)

(see Figure 3.8).

Define a smooth Riemannian metric on this surface in such a

way that angles between tangent vectors at any point other than the

vertex are equal to the Euclidean angles.

b. Partitions of unity. The above definition of a Riemannian met-

ric relies on a choice of local coordinates at each point, and so in order

to define a Riemannian metric on the entire surface, we must define

it locally on each patch. However, the formula just derived for the

change of coordinates must be satisfied where the patches overlap,

so we cannot simply choose an arbitrary positive definite symmetric

matrix varying smoothly from point to point within each patch. In

particular, we cannot obtain a Riemannian structure on a smooth

surface by simply defining the metric by the identity matrix within

each patch, since the change of coordinates formula will probably fail

on the intersections of the different patches.

To overcome this difficulty, we require a tool for passing from the

local setting to the global. The tool we will use is a partition of unity,
which has wide applicability in topology and geometry anytime we
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want to ‘patch together’ a collection of objects which have a linear

structure and are locally defined.

By ‘linear structure’, we mean that the objects of interest form a

vector space. For example, given two smooth functions f1 and f2 on a

surface, and any numbers λ1, λ2, the linear combination λ1f1 + λ2f2

is also a smooth function, and so the set of smooth functions has a

linear structure; a similar observation holds for smooth vector fields.

In the case of Riemannian metrics, it is not hard to verify that the

sum of two positive definite symmetric matrices A1 and A2 will itself

be positive definite and symmetric; however, multiplying A1 or A2 by

a negative constant will not result in a positive definite matrix, so we

must restrict ourselves to multiplication by non-negative values of λ1

and λ2. We say that the set of positive definite symmetric matrices,

and hence the set of Riemannian metrics, forms a cone; as it turns

out, this will be sufficient to allow us to apply the partition of unity.

Definition 4.3. Let {U1, . . . , UN} be a finite cover of S by coordinate

patches. A smooth partition of unity is a collection {ρ1, . . . , ρN} of

smooth functions S → R which satisfy the following conditions:

(1) supp(ρi) = {x | ρi(x) �= 0 } ⊂ Ui;

(2) ρi ≥ 0;

(3)
∑N

i=1 ρi ≡ 1.

We will defer until the next lecture a proof that any finite cover

of S by coordinate patches admits a smooth partition of unity, and

content ourselves for the time being with briefly mentioning the use

of this new object.

Suppose we have a collection of functions, or vector fields, or

Riemannian metrics, which are only defined locally; that is, for each

patch Ui we have a function (or vector field, etc.) Ai which is defined

on Ui but nowhere else. Then we can construct a globally defined

function (or whatever) A by using the partition of unity, as suggested

in Figure 4.1:

A =

N∑
i=1

ρiAi.
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Figure 4.1. Using a partition of unity to build a global object.

The careful reader will protest that A, which is meant to be defined

on all of S, is being written as a sum of things which are not so

defined. This is where the properties of the partition of unity {ρi}
are vital; because ρi vanishes where Ai is not defined, we may simply

ignore those terms, and take our sum over only those terms which

are defined and not equal to zero. Furthermore, because each ρi is

smooth, any regularity properties of the locally defined Ai are passed

to A itself.

This method of gluing together locally defined objects which have

no a priori relation to each other is often the only way of defining

‘good’ global objects, and has wide applicability.

Lecture 24

a. Existence of partitions of unity. We now formally state and

prove the theorem on the existence of smooth partitions of unity to

which we alluded in the previous lecture.

Theorem 4.4. Let U = {(Ui, φi)}N
i=1 be a finite smooth atlas on a

compact surface S, where Ui ⊂ S are open patches and

φi : Ui → D2 = { (x, y) ∈ R2 | x2 + y2 < 1 }
are coordinate charts. Then there exists a smooth partition of unity
subordinate to U , that is, smooth functions ρi : S → R such that

(1) supp(ρi) ⊂ Ui;
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(2) ρi ≥ 0;

(3)
∑N

i=1 ρi ≡ 1.

Proof. We begin with a more general lemma, which applies to any

compact topological manifold and does not rely on the smooth struc-

ture of our surface. The key idea is that because we are dealing with

an open cover, we can shrink the patches Ui by some small amount

and still cover the entire surface; with this lemma in hand, we will

proceed to construct smooth functions ρi which have the closures of

these shrunken patches as their supports.

Lemma 4.5. Given a finite smooth atlas U as above, there exists
ε > 0 such that the sets

Uε
i = φ−1

i (D2
1−ε)

still cover S, where D2
r = { (x, y) ∈ R2 | x2 + y2 < r2 } is the disc of

radius r.

Proof of the lemma. We proceed by contradiction; if no such ε

exists, then for every ε > 0 we have

N⋃
i=1

Uε
i � S

and hence there exists a sequence of points xn ∈ S such that xn /∈ Uε
i

for any 1 ≤ i ≤ N . By compactness, (xn)∞n=1 has a convergent

subsequence; without loss of generality, we may assume that the entire

sequence converges to some point x ∈ S.

Now x ∈ Ui for some i, so write φi(x) = (t, s) ∈ D2. Then

t2 + s2 < 1 so there exists δ > 0 such that t2 + s2 < (1 − δ)2. Hence

since xn → x, there exists n0 ∈ N such that for all n ≥ n0 we have

xn ∈ Ui, φ(xn) = (tn, sn), and t2n + s2
n < (1− δ/2)2. Thus xn ∈ U

δ/2
i ,

contradicting our original assumption. �

As mentioned above, this proof makes no reference to the smooth

structure of S, and works for a compact manifold of arbitrary dimen-

sion by replacing (t, s) with (t1, . . . , tk). In the case of a non-compact

manifold and an infinite cover, the lemma is not true as stated, but a
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Figure 4.2. Our desired bump function and its radial profile.

similar result is still true and may be used to establish our theorem;

we restrict ourselves here to the compact case, however.

Given ε > 0 as in the lemma, we now want to construct smooth

functions ρi : S → R such that ρi > 0 on Uε
i and ρi = 0 on Ui \

Uε
i , implying supp(ρi) = Uε

i ⊂ Ui. The construction of such bump
functions begins by considering the one-dimensional case.

What we would like in the one-dimensional case is a smooth func-

tion Fε : R → R whose graph is as shown in Figure 4.2. Assuming all

the derivatives of Fε vanish at 0, we can then define ρi radially using

Fε. The first task, then, is to construct such an Fε.

A smooth function which vanishes on one side of a point a must

necessarily have all derivatives equal to zero at a; hence we begin by

recalling the standard example (Figure 4.3(a)) of a smooth function

for which all derivatives vanish at 0, but which is not identically zero

on any neighbourhood of the origin. Define f : R → R piecewise by

f(x) =

{
0 x ≤ 0,

e−1/x2
x > 0.

Exercise 4.4. Using the fact that the exponential function grows

faster than any polynomial, show that f (n)(0) = 0 for all n ≥ 0.

Now to obtain a smooth function with compact support, we fix

a, b ∈ R and consider the function

fa,b(x) = f(x − a) · f(b − x)

whose graph is shown in Figure 4.3(b). Since supp(fa,b) = [a, b], we

would like to simply define our bump function by

ρi(φ
−1
i (x, y)) = f−1+ε,1−ε(

√
x2 + y2).

                

                                                                                                               



168 4. Riemannian Metrics

(a) (b)

Figure 4.3. Building a partition of unity.

However, this function will not be smooth at (x, y) = (0, 0), since

not all derivatives of fa,b vanish at a+b
2 . To remedy this situation,

we define a smooth function ga,b which is constant on (−∞, a] and

vanishes on [b,∞) by integrating fa,b:

ga,b(x) =

∫ ∞

x

fa,b(t) dt

Note that we could take as our upper bound of integration any real

number larger than b.

Now we can once more define a candidate bump function ρ̃i by

ρ̃i(p) =

{
gε,1−ε(

√
x2 + y2), p = φ−1

i (x, y) ∈ Ui,

0, p /∈ Ui.

By the construction of ga,b, it is immediate that ρ̃i is smooth, non-

negative, and has support Uε
i ⊂ Ui; the only thing left to obtain

a partition of unity is the requirement that the functions sum to 1

at each point. This is easily accomplished with a simple normalisa-

tion procedure; by the lemma, the patches Uε
i cover S, and hence∑N

i=1 ρ̃i(x) > 0 for every x ∈ S. By defining

ρi(x) =
ρ̃i(x)∑N
i=1 ρ̃i(x)

we have the desired smooth partition of unity. �

This construction relies heavily on the dramatic difference be-

tween smoothness and analyticity for real functions; in the complex

case, where the two are equivalent, no such argument would have been

possible. In essence, we are using the pathological nature of smooth

real functions for our own ends.
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b. Global properties from local and infinitesimal. In the pre-

vious lecture, we described how to use a partition of unity (which we

now know exists) to construct a Riemannian metric on any compact

smooth surface S. This gives a useful example of producing a global

object from components which are only defined locally.

Riemannian metrics are an outstanding example of how an in-
finitesimally defined object leads to global or, more appropriately,

macroscopic, considerations. In the first approximation, Riemannian

geometry is modeled on Euclidean geometry; this can be likened to

approximating a differentiable function near a point by a linear one

with the same value at the point and the slope equal to the derivative

at the point.

Certain properties of the function such as convexity, or, geomet-

rically speaking, the curvature of the function’s graph, are lost in

such an approximation since they depend on higher derivatives. If

the second derivative does not vanish, then quadratic approximation

recovers at least the convexity properties of the function and the cur-

vature of its graph.

For a Riemannian metric, the linear approximation corresponds

to an approximation by a metric with constant coefficients in a given

coordinate system; it obviously misses important geometric proper-

ties, such as the radius of the sphere in the case of a spherical metric,

which is closely related to the curvature. The recipe, then, is clear:

we must recover these properties by considering the change in the

Riemannian metric from point to point, which we will do by tak-

ing the first (and, if necessary, higher) derivatives of the coefficients

into account. We will come back to this in a systematic way later in

Lecture 32.

But there is also another aspect to the relationship between global

and infinitesimal properties. Let us look at the basic calculus example

again.

In order to find the minima of a differentiable function, which

is a global property, we examine how the function should behave

near such a point and deduce that the point must be critical, i.e. all

partial derivatives must vanish. Then, in order to determine whether

a critical point is a minimum, a maximum or neither, we apply the
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second derivative (Hessian) test. Finally, having determined all local

minima, we simply compare the values of the function at those points

to determine the global minimum.

A similar method works in finding curves which play the role of

straight lines in Riemannian geometry, the geodesics. The distance

between two points a, b ∈ S is defined as the minimum of lengths of

paths connecting a and b; the question of finding a shortest path is,

on the face of it, a rather difficult global question, requiring us to

somehow consider all possible paths from a to b. By using a local

approach, we will be able to identify the analogues of the critical

points in the previous problem; that is, the paths which cannot be

made shorter by a small perturbation.

This variational approach leads eventually to the second-order

Euler-Lagrange differential equation for a geodesic parametrised by

arc length, and will allow us to restrict our search to a much smaller

class of paths. We will see that the solution is uniquely defined by

the initial condition and initial “velocity”, i.e. the tangent vector of

length one at the initial point. A counterpart of the second derivative

test can be used to show that for any two sufficiently close points the

solution indeed has minimal length.

Unlike the case of the Euclidean plane, the situation becomes

more complicated if the endpoints are far away or if a geodesic comes

back or close to the initial point. The latter is inevitable on compact

surfaces, even if the geometry locally looks Euclidean, as it does for

the flat torus.

c. Lengths, angles, and areas. By recalling some facts from Eu-

clidean geometry, we observe that the choice of a Riemannian metric

allows us to define lengths, angles, and areas in the tangent space to

a surface S at a point p.

First note that given a tangent vector u ∈ TpS, we can define the

length (or norm) of u by the formula ‖u‖p =
√
〈u, u〉p.

Now consider the triangle shown in Figure 4.4. The law of cosines

states that

‖u + v‖2
p = ‖u‖2

p + ‖v‖2
p + 2‖u‖p‖v‖p cos α.
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u

vu + v

α

Figure 4.4. Calculating the angle between two vectors.

Combining this with the above formula for the length, we have

〈u + v, u + v〉p = 〈u, u〉p + 〈v, v〉p + 2‖u‖p‖v‖p cos α,

and expanding the left side using the properties of the inner product

yields

〈u + v, u + v〉p = 〈u, u〉p + 〈v, v〉p + 2〈u, v〉p;
whence we have

α = arccos
〈u, v〉p

‖u‖p‖v‖p

and so a Riemannian metric allows us to define angles between tan-

gent vectors.

Finally, once lengths and angles are defined, we also have a notion

of area. For example, the parallelogram spanned by the vectors u, v ∈
TpS has area ‖u‖p‖v‖p sin α, where α is the angle between u and v.

These are all infinitesimal notions, being defined in the tangent

space. We can in fact obtain global counterparts to all of these, which

are defined on the surface itself.

The case of the angle is the easiest since it requires only differ-

entiation and no integration. Namely, given two smooth curves γ,

η : (−ε, ε) → S with γ(0) = η(0) = p, the tangent vectors γ′(0) and

η′(0) both lie in TpS, and so the angle between the two curves is

defined as the angle between their tangent vectors at the point of

intersection p.

The length of a smooth curve γ : [a, b] → S is given by the formula

�(γ) =

∫ b

a

‖γ′(t)‖ dt.

It must be checked that this length is independent of a particular

parametrisation of γ; that is, given a smooth monotone increasing
                

                                                                                                               



172 4. Riemannian Metrics

function s : [c, d] → [a, b], the curve γ̃ defined by

γ̃(s) = γ(s(t))

should have the same length as γ. This follows immediately from the

change of variable formula from the calculus of one variable.

Finally, we can define the area for a domain D ⊂ S bounded

by piecewise smooth curves. One can cut such a domain into finitely

many pieces such that every piece lies inside a single coordinate patch.

Thus we will begin by considering such domains; let (x, y) be local

coordinates and ρ(x, y) be the area of the parallelogram spanned by

the coordinate vector fields ∂
∂x and ∂

∂y . Then the area of a domain D

is defined as

a(D) =

∫
D

ρ(x, y) dx dy.

The change of variables formula from the calculus of two variables

shows that this definition is independent of coordinate changes, and

hence the area of a large domain can be defined as the sum of the

areas of its pieces which lie inside single coordinate patches.

Exercise 4.5. Prove that if we only know the lengths of all tangent

vectors for a particular Riemannian metric, we can find the angles

between them in terms of those lengths, and thus recover the metric

completely.

Lecture 25

a. Geometry via a Riemannian metric. The concept of a Rie-

mannian manifold, introduced in the previous two lectures, lies at the

heart of modern geometry. Indeed, when we use the word ‘geometry’

nowadays, what is usually meant is the study of Riemannian mani-

folds; this covers both Euclidean and non-Euclidean cases, including

hyperbolic geometry and the geometry of projective space.

Three of the main ingredients of two-dimensional geometry are

length, angle, and area. Previously, we saw how to define the infini-

tesimal versions of these on the tangent space, and went through the

process of obtaining the macroscopic versions by a process of integra-

tion (in the case of length and area) or differentiation (in the case of

angle).
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Comment on notation: It is common to see a Riemannian metric

defined on a patch by the equation

(4.1) ds2 = a(x, y) dx2 + 2b(x, y) dx dy + c(x, y) dy2,

which specifies the magnitude of an infinitesimal displacement in

terms of its coordinates. This corresponds to our definition of the

inner product on each tangent space as being given by the matrix

(
a(x, y) b(x, y)

b(x, y) c(x, y)

)
.

In the case of a Euclidean metric, when this matrix becomes the

identity, we have the familiar formula

ds2 = dx2 + dy2.

In our discussion of complex manifolds and Riemann surfaces we

encountered the notion of a conformal map, which preserves angles

but not necessarily distances. A related concept for a Riemannian

metric is the idea of a conformal change, which replaces the metric

given by ds2 with another given by ρ(x, y)2 ds2, where ρ(x, y) is a

non-vanishing smooth function. That is, the length of each tangent

vector in the tangent bundle is scaled by a factor which depends only

on the base point (x, y), and not on the particular vector itself.

This operation gives us a useful tool in classifying Riemannian

metrics on surfaces, in that via a conformal change, we can put every

metric on a compact surface into some canonical form. It turns out,

for instance, that every Riemannian metric on the sphere is confor-
mally equivalent to the usual round metric obtained by embedding the

unit sphere in R3. Similarly, any metric on the torus is conformally

equivalent to some flat metric; it should be pointed out, however, that

the various flat metrics, which may be obtained by using different par-

allelograms (or rectangles) as our planar model for the torus, are not
conformally equivalent. These facts, and their even more non-trivial

generalisations for surfaces of higher genus, rely on advanced (albeit

by now standard) results from complex analysis called regularisation
theorems.
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Exercise 4.6. Consider a Riemannian metric given in terms of local

coordinates (4.1). Interpret the following conditions in terms of the

coefficients of the metric:

(1) The coordinate curves x = constant and y = constant are

orthogonal.

(2) The coordinate curves x = constant and y = constant form

the angle π/4 at each point.

(3) The area determined by the metric coincides with the usual

area dx dy.

b. Differential equations. We briefly recall some notions from the

theory of ordinary differential equations. Given a system of n first

order ODEs

ẋi = fi(x, t)

for x ∈ U ⊂ Rn, we are in general unable to find an explicit closed

form solution x(t). However, provided the functions fi are ‘nice

enough’—for example, if they are continuously differentiable—it is

possible to prove that for every set of initial conditions there exists a

unique solution x(t) on some interval t ∈ (0, t0).

Such existence and uniqueness results are central to the study of

ordinary differential equations, and their counterparts also appear in

the study of partial differential equations. We will rely on this sort of

result when we investigate geodesic curves on a surface; in particular,

the existence of geodesics will hinge on the existence of solutions to

the Euler-Lagrange equations, which can be brought to the form

ẍi = gi(x, ẋ)

for some functions gi.

This system of n second-order ODEs reduces to a system of 2n

first-order ODEs using the standard trick of setting v = ẋ, which

gives

ẋi = vi(t),

v̇i = gi(x, v, t),

allowing us to apply the existence and uniqueness theorem mentioned

above.
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c. Geodesics. We now have definitions of length, angle, and area on

a surface endowed with a Riemannian metric; we have not yet dealt,

however, with the analogue of a basic geometric object, a straight line.

To this end, we fix two points a and b on the surface and look for the

shortest curve between them (though a priori we have no guarantee

that such a curve exists and is unique).

Since the length of a curve is defined via a parametrisation of

the curve, we are dealing with a real-valued function (the length)

whose domain is the set of all parametrised curves γ : [0, s] → S with

γ(0) = a, γ(s) = b. This is an extremely large set, being a sort of

infinite-dimensional manifold; in this context, the function assigning

a length to each parametrised curve is referred to as a functional,
which we can write as

� : γ �→
∫ s

0

‖γ′(t)‖γ(t) dt.

Now we are looking for the curve (or curves) γ which minimise this

functional; we would like to use a sort of derivative to identify critical

points which will be the candidates for minima. This is hampered by

the fact that if γ is such a minimum, then any reparametrisation of

γ is also a minimum, since length is independent of parametrisation.

This will mean that the ‘critical curves’ for the length functional are

not isolated in the set of parametrised curves, which is problematic.

The way around this problem is to choose a preferred parametri-

sation for each curve; specifically, we focus on the parametrisation by

arc length, for which ∫ t

0

‖γ′(τ )‖ dτ = t

for every t ≥ 0. This is obviously equivalent to the condition ‖γ′(t)‖ =

1 for all t, for which reason this is sometimes referred to as the unit
speed parametrisation.

We single out these parametrisations not by restricting our space

of curves to arc length parametrisations, but by considering a slightly

different functional, the action α, defined by

α(γ) =

∫ s

0

‖γ′(t)‖2 dt.
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In the case ‖γ′‖ ≡ 1, we have α(γ) = �(γ); a variant of the Cauchy-

Schwarz inequality shows that for any other parametrisation, α(γ) >

�(γ), and so the minima of α are precisely the minima of � which are

parametrised by arc length.

Some justification for the inequality may be given by considering

the problem of minimising x2
1 + · · · + x2

n subject to the restrictions

xi ≥ 0, x1 + · · · + xn = 1. This is equivalent to finding the point

on the unit simplex closest to the origin; the unique minimum occurs

when xi = 1/n for every i.

By using tools from the calculus of variations, one may obtain a

criterion for a curve γ to be a critical point of the action functional α.

We will not carry out the details, but rather will state without proof

the Euler-Lagrange equation, which applies in a more general setting

than just the problem of minimising the action functional.

Proposition 4.10 (Euler-Lagrange equation). If γ : [a, b] → Rn min-
imises the functional

∫
L(x, ẋ) dt, then the partial derivatives of the

cost function L are related by the equation

(4.2)
∂L

∂x
=

d

dt

∂L

∂ẋ

at every point along γ([a, b]).

Applying this criterion to the action functional, for which the

cost function is ‖ẋ‖2, we obtain a second order ODE, the solution

of which is a geodesic. Assuming the Riemannian metric is C2, the

existence and uniqueness theorem discussed above applies, and we

have the following important result:

Proposition 4.11. Given a C2 Riemannian metric on a smooth sur-
face, there exists ε > 0 such that for every v ∈ TpS with ‖v‖ = 1,
there exists a unique curve γv : [0,∞) → S satisfying

(1) γ′
v(0) = v;

(2) ‖γ′
v‖ ≡ 1;

(3) If |t1 − t2| ≤ ε then γ : [t1, t2] → S is the unique shortest
curve between γ(t1) and γ(t2).

The final property is the key property of geodesics, and estab-

lishes that for points which are close enough along the geodesic, it
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does in fact minimise length. In a similar vein, the following result

can also be shown by using the previous proposition along with the

Implicit Function Theorem, as well as the fact (which we did not state

yet) that γv depends smoothly on v.

Proposition 4.12. Under the conditions above, there exists ε > 0

such that if p, q ∈ S lie a distance < ε apart, then there exists a unique
shortest curve γp,q from p to q in the arc length parametrisation.
Further, if v = γ′

p,q(0), then γp,q = γv.

Both these propositions deal with small scales; if we go farther

away along a geodesic, various sorts of behaviour are possible. In

the Euclidean plane, nothing changes; two points determine a unique

straight line, no matter what the distance between them is. On the

sphere, however, we recall that the geodesics are great circles, and

so all the geodesics γv converge at the point antipodal to p (as in

Figure 1.13). This is an instance of the problem of conjugate points.

On a flat torus, the situation is different yet again. Any two points

on the flat torus can be connected by infinitely many geodesics, but

they will be of different lengths, unlike on the sphere, where all great

circles have the same length.

Although we have not derived explicit differential equations for

the geodesics, and did not provide any other general recipe for finding

them, there are certain cases where Propositions 4.11 and 4.12 allow

us to identify specific geodesics. The key idea here is the symmetry;

the following exercises demonstrate how this idea is used in several

situations.

Exercise 4.7. Prove that great circles are geodesics on the round

sphere, and that there are no other geodesics. Use only Proposi-

tion 4.12, and do not carry out any calculations.

Exercise 4.8. Let F (x, y, z) be a differentiable function which is even

in z, i.e. F (x, y, z) = F (x, y,−z), and for which 0 is not a critical

value. Prove that every connected component of the curve { (x, y, z) |
F (x, y, z) = 0, z = 0 } is a geodesic on the surface F = 0.

Exercise 4.9. Prove that every ellipsoid has at least three closed

geodesics without self-intersections.
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Exercise 4.10. Let S be a surface of revolution, and P a plane pass-

ing through the axis of rotation. Show that the connected components

S ∩ P are geodesics in S.

Exercise 4.11. Assume a smooth surface S in R3 is symmetric with

respect to a rotation R by π around an axis which intersects S at

an isolated point p. Show that R acts as the geodesic flip near p,

i.e. it keeps any geodesic passing through p invariant, and reflects it

through p, preserving the length parameter.

Lecture 26

a. First glance at curvature. We now turn our attention to what

is perhaps the most important isometric invariant of a surface en-

dowed with a Riemannian metric, the curvature. Specifically, we shall

be interested in what is referred to as the Gaussian curvature; there

are other sorts of curvature as well, but we shall not dwell on them,

and so any mention of curvature in what follows refers to Gaussian

curvature, unless otherwise stated.

Two of the standard examples to keep in mind during our discus-

sion of curvature are the Euclidean plane and the round sphere. As

one might expect, the plane has zero curvature, while the sphere has

a curvature which varies according to its radius; a sphere with small

radius will have a large curvature, and conversely. In fact, we will see

that the curvature of a sphere with radius R is 1/R2; some motiva-

tion for the fact that the curvature varies as the inverse square of the

radius, and not some other power, may be given by the observation

that under this definition, the total curvature of the sphere, obtained

by integrating the curvature at each point with respect to the area

generated by the metric over the entire surface, is in fact independent

of the radius, since the surface area grows as 4πR2.

These two examples exhibit zero curvature and positive curva-

ture, respectively, at every point; is there a corresponding surface

exhibiting constant negative curvature? There is indeed such an ex-

ample, the hyperbolic plane, which cannot be isometrically embedded

into R3—we will turn our attention to this example following some

preliminary remarks concerning the definition of curvature without
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reference to an embedding. After a thorough study of the invalu-

able example of the hyperbolic plane, we will then flesh out these

preliminary remarks with a more systematic discussion of curvature.

Traditionally, differential geometry has considered various aspects

of curvature which arise from the particular embedding of a surface

into R3. In this approach, curvature is first studied in terms of the

extrinsic properties of a surface; that is, with reference to the ambient

space R3 and the particular choice of embedding. With a fair amount

of work, one comes eventually to Gauss’ Theorema Egregium (see

e.g. Section 20.1 in Coxeter’s Introduction to Geometry), which gives

a characterisation of one of the several curvature characteristics of

the embedded surface in purely intrinsic terms; that is, using only

the properties of the Riemannian metric on the surface.

The difference between the extrinsic and intrinsic points of view

is made apparent when we compare the idea of curvature for curves

and for surfaces. Given a curve γ in R2, the curvature is given by the

speed of rotation of the unit tangent vector. That is, if we consider

the arc length parametrisation and let θ(s) denote the angle between

γ′(s) and the positive x-axis, then the curvature κ at a point γ(s) is

given by

κ(γ(s)) =
dθ

ds
.

Similarly to our earlier claim regarding the sphere, we find that a

circle of radius R has a constant curvature of 1/R.

Two observations must now be made, however. The first is that

the curvature is a property not only of the curve, but also of its ori-

entation; if we parametrise the curve in the opposite direction, the

curvature will change sign. The second, which will illustrate the dif-

ference between curves and surfaces with regard to curvature, is that

the curvature is completely dependent upon the extrinsic properties

of the curve; after all, any small neighbourhood of a smooth curve is

isometric to an interval on a straight line, and so the intrinsic prop-

erties of the curve have nothing whatsoever to do with the curvature.

In marked contrast to this, we will see that intrinsic properties

are sufficient to determine curvature of a surface. For the moment,
                

                                                                                                               



180 4. Riemannian Metrics

let us address the question of what properties the curvature ought to

have. Just what sort of beast are we after here?

The curvature is to be a real-valued function κ : S → R which is

invariant under isometries; that is, which is intrinsically determined.

Furthermore, it is to have the property that if we scale the metric by

a constant λ, then we scale the curvature by 1/λ2; that is, if S̃ is the

surface S with Riemannian metric given by

ds̃2 = λ2ds2,

then the curvature κ̃ : S̃ → R is given by

κ̃ =
1

λ2
κ.

What do these properties tell us about the curvature of a sphere?

Given any two points p, q on the sphere, we can find a rotation which

takes p to q; because rotations are isometries, the fact that κ is to

be invariant under isometries implies that κ(p) = κ(q), and hence

the sphere has constant curvature. Further, scaling the metric by λ

is equivalent to scaling the radius R by λ, and hence the constant

value of the curvature is proportional to 1/R2 by the second property

above. Thus the two properties above are sufficient to determine the

curvature up to this constant of proportionality, which is chosen so

that the unit sphere has curvature κ = 1.

A similar series of observations holds for the Euclidean plane; as

for the sphere, any point p can be carried to any other point q by

an isometry (in particular, translation by q − p), and so the isometry

group acts transitively; hence the curvature must be constant. Fur-

thermore, because scaling the metric results in a copy of the plane

which is isometric to the original, this constant must be zero, so κ = 0

for the Euclidean plane.

To characterise curvature in purely geometric terms, without ref-

erence to an embedding, consider a small circle around a point p on

a surface S. The definition of a circle as the set of all points at a

fixed distance r from p still makes perfect sense; however, the usual

formulae for circumference and area will need to be modified with a

small error term. On a sphere, for instance, a circle around the north

pole with radius r will have a shorter circumference than a circle in
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Figure 4.5. Relating curvature to the circumference of a circle.

the plane with radius r (Figure 4.5). We will see that

circumference = 2πr − cr3 + o(r3)

where c is a constant related to the curvature. Upon integration, we

will obtain an expression for the area of the disc as

area = πr2 − c

4
r4 + o(r4).

b. The hyperbolic plane: two conformal models.

b.1. The upper half-plane model. In order to exhibit a surface with

constant negative curvature, we pull a proverbial rabbit from our

sleeve, or hat, or some other piece of proverbial clothing, and give

without motivation the definition of the upper half-plane model of

hyperbolic geometry due to Henri Poincaré, arguably the greatest

mathematician since Gauss and Riemann. Our surface will be H2,

defined as

H2 = { (x, y) ∈ R2 | y > 0 } = { z ∈ C | Im z > 0 },

where it is useful to keep in mind the formulation in terms of complex

numbers in order to describe the isometry group of H2.

The metric on H2 is given by a conformal change of the standard

metric:

(4.3) ds2 =
dx2 + dy2

y2
.

The fact that the denominator vanishes when y = 0 gives some justifi-

cation for the fact that we consider only the upper half-plane, and not

the entire plane. From (4.3) it is apparent that Euclidean lengths are

increased when y is small, and decreased when y is large; Figure 4.6
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Figure 4.6. Unit tangent vectors in the hyperbolic plane.

shows some unit tangent vectors. All of these have unit length in the

hyperbolic metric, and so their Euclidean lengths vary as y varies.

In order to show that H2 has constant curvature, we will show

that isometries act transitively. To see this, it will suffice to exhibit

two particular classes of isometries.

(1) Translations. Given a real number t, the translation by

t which takes z to z + t (or in real coordinates, (x, y) to

(x + t, y)) is an isometry since the metric does not depend

on the horizontal coordinate x.

(2) Homotheties. For any λ > 0, the map z �→ λz turns out

to be an isometry; this is most easily seen by writing the

metric as

ds =
(dx2 + dy2)

1
2

y

from which it is clear that multiplying both x and y by λ

does not change ds.

Since any composition of these two types of isometries is itself

an isometry, the isometry group acts transitively on H2; given z1 =

x1 + iy1 and z2 = x2 + iy2, we can first scale z1 by y2/y1 so that the

imaginary parts are the same, and then translate by the difference in

the real parts. It follows that H2 has constant curvature.

Acting transitively on the surface itself is not the whole story,

however; in the case of the sphere and the Euclidean plane, the isom-

etry group acts transitively not only on the surface, but also on the

unit tangent bundle.

By way of explaining this last statement, recall the general fact

that given any smooth map f : S → S, the Jacobian Dfp at a point p
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defines a linear transformation between the tangent spaces TpS and

Tf(p)S, so that the pair (f, Df) acts on the tangent bundle as

(f, Df) : TS → TS,

(p, v) �→ (f(p), Dfpv).

Now f is an isometry iff Df acts isometrically on each tangent

space; in particular, it must preserve the norm. Thus we restrict

our attention to tangent vectors of norm one, which form the unit
tangent bundle; for each isometry f acting on S, the pair (f, Df) acts

isometrically on the unit tangent bundle of S.

For both S2 and R2, this action is transitive; given any two points

p, q ∈ S and unit tangent vectors v ∈ TpS, w ∈ TqS, there exists an

isometry f : S → S such that

f(p) = q,

Dfp(v) = w.

To see that a similar property holds for H2, we must consider all

the isometries and not just those generated by the two classes men-

tioned so far. For example, we have not yet considered the orientation

reversing isometry (x, y) �→ (−x, y).

We will prove later (Proposition 4.14) that every orientation pre-

serving isometry of H2 has the form

f : z �→ az + b

cz + d
,

where a, b, c, d ∈ R. This condition guarantees that f fixes the real

line, which must hold for any isometry of H2. We also require that

ad − bc �= 0, since otherwise the image of f is a single point; in fact,

we must have ad − bc > 0; otherwise f swaps the upper and lower

half-planes.

As given, f appears to depend on four real parameters, while

considerations similar to those in the analysis of the isometry groups

of S2 and R2 suggest that three parameters ought to be sufficient.

Indeed, scaling all four coefficients by a factor λ > 0 leaves the trans-

formation f unchanged, but scales the quantity ad − bc by λ2; hence

we may require in addition that ad − bc = 1, and now we see that f

belongs to a three-parameter group.
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The condition ad−bc = 1 is obviously reminiscent of the condition

detA = 1 for a 2 × 2 matrix A =
(

a b
c d

)
. In fact, if given such a

matrix A we denote the transformation given above by fA, then a

little algebra verifies that

fAB = fA ◦ fB

and so the isometry group of H2 is isomorphic to SL(2, R), the group

of 2 × 2 real matrices with unit determinant, modulo the provision

that fI = f−I = Id, and so we must take the quotient of SL(2, R) by

its centre {±I}. This quotient is denoted PSL(2, R), and hence we

will have

Isom(H2) = PSL(2, R) = SL(2, R)/ ± I

once we show that fA is an isometry for every A ∈ SL(2, R), and that

every isometry is of this form. One way to prove the first statement

(the second will be Proposition 4.14) is to show that every such fA

can be decomposed as a product of isometries which have one of the

following three forms:

z �→ z + t,

z �→ λz,

z �→ −1

z
,

where t ∈ R and λ ∈ R+ define one-parameter families of isome-

tries. This is equivalent to showing that SL(2, R) is generated by the

matrices{(
1 t

0 1

) ∣∣∣ t ∈ R
}⋃{(λ 0

0 λ

) ∣∣∣ λ ∈ R+

}⋃{( 0 1

−1 0

)}
.

We have seen already that the first two transformations preserve the

metric (4.3). To see that z �→ z̃ = −1/z is an isometry, one must

suffer through a small amount of algebra and use the fact that for

z = x + iy we have

z̃ = −1

z
=

−1

x + iy
= − x − iy

x2 + y2
=

−x + iy

x2 + y2
,

which allows us to compute

dx̃ =
(x2 − y2) dx − 2xy dy

(x2 + y2)2
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along with a similar formula for dỹ; together, these let us deduce that

ds̃ = ds, showing that the map is an isometry.

Later we will give other proofs that any fractional linear trans-

formation with real coefficients and non-vanishing determinant is a

hyperbolic isometry.

b.2. The disc model. Remember that at least one motivation for con-

sidering the hyperbolic plane was to provide an ideal model of a sur-

face of negative curvature.1 In attempting to define curvature via

excess or defect in the length of a small circle or area of a small disc,

and to calculate it explicitly for the hyperbolic plane, we will find

that our life is made easier by the introduction of a different model,

which is also due to Poincaré. This is given by an open unit disc, for

which the boundary of the disc plays the same role as was played by

the real line with respect to H2 (the so-called ideal boundary). The

metric is given by

(4.4) ds2 =
4(dx2 + dy2)

(1 − x2 − y2)2
,

and we may see that this model is the image of H2 under a conformal

transformation, for example

(4.5) z �→ iz + 1

z + i
.

An advantage of this model is that rotation around the origin is an

isometry, and so hyperbolic circles around the origin are simply Eu-

clidean circles in the plane with the same centre—of course, the hy-

perbolic radius is different from the Euclidean radius. This rotation

is exactly the one type of isometry which does not have a convenient

‘natural’ representation in the upper half-plane model; thus it is use-

ful to switch back and forth between the two models depending on

the type of symmetry for which a particular problem calls.

b.3. Embedded surfaces. It is natural to ask whether one can realise

the hyperbolic plane as a surface in R3. This turns out not to be pos-

sible for the whole plane (although the proof is not simple); however,

there are surfaces in R3 whose intrinsic geometry is locally isometric

1There are of course plenty of other reasons—it is sufficient to recall that the
geometry of the hyperbolic plane is the original non-Euclidean geometry where all the
standard axioms except for the fifth postulate hold.
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Figure 4.7. A pseudosphere.

to that of hyperbolic plane, in the same manner as the cylinder, for

example, is locally Euclidean, despite not being globally isometric to

R2.

The classic example of such a surface is the pseudosphere (Fig-

ure 4.7), the surface of revolution around the x-axis of the curve in

the xz-plane called a tractrix, which is given parametrically by

(x, z)(t) =

(
t − sinh t

cosh t
,

1

cosh t

)

where t ≥ 0. In order to see that the pseudosphere is locally iso-

metric to the hyperbolic plane, one introduces coordinates on the

pseudosphere in which the Riemannian metric induced from R3 has

the same form as in the upper half-plane model of the hyperbolic

plane.

c. Geodesics and distances on H2. On an arbitrary surface with

a Riemannian metric, the process of defining an explicit distance func-

tion and describing the geodesics can be quite tortuous. For the two

spaces of constant curvature that we have already encountered, the so-

lution turns out to be quite simple; on the Euclidean plane, geodesics

are straight lines and the distance between two points is given by

Pythagoras’ formula, while on the sphere, geodesics are great circles

and the distance between two points is proportional to the central

angle they subtend.
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One might expect, then, that the situation on H2 exhibits a sim-

ilar simplicity, and this will in fact turn out to be the case. Let us

first consider two points z1 = x1 + iy1 and z2 = x2 + iy2 with equal

real parts x1 = x2 = x and y2 > y1. Then it is fairly straightforward

to see that the shortest path between z1 and z2 is a vertical line. For

this curve we have

(4.6) �(γ) =

∫ y2

y1

∥∥∥∥ d

dt
(x + it)

∥∥∥∥
x+it

dt =

∫ y2

y1

1

t
dt = log y2 − log y1

and the length of any other curve will be greater than this value

due to the contribution of the horizontal components of the tangent

vectors—we will present this argument in more detail in the next

lecture. It follows that vertical lines are geodesics in H2.

Isometries preserve geodesics, and hence the image of a vertical

line under any of the isometries discussed above is also a geodesic.

Horizontal translation and scaling by a constant will map a vertical

line to another vertical line, but the map z �→ −1/z behaves differ-

ently. This map is the composition of reflection about the imaginary

axis with the map z �→ −1/z̄, and the latter is simply inversion in the

unit circle. We encountered this map in Exercise 1.7 as the map

(x, y) �→
(

x

x2 + y2
,

y

x2 + y2

)

which arises as the transition map between stereographic projections

from the north and south poles. It may be checked that this map

takes lines to circles and circles to lines (with the exception of lines

through the origin, which are mapped into themselves, and circles

centred at the origin, which are taken into other circles centred at

the origin); in particular, vertical lines are mapped to circles whose

centres lie on the x-axis, and hence half-circles in H2 with centres on

the real axis are also geodesics.2

Because the three classes of isometries just mentioned generate

the isometry group of H2, which acts transitively on the tangent

bundle, these are all the geodesics.

2In the next lecture we will prove that any fractional linear transformation z �→
az+b
cz+d , where a, b, c, d are arbitrary complex numbers such that ad− bc �= 0, maps lines

and circles into lines and circles.
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0 1

i

2i

Figure 4.8. Failure of the parallel postulate in H2.

With this characterisation of geodesics in hand, we can imme-

diately see that Euclid’s parallel postulate fails in the hyperbolic

plane; given the upper half of the unit circle, which is a geodesic,

and the point 2i, which is a point not on that geodesic, there are

many geodesics passing through 2i which do not intersect the upper

half of the unit circle, as shown in Figure 4.8.

We now come to the question of giving a formula for the distance

between two points z1, z2 ∈ H2. Distance must be an isometric in-

variant, and must also be additive along geodesics. We may construct

a geodesic connecting z1 and z2 by drawing the perpendicular bisec-

tor of the line segment between them and taking the intersection of

this bisector with the real line. The circle centred at this point of

intersection which passes through z1 and z2 will be the geodesic we

seek.

As shown in Figure 4.9, let w1 and w2 be the points at which this

circle intersects the real line; we will prove later (Lemma 4.7) that

the cross-ratio

(4.7) (z1, z2; w1, w2) =
z1 − w1

z2 − w1
÷ z1 − w2

z2 − w2

is preserved by all isometries of H2. It turns out to be multiplicative

along geodesics, not additive; if we place a third point z3 between z1

and z2 along the circle as in Figure 4.9, we will have∣∣∣∣z1 − w1

z2 − w1
÷ z1 − w2

z2 − w2

∣∣∣∣ =
∣∣∣∣z1 − w1

z3 − w1
÷ z1 − w2

z3 − w2

∣∣∣∣×
∣∣∣∣z3 − w1

z2 − w1
÷ z3 − w2

z2 − w2

∣∣∣∣ .
Hence to obtain a true distance function which is additive along

geodesics, we must take the logarithm of the cross-ratio. Notice from
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w1 w2

z1

z2z3

Figure 4.9. Using cross-ratio to define distance.

equation (4.6) that

d(iy1, iy2) = log |(iy1, iy2; 0,∞)|.

Since every pair of points can be mapped by an isometry to a pair

of points on the imaginary axis, invariance of the cross-ratio implies

that

(4.8) d(z1, z2) = log

∣∣∣∣z1 − w1

z2 − w1

∣∣∣∣− log

∣∣∣∣z1 − w2

z2 − w2

∣∣∣∣ .
Exercise 4.12. Prove the following formula for the hyperbolic dis-

tance between two points z1 and z2 in the upper half-plane:

d(z1, z2) = log
|z1 − z̄2| + |z1 − z2|
|z1 − z̄2| − |z1 − z2|

.

Lecture 27

a. Detailed discussion of geodesics and isometries in the up-
per half-plane model. One of our key examples throughout this

course has been the flat torus, a surface whose name indicates that it

is a surface of constant zero curvature, and which has Euler charac-

teristic zero. We have also seen that the sphere, which has positive

Euler characteristic, has constant positive curvature.

From our considerations of the hyperbolic plane, which we will

continue in this lecture, we will eventually see that a sphere with m

handles, m ≥ 2, which is a surface of negative Euler characteristic,

can be endowed with a metric under which it has constant negative

curvature.
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These examples suggest that there might be some connection be-

tween curvature and Euler characteristic; this is the content of the

Gauss-Bonnet Theorem, which we will come to later on.

For the time being, we postpone further discussion of curvature

until we have examined the hyperbolic plane in greater detail. Recall

the Poincaré upper half-plane model:

H2 = { (x, y) ∈ R2 | y > 0} = { z ∈ C | Im z > 0 }.

The hyperbolic metric on the upper half-plane is given by a conformal

change of the Euclidean metric:

ds2 =
dx2 + dy2

y2
.

Visually, this means that to obtain hyperbolic distances from Eu-

clidean ones, we stretch the plane near the real axis, where y = Im z

is small, and shrink it far away from the real axis, where y is large.

Thus if we take a vertical strip which has constant Euclidean width,

such as

X = { (x, y) ∈ H2 | 0 ≤ x ≤ 1 },

and glue the left and right edges together, we will obtain a sort of

funnel, or trumpet, in the hyperbolic metric, which is very narrow at

large values of y, and flares out hyperbolically as y goes to 0. Part of

this construction (at the narrow end of the funnel) is realised on the

surface of the pseudosphere mentioned in Lecture 26(b.3).

Now we will present a detailed derivation of the distance for-

mula (4.8), beginning with the special case (4.6). So we take two

points z1 = x + iy1 and z2 = x + iy2 which lie on the same vertical

half-line, where y1 < y2. The curve γ : [y1, y2] → H2 given by

γ(t) = x + it

has length given by

�(γ) =

∫ y2

y1

‖γ′(t)‖ dt =

∫ y2

y1

1

t
dt = log y2 − log y1.

To see that this is in fact minimal, let η : [a, b] → H2 be any smooth

curve with η(a) = z1, η(b) = z2, and write η(t) = x(t) + iy(t). Then
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we have

�(η) =

∫ b

a

‖η′(t)‖ dt =

∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt

≥
∫ b

a

|y′(t)|
y(t)

dt ≥
∫ b

a

d

dt
log y(t) dt = log y2 − log y1

with equality iff x′(t) ≡ 0 and y′(t) > 0. Hence vertical lines are

geodesics in H2.

To determine what the rest of the geodesics in H2 look like, we

will examine the images of vertical lines under isometries. First we

give another proof (independently of any decomposition of the trans-

formation into a product of simple ones) that fractional linear trans-
formations

f : z �→ az + b

cz + d
,

where a, b, c, d ∈ R are such that ad − bc = 1, are indeed isometries

of the hyperbolic plane. If we attempt to write f in terms of the real

and imaginary parts of z, we quickly discover why the use of complex

numbers to represent H2 is so convenient:

f(x, y) = f(x + iy)

=
ax + iay + b

cx + icy + d

=
ax + b + iay

cx + d + icy
· ax + b − iay

cx + d − icy

=
(ax + b)(cx + d) + acy2 + i(acxy + ady − acxy − bcy)

(cx + d)2 + (cy)2

= F (x, y) +
iy

(cx + d)2 + c2y2
.

The exact form of the real part F (x, y) is unimportant for our pur-

poses here, since ds is independent of the value of x. It is important,

however, to note that the denominator of the imaginary part is given

by

(cx + d)2 + c2y2 = |cx + d + icy|2 = |cz + d|2,
and hence if we write f(x, y) = (x̃, ỹ), we have

ỹ =
y

|cz + d|2 .
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How are we to show that this is an isometry? One conceivable

plan of attack would be to compute the distance formula on H2 and

then show directly that the distance between f(z1) and f(z2) is the

same as the distance between z1 and z2 for any two points z1, z2 ∈ H2.

This, however, requires computation of an explicit distance formula,

which is in fact our ultimate goal. To avoid a vicious circle, we take

the infinitesimal point of view and examine the action of f on tangent

vectors. That is, we recall that given a map f : R2 → R2, the Jaco-

bian derivative Df is a linear map from R2 to R2 which takes tangent

vectors at (x, y) to tangent vectors at f(x, y). If f is in addition a

holomorphic map from C to (shining) C, then this map Df(x,y) will

act on R2 (C) as multiplication by a complex number f ′(z). Geomet-

rically, this means that Df is the composition of a homothety (by the

modulus of f ′(z)) and a rotation (by the argument of f ′(z)).

In the case of a fractional linear transformation given by the for-

mula above, we have

f ′(z) =
d

dz

az + b

cz + d
=

a(cz + d) − c(az + b)

(cz + d)2

=
ad − bc

(cz + d)2
=

1

(cz + d)2

and hence, writing f(x, y) = (x̃, ỹ) and recalling the form of ỹ, we

have

|f ′(z)| =
ỹ

y
.

Now f takes the point z = x+iy ∈ H2 to the point z̃ = x̃+iỹ, and

Dfz takes the tangent vector v ∈ TzH
2 to the vector Dfzv ∈ Tz̃H

2.

Because Dfz is homothety composed with rotation, we have, in the
Euclidean norm on R2,

‖Df(v)‖Euc = |f ′(z)| · ‖v‖Euc.

The hyperbolic norm is just the Euclidean norm divided by the y-

coordinate, and so we have

‖Df(v)‖z̃ =
‖Df(v)‖Euc

ỹ
=

|f ′(z)|
ỹ

‖v‖Euc =
1

y
‖v‖Euc = ‖v‖z.
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This is the infinitesimal condition for f to be an isometry; with this

fact in hand, it quickly follows that f preserves the length of any curve

γ, and hence preserves geodesics and the distances between points.

b. The cross-ratio. The knowledge that fractional linear transfor-

mations are isometries allows us to find the rest of the geodesics in

H2; these are simply the images under isometries of the vertical half-

lines discussed earlier. This in turn will give us the tools we need

to compute the explicit formula (4.8) for the distance between two

points z1, z2 ∈ H2. To this end, we make the following definition (the

following discussion is valid in C generally, not just H2):

Definition 4.6. Given z1, z2, z3, z4 ∈ C, the cross-ratio is the com-

plex number

(z1, z2; z3, z4) =
z1 − z3

z2 − z3
÷ z1 − z4

z2 − z4
.

This generalises (4.7), where the last two points were taken on

the real line. It turns out that any fractional linear transformation,

whether or not the coefficients lie in R, preserves the cross-ratio.

Lemma 4.7. Given any a, b, c, d ∈ C with ad − bc �= 0 and any
z1, z2, z3, z4 ∈ C, define w1, w2, w3, w4 by

wj =
azj + b

czj + d

for 1 ≤ j ≤ 4. Then

(w1, w2; w3, w4) = (z1, z2; z3, z4).

Proof. Straightforward computation; substitute the expressions for

wi into the cross-ratio formula, clear denominators, and notice that

constant and quadratic terms (in zi) cancel out additively, while linear

coefficients cancel multiplicatively, leaving the cross-ratio of the zi as

the result. �

As a simpler example of this general idea, one can notice that if

we consider triples (z1, z2, z3) of complex numbers, then the simple
ratio

z1 − z3

z2 − z3
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z1
z2

z3 z4
α

β

Figure 4.10. Interpreting the cross-ratio of four numbers.

is preserved by the linear map z �→ az+b for any a, b ∈ C. Indeed, the

complex number z1 − z3 is represented by the vector pointing from

z3 to z1, and similarly z2 − z3 is the vector from z3 to z2. Recall that

the argument of the ratio of two complex numbers is given by the

difference in their arguments; hence the argument of the above ratio

is the angle made by the points z1, z3, z2 taken in that order.

Furthermore, linear transformations are characterised by the fact

that they preserve the simple ratio; this can easily be seen by fixing

two points z1 and z2, and then expressing f(z) in terms of z from the

equality

z1 − z

z2 − z
=

f(z1) − f(z)

f(z2) − f(z)
.

Later we will use the same argument to show that fractional linear

transformations are characterised by the property of preserving the

cross-ratio (Lemma 4.9).

As with the simple ratio, the cross-ratio can be interpreted geo-

metrically. Let α be the angle made by z1, z3, z2 in that order, and

β the angle made by z1, z4, z2, as in Figure 4.10. Then the argument

of the cross-ratio is just α − β. In particular, if α = β, then the

cross-ratio is a positive real number; this happens iff the points z1,

z2, z3, z4 all lie on a circle with z1 adjacent to z2 and z3 adjacent to

z4 as in the picture, or if they are collinear.

If α − β = π, the four points still lie on a circle (or possibly a

line), but now the order is changed; z4 will have moved to a position

between z1 and z2 on the circumference. The upshot of all of this

is that the cross-ratio is a real number iff the four points lie on a

circle or a line. Because fractional linear transformations preserve

cross-ratios, we have proved the following theorem.
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Theorem 4.8. If γ is a line or a circle in C and f : C → C is a
fractional linear transformation, then f(γ) is also a line or a circle.

There are other ways of proving this theorem, but they involve

either a fair amount of algebra using the characterisations of lines and

circles in terms of z and z̄, or a synthetic argument which requires

the decomposition of fractional linear transformations into maps of

particular types.

It is worth noting that if we think of all this as happening on the

Riemann sphere rather than on the complex plane, we can dispense

with this business of ‘lines and circles’. Recall that the Riemann

sphere is the complex plane C together with a point at infinity; cir-

cles in the plane are circles on the sphere which do not pass through

the point at infinity, and lines in the plane are circles on the sphere

which do pass through the point at infinity. Fractional linear trans-

formations also assume a nicer form, once we make the definitions

f(∞) =
a

c
, f

(
−d

c

)
= ∞.

Returning to the hyperbolic plane, we now make use of the fact

that fractional linear transformations preserve angles (because they

are conformal) and cross-ratios (as we saw above). In particular, the

image of a vertical line under such a transformation f is either a

vertical line, which we already know to be a geodesic, or a circle;

because angles are preserved and because f preserves the real line

(by virtue of having coefficients in R), this circle must intersect R
perpendicularly, and hence must have its centre on the real line.

This allows us to conclude our detailed derivation of the distance

formula (4.8) by establishing that semicircles whose centre lies in R
are also geodesics. Let f be a fractional linear transformation which

maps the vertical half-line { z ∈ H2 | Re z = 0 } to the semicircle { z ∈
H2 | |z−a0| = r }. Given two points z1, z2 lying on the semicircle, we

have z1 = f(iy1) and z2 = f(iy2); hence d(z1, z2) = d(iy1, iy2) since

f is an isometry.

Furthermore, supposing without loss of generality that y1 > y2,

we see that f(0) and f(∞) are the two points where the circle inter-

sects R. Denote these by w1 and w2, respectively; then w1 lies closer
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to z1, and w2 lies closer to z2. Since f preserves cross-ratios, we have

(z1, z2; w1, w2) = (iy1, iy2; 0,∞)

=
iy1 − 0

iy2 − 0
÷ iy1 −∞

iy2 −∞ =
y1

y2

and recalling that d(iy1, iy2) = log y1 − log y2 = log(y1/y2), the fact

that f is an isometry implies

d(z1, z2) = log(z1, z2; w1, w2).

If we remove the assumption that y1 > y2, we must take the absolute

value of this quantity.

In order to show that this analysis is complete, we must show

that there are no other geodesics in H2 other than those described

here. This will follow once we know that any two points z1, z2 ∈ H2

either lie on a vertical half-line or on a semicircle whose centre is in

R, and that any such half-line or semicircle can be obtained as the

image of the imaginary axis under a fractional linear transformation.

The former assertion is straightforward, as described in the pre-

vious lecture (Figure 4.9). To see the latter, note that horizontal

translation z �→ z + t and homothety z �→ λz are both fractional

linear transformations, and that using these, we can obtain any ver-

tical half-line from any other, and any semicircle centred in R from

any other. Thus we need only obtain a circle from a line, and this is

accomplished by considering the image of the vertical line Re z = 1

under the fractional linear transformation z �→ −1/z, which will be a

circle of radius 1/2 centred at −1/2.

Exercise 4.13. Prove that fractional linear transformations of the

form

z �→ az + c̄

cz + ā
,

where a, c ∈ C satisfy aā − cc̄ = 1, represent isometries of the hyper-

bolic plane in the disc model.

c. Circles in the hyperbolic plane. Theorem 4.8 raises a natural

question: what is the intrinsic meaning of the curves in the hyperbolic

plane which are represented in the models by lines, rays, intervals,

circles, or arcs of circles?
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Figure 4.11. Hyperbolic centre and radii of a circle in H2.

As we have seen, some of these are geodesics; in fact, a necessary

and sufficient condition for that is that the curve (or its extension)

cross the real line (in the half-plane model) or the unit disc (in the

disc model) at a right angle. But what are the rest?

We have seen one example: in the disc model, the circles centred

at the origin represent circles in the hyperbolic metric. Hence any

image of such a circle under a fractional linear hyperbolic isometry,

which must be a (Euclidean) circle by Theorem 4.8, also represents a

hyperbolic circle. Now using the inverse of the transformation (4.5),

these circles are mapped to circles in the upper half-plane, which thus

also represent hyperbolic circles. In the upper half-plane, any circle

can be mapped into any other circle by a linear transformation with

real coefficients, and so we conclude that any circle inside the upper

half-plane represents a hyperbolic circle. Applying (4.5), we reach the

same conclusion for the disc model.

Finally, we need to show that any hyperbolic circle is represented

this way. Let γ be a hyperbolic circle in the disc model and p be

its centre in the hyperbolic metric. There is a hyperbolic isometry,

represented by a fractional linear transformation, which maps p into

the origin, and γ into a hyperbolic circle centred at the origin, which

is represented by a Euclidean circle. Hence γ is a Euclidean circle as

well. This carries over to the upper half-plane model, and so we have

proved the following fact:

Proposition 4.13. In both the upper half-plane and the disc models,
circles in hyperbolic metric are represented by Euclidean circles; con-
versely, every Euclidean circle which lies inside the half-plane or the
disc represents a hyperbolic circle.
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What about Euclidean circles which do not lie inside the upper

half-plane or the disc, but which intersect the ideal boundary? They

are not closed curves in H2, and so cannot be circles; if they do not

meet the ideal boundary at a right angle, they are not geodesics. So

what are they? We will address this question in Lecture 29, where we

make a more detailed study of the isometries of the hyperbolic plane.

Exercise 4.14. Calculate the hyperbolic radius and the hyperbolic

centre of the circle in H2 given by the equation

‖z − 2i − 1‖2
Euc = 9/4.

Lecture 28

a. Three approaches to hyperbolic geometry. As we continue

to plan our assault on the mountain of hyperbolic geometry, there

are three main approaches that we might take: the synthetic, the

analytic, and the algebraic.

a.1. The first of these, the synthetic approach, proceeds along the

same lines as the classical Euclidean geometry which is (or used to

be, at any rate) taught as part of any high school education. One

approaches the subject axiomatically, formulating several postulates

and then deriving theorems from these basic assumptions. From this

point of view, the only difference between the standard Euclidean ge-

ometry one learns in school and the hyperbolic non-Euclidean geom-

etry we are investigating here is the failure of Euclid’s fifth postulate,

the parallel postulate, in our present case.

This postulate can be stated in many forms; the most common

formulation is the statement that given a line and a point not on

that line, there exists exactly one line through the point which never

intersects the original line. One could also state that the measures

of the angles of any triangle sum to π radians, or that there exist

triangles with equal angles which are not isometric, and there are

many other equivalent formulations.

In hyperbolic geometry, this postulate is no longer valid; how-

ever, any theorem of Euclidean geometry which does not rely on this

postulate still holds. The common body of such results is known as

absolute or neutral geometry, and the historical approach from the
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time of Euclid until the work of Lobachevsky and Bolyai in the nine-

teenth century was to attempt to prove that the parallel postulate

in fact follows from the others. The synthetic approach, then, uses

the result that if the parallel postulate can be added to the axioms

of absolute geometry without fear of contradiction, then its negation

can as well, and proceeds axiomatically assuming that negation.

a.2. The second approach is the analytic one, which we have made

some use of thus far; one derives and then makes use of formulae for

lengths, angles, and areas. This approach has the advantage of being

the most general of the three, in that it can be applied to any surface,

whereas both the synthetic and the algebraic approaches have limited

applicability beyond the highly symmetric examples of the Euclidean

and hyperbolic (and, to a certain extent, elliptic) planes. Hyperbolic

trigonometry can be associated with this approach too.

a.3. For the time being, however, we will make use of the symme-

try possessed by the hyperbolic plane, which allows us to take the

third option, the algebraic approach. In this approach, we study the

isometry group of H2 and use properties of isometries to understand

various aspects of the surface itself, a process in which linear algebra

becomes an powerful and invaluable tool.

b. Characterisation of isometries. First, then, we must obtain a

complete description of the isometries of H2. We saw in the previous

lecture that fractional linear transformations of the form

z �→ az + b

cz + d

are orientation preserving isometries of H2 in the upper half-plane

model for any a, b, c, d ∈ R with ad − bc = 1. But what about orien-

tation reversing isometries? Since the composition of two orientation

reversing isometries is an orientation preserving isometry, once we

have understood the orientation preserving isometries it will suffice

to exhibit a single orientation reversing isometry. Such an isometry

is given by the map

z �→ −z̄

which is reflection in the imaginary axis. By composing this with

fractional linear transformations of the above form, we obtain a family
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of orientation reversing isometries of the form

z �→ −az̄ + b

−cz̄ + d

where again, a, b, c, d ∈ R are such that ad− bc = 1. By changing the

sign on a and c, we can write each of these isometries as

(4.9) z �→ az̄ + b

cz̄ + d

where ad − bc = −1.

Now we claim that these are in fact all of the isometries of H2.

The following argument for the hyperbolic plane can in fact be made

to work in much greater generality, and says that for any surface the

isometry group is not ‘too big’.

We will show that any isometry I is uniquely determined by the

images of three points which do not lie on the same geodesic (recall

Figure 1.20). Given that I(A) = Ã and I(B) = B̃, let γ be the unique

geodesic connecting A and B, and γ̃ the unique geodesic connecting

Ã and B̃. Then because I(γ) is also a geodesic connecting Ã and B̃,

we must have I(x) ∈ γ̃ for every x ∈ γ. Furthermore, the distance

along γ from x to A must be the same as the distance along γ̃ from

I(x) to Ã, and similarly for B. This requirement uniquely determines

the point I(x).

This demonstrates that the action of I on two points of a geodesic

is sufficient to determine it uniquely on the entire geodesic. It follows

that I is uniquely determined on the three geodesics connecting A,

B, and C by its action on those three points; thus we know the action

of I on a geodesic triangle. But now given any point y ∈ S, we may

draw a geodesic through y which passes through two points of that

triangle; it follows that the action of I on those two points, which we

know, determines I(y).

Thus we have established uniqueness, but not existence, of an

isometry taking A, B, and C to Ã, B̃, and C̃. Indeed, given two sets

of three points, it is not in general true that some isometry carries

one set to the other. As a minimal requirement, we see that the

pairwise distances between the points must be the same; we must

have d(A, B) = d(Ã, B̃) and so on. If our surface is symmetric enough,

this condition will be sufficient, as is the case for the Euclidean plane
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and the round sphere; we will soon see that this is also the case for

H2. First, we prove a fundamental lemma concerning fractional linear

transformations in general.

Lemma 4.9. Let (z1, z2, z3) and (w1, w2, w3) be two triples of dis-
tinct points in the extended complex plane C ∪ {∞} (the Riemann
sphere). Then there exist unique coefficients a, b, c, d ∈ C such that
the fractional linear transformation

f : z �→ az + b

cz + d

satisfies f(zj) = wj for j = 1, 2, 3. Furthermore, any map from
C∪{∞} to itself which preserves the cross-ratio is a fractional linear
transformation.

Proof. Recall that fractional linear transformations preserve cross-

ratios, and hence if for some z ∈ C the f we are looking for has

f(z) = w, we must have

(4.10) (z1, z2; z3, z) = (w1, w2; w3, w).

Using the expression for the cross-ratio, we have

(z1 − z3)(z2 − z)

(z2 − z3)(z1 − z)
=

(w1 − w3)(w2 − w)

(w2 − w3)(w1 − w)
,

and solving this equation for w in terms of z will give the desired

fractional linear transformation:

(4.11)

w =
w1(z1 − z3)(w2 − w3)(z2 − z) − w2(z2 − z3)(w1 − w3)(z1 − z)

(z1 − z3)(w2 − w3)(z2 − z) − (z2 − z3)(w1 − w3)(z1 − z)
.

Since (4.10) implies (4.11) we also get the second statement. �

Proposition 4.14. Given points z1, z2, z3, w1, w2, w3 ∈ H2 satisfying
d(zj , zk) = d(wj , wk) for each pair of indices (j, k), there exists a
unique isometry taking zk to wk. If the geodesic triangles z1, z2, z3

and w1, w2, w3 have the same orientation, this isometry is orientation
preserving and is represented by a fractional linear transformation;
otherwise it is orientation reversing and has the form (4.9).

Remark. The first part of this proposition states that given two

triangles in H2 whose corresponding sides are of equal length, there
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s1 s2 t1 t2

z1

z2 w1

w2

γ

η

Figure 4.12. The images of two points determine a unique
fractional linear transformation.

exists an isometry of H2 taking one triangle to the other. This state-

ment is true in Euclidean geometry as well, and in fact holds as a

result in absolute geometry. As such, it could be proven in a purely

synthetic manner; while such an approach does in fact succeed, we

will take another path and use our knowledge of fractional linear

transformations.

Notice that, while Lemma 4.9 gives us a fractional linear trans-

formation which is a candidate to be an isometry, this candidate is

the desired isometry only if the orientations of the triangles z1, z2, z3

and w1, w2, w3 coincide.

We first prove that the group of fractional linear transformations

with real coefficients acts transitively on pairs of points (z1, z2), where

the distance d(z1, z2) is fixed. We then use the fact that a third point

z3 has only two possible images under an isometry, and that the choice

of one of these as w3 determines whether the isometry preserves or

reverses orientation.

Proposition 4.15. Given points z1, z2, w1, w2 ∈ H2 with d(z1, z2) =

d(w1, w2), there exists a unique fractional linear transformation f

satisfying f(zj) = wj for j = 1, 2. This transformation f has real
coefficients and hence is an isometry of H2.

Proof. Let γ be the geodesic connecting z1 and z2, and η the geodesic

connecting w1 and w2. Let s1 and s2 be the two points where γ

intersects R, with s1 nearer to z1 and s2 nearer to z2, and define t1
and t2 similarly on η, as shown in Figure 4.12.

By Lemma 4.9, there exists a unique fractional linear transfor-

mation f with complex coefficients such that f(s1) = t1, f(z1) = w1,
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and f(z2) = w2. In order to complete the proof, we must show that

f in fact preserves the real line, and hence has real coefficients.

Recalling our distance formula for H2 in terms of the cross-ratio,

the condition that d(z1, z2) = d(w1, w2) can be rewritten as

(z1, z2; s1, s2) = (w1, w2; t1, t2).

From the proof of Lemma 4.9, this was exactly the formula that we

solved for t2 to find f(s2); it follows that f(s2) = t2. Since f is a

conformal map which takes lines and circles to lines and circles, and

since R intersects γ orthogonally at s1 and s2, the image of R is a

line or circle which intersects η orthogonally at t1 and t2, and hence

is in fact R.

Now f(R) = R, so f has real coefficients and is in fact an isometry

of H2. �

In order to obtain Proposition 4.14, we need only extend the re-

sult of this proposition to take into account the position of the third

point, which determines whether the isometry preserves or reverses

orientation. To this end, note that the condition d(w1, w3) = d(z1, z3)

implies that w3 lies on a circle of radius d(z1, z3) centred at w1; sim-

ilarly, it also lies on a circle of radius d(z2, z3) centred at w3.

Assuming z1, z2, z3 do not all lie on the same geodesic, there are

exactly two points which lie on both circles, each an equal distance

from the geodesic connecting z1 and z2. One of these will necessarily

be the image of z3 under the fractional linear transformation f found

above; the other one is (r ◦ f)(z3) where r denotes reflection in the

geodesic η.

To better describe r, pick any point z ∈ H2 and consider the

geodesic ζ which passes through z and meets η orthogonally. De-

note by d(z, η) the distance from z to the point of intersection; then

the reflection r(z) is the point on ζ a distance d(z, η) beyond this

point. Alternatively, we may recall that the map R : z �→ −z̄ is reflec-

tion in the imaginary axis, which is an orientation reversing isometry.

There exists a unique fractional linear transformation g taking η to

the imaginary axis; then r is simply the conjugation g−1 ◦ R ◦ g.
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Exercise 4.15. Prove that the group of orientation preserving isome-

tries of H2 in the unit disc model is the group of all fractional linear

transformations of the form

z �→ az + c̄

cz + ā

where a, c ∈ C satisfy aā − cc̄ = 1.

Lecture 29

a. Classification of isometries. Now we turn to the task of clas-

sifying these isometries and understanding what they look like geo-

metrically.

a.1. Fixed points in the extended plane. For the time being we restrict

ourselves to orientation preserving isometries. We begin by consider-

ing the fractional linear transformation f as a map on all of C (or,

more precisely, on the Riemann sphere C ∪ {∞}) and look for fixed

points, given by

f(z) =
az + b

cz + d
= z.

Clearing the denominator and simplifying gives the quadratic equa-

tion

cz2 + (d − a)z − b = 0

whose roots are

z =
1

2c

(
a − d ±

√
(a − d)2 + 4bc

)
=

1

2c

(
a − d ±

√
(a + d)2 − 4(ad − bc)

)
=

1

2c

(
a − d ±

√
(a + d)2 − 4

)
.

Note that the quantity a + d is just the trace of the matrix of coeffi-

cients X =
(

a b
c d

)
, which we already know has unit determinant. Let

λ and µ be the eigenvalues of X; then λµ = detX = 1, so µ = 1/λ,

and we have

a + d = TrX = λ + µ = λ +
1

λ
.

There are three possibilities to consider regarding the nature of

the fixed point or points z = f(z):
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Figure 4.13. Geodesics passing through i and hyperbolic cir-
cles centred at i.

(E): |a + d| < 2, corresponding to λ = eiα for some α ∈ R. In

this case there are two fixed points z and z̄, with Im z > 0

and hence z ∈ H2.

(P): |a + d| = 2, corresponding to λ = 1 (since X and −X

give the same transformation). In this case there is exactly

one fixed point z ∈ R.

(H): |a + d| > 2, corresponding to µ < 1 < λ. In this case,

there are two fixed points z1, z2 ∈ R.

a.2. Elliptic isometries. Let us examine each of these in turn, begin-

ning with (E), where f fixes a unique point z ∈ H2. Consider a

geodesic γ passing through z. Then f(γ) will also be a geodesic pass-

ing through z; let α be the angle it makes with γ at z. Then because f

preserves angles, it must take any geodesic η passing through z to the

unique geodesic which passes through z and makes an angle of α with

η. Thus f is analogous to what we term rotation in the Euclidean

context; since f preserves lengths, we can determine its action on any

point in H2 based solely on knowledge of the angle of rotation α. As

our choice of notation suggests, this angle turns out to be equal to

the argument of the eigenvalue λ.

As an example of a map of this form, consider

f : z �→ (cosα)z + sin α

(− sin α)z + cos α

which is rotation by α around the point i; the geodesics passing

through i are the dark curves in Figure 4.13. The lighter curves
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are the circles whose (hyperbolic) centre lies at i; each of these curves

intersects all of the geodesics orthogonally, and is left invariant by f .

This map does not seem terribly symmetric when viewed as a

transformation of the upper half-plane; however, if we look at f in the

unit disc model, we see that i is taken to the origin, and f corresponds

to the rotation by α around the origin in the usual sense. Thus we

associate with a rotation (as well as with the family of all rotations

around a given point p) two families of curves:

(1) The pencil of all geodesics passing through p; each element

of this family maps to another, and rotations around p act

transitively on this family.

(2) The family of circles around p which are orthogonal to the

geodesics from the first family. Each circle is invariant under

rotations, and rotations around p act transitively on each

circle.

We will discover similar pictures for the remaining two cases.

a.3. Parabolic isometries. Case (P) can be considered as a limiting

case of the previous situation where the fixed point p goes to infinity.

Let t ∈ R ∪ {∞} be the unique fixed point in the Riemann sphere,

which lies on the ideal boundary. As with the family of rotations

around p, we can consider the family of all orientation preserving

isometries preserving t; notice that as in that case, this family is a

one-parameter group whose members we will denote by p
(t)
s , where

s ∈ R. As above, one can see two invariant families of curves:

(1) The pencil of all geodesics passing through t (dark curves in

Figure 4.14)—each element of this family maps to another,

and the group {p(t)
s } acts transitively on this family.

(2) The family of limit circles, more commonly called horocycles
(light curves in Figure 4.14), which are orthogonal to the

geodesics from the first family. They are represented by

circles tangent to R at t, or by horizontal lines if t = ∞.

Each horocycle is invariant under p
(t)
s , and the group acts

transitively on each horocycle.
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t

Figure 4.14. Parallel geodesics and horocycles for parabolic isometries.

A useful (but visually somewhat misleading) example is given by the

case t = ∞ with

p(∞)
s z = z + s.

We will see later in the lecture that for the parabolic case, the ‘angle’ s

does not have properties similar to the rotation angle α. In particular,

it is not an invariant of the isometry.

Exercise 4.16. Show that given two points z1, z2 ∈ H2, there are

exactly two different horocycles which pass through z1 and z2.

a.4. Hyperbolic isometries. Finally, consider the case (H), in which

we have two real fixed points w1 < w2. Since f takes geodesics to

geodesics and fixes w1 and w2, the semicircle γ which intersects R at

w1 and w2 is mapped to itself by f , and so f acts as translation along

this curve by a fixed distance. The geodesic γ is the only geodesic

invariant under the transformation; in a sense, it plays the same role

as the centre of rotation in the elliptic case, a role for which there is

no counterpart in the parabolic case.

To see what the action of f is on the rest of H2, consider as above

two invariant families of curves:

(1) The family of geodesics which intersect γ orthogonally (the

dark curves in Figure 4.15). If η is a member of this family,

then f will carry η to another member of the family; which

member is determined by the effect of f on the point where

η intersects γ.
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w1 w2

Figure 4.15. Orthogonal geodesics and equidistant curves for
the geodesic connecting w1 and w2.

(2) The family of curves orthogonal to these geodesics (the light

curves in Figure 4.15)—these are the equidistant curves (or

hypercircles). Such a curve ζ is defined as the locus of points

which lie a fixed distance from the geodesic γ; in Euclidean

geometry this condition defines a geodesic, but this is no

longer the case in the hyperbolic plane. Each equidistant

curve ζ is carried into itself by the action of f .

A good example of maps f falling into the case (H) are the maps

which fix 0 and ∞:

f : z �→ λ2z.

In this case the geodesic γ connecting the fixed points is the imaginary

axis (the vertical line in Figure 4.16), the geodesics intersecting γ

orthogonally are the (Euclidean) circles centred at the origin (the

dark curves), and the equidistant curves are the (Euclidean) lines

emanating from the origin (the lighter curves).

To be precise, given any geodesic γ in the hyperbolic plane, we

define an r-equidistant curve as one of the two connected components

of the locus of points at a distance r from γ.

Exercise 4.17. For any given r > 0, show that there are exactly two

different r-equidistant curves (for some geodesics) which pass through

two given points in the hyperbolic plane.
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Figure 4.16. Orthogonal geodesics and equidistant curves for
the imaginary axis.

Thus we have answered the question about the significance of

(Euclidean) circles tangent to the real lines and arcs which intersect it.

The former (along with horizontal lines) are horocycles, and the latter

(along with rays intersecting the real line) are equidistant curves.

Notice that all horocycles are isometric to each other (they can be

viewed as circles of infinite radius), whereas for equidistant curves

there is an isometry invariant, namely the angle between the curve

and the real line. One can see that this angle uniquely determines

the distance r between an equidistant curve and its geodesic, and vice

versa. The correspondence between the two can be easily calculated

in the particular case shown in Figure 4.16.

Exercise 4.18. The arc of the circle |z − 2i|2 = 8 in the upper half-

plane represents an r-equidistant curve. Find r.

a.5. Canonical form for elliptic, parabolic, and hyperbolic isometries.
The technique of understanding an isometry by showing that it is

conjugate to a particular standard transformation has great utility in

our classification of isometries of H2. Recall that we have a one-to-one

correspondence between 2×2 real matrices with unit determinant (up

to a choice of sign) and fractional linear transformations preserving

R, which are the isometries of H2 that preserve orientation:

PSL(2, R) = SL(2, R)/ ± Id ←→ Isom+(H2),

A =

(
a b

c d

)
←→ fA : z �→ az + b

cz + d
.
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Composition of isometries corresponds to matrix multiplication:

fA ◦ fB = fAB.

We may easily verify that two maps fA and fB corresponding to

conjugate matrices are themselves conjugate; that is, if A = CBC−1

for some C ∈ GL(2, R), we may assume without loss of generality

that C ∈ SL(2, R) by scaling C by its determinant. Then we have

fA = fC ◦ fB ◦ f−1
C .

It follows that fA and fB have the same geometric properties: fixed

points, actions on geodesics, etc. Conjugation by fC has the effect of

changing coordinates by an isometry, and so the intrinsic geometric

properties of an isometry are conjugacy invariants. For example, in

the Euclidean plane, any two rotations by an angle α around different

fixed points x and y are conjugated by the translation taking x to y,

and any two translations by vectors of equal length are conjugated

by any rotation by the angle between those vectors. Thus, in the

Euclidean plane, the conjugacy invariants are the angle of rotation

and the length of the translation.

In order to classify orientation preserving isometries of H2, it suf-

fices to understand certain canonical examples. We begin by recalling

the following result from linear algebra:

Proposition 4.16. Every matrix in SL(2, R) is conjugate to one of
the following (up to sign):

(E): An elliptic matrix of the form(
cos α sin α

− sin α cos α

)
, α ∈ R.

(P): The parabolic matrix(
1 1

0 1

)
.

(H): A hyperbolic matrix of the form(
et 0

0 e−t

)
, t ∈ (0,∞).

                

                                                                                                               



Lecture 29 211

The three cases (E), (P), and (H) for the matrix A correspond to

the three cases discussed above for the fractional linear transformation

fA. Recall that the isometries corresponding to the elliptic case (E)
have one fixed point in H2, those corresponding to the parabolic case

(P) have one fixed point on the ideal boundary R ∪ {∞}, and those

corresponding to the hyperbolic case (H) have two fixed points on

the ideal boundary.

The only invariants under conjugation are the parameters α (up

to a sign) and t, which correspond to the angle of rotation and the

distance of translation, respectively. Thus two orientation preserving

isometries of H2 are conjugate in the full isometry group of H2 iff

they fall into the same category (E), (P), or (H) and have the same

value of the invariant α or t, if applicable.

Notice that if we consider only conjugacy by orientation preserv-

ing isometries, then α itself (rather than its absolute value) is an

invariant in the elliptic case, and the two parabolic matrices ( 1 1
0 1 )

and
(

1 −1
0 1

)
are not conjugate. In contrast, the conjugacy classes in

the hyperbolic case do not change.

Thus we see that there are both similarities and differences be-

tween the structure of the group of orientation preserving isome-

tries in the Euclidean and hyperbolic planes. Among the similari-

ties is the possible number of fixed points: one or none. Isometries

with one point—rotations—look completely similar, but the set of

isometries with no fixed points—which in the Euclidean case is just

translations—is more complicated in the hyperbolic case, including

both parabolic and hyperbolic isometries.

An important difference in the structure of the isometry groups

comes from the following observation. Recall that a subgroup H of a

group G is normal if for any h ∈ H and g ∈ G the conjugate g−1hg

remains in H. It is not hard to show that in the group of isometries

of the Euclidean plane, translations form a normal subgroup; the

situation in the hyperbolic case is rather different.

Exercise 4.19. Prove that the group of isometries of the hyperbolic

plane has no non-trivial normal subgroups, i.e. the only normal sub-

groups are the whole group and the trivial subgroup containing only

the identity.
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Another example of a difference between the two cases comes

when we consider the decomposition of orientation preserving isome-

tries into reflections—this is possible in both the Euclidean and the

hyperbolic planes, and any orientation preserving isometry can be

had as a product of two reflections. In the Euclidean plane, there

are two possibilities—either the lines of reflection intersect, and the

product is a rotation, or the lines are parallel, and the product is

a translation. In the hyperbolic plane, there are three possibilities

for the relationship of the lines (geodesics) of reflection: once again,

they may intersect or be parallel (i.e. have a common point at infin-

ity), but now a new option arises; they may also be ultraparallel (see

Figure 4.17). We will discuss this in more detail shortly.

Exercise 4.20. Prove that the product of reflections in two geodesics

in the hyperbolic plane is elliptic, parabolic, or hyperbolic, respec-

tively, depending on whether the two axes of reflection intersect, are

parallel, or are ultraparallel.

a.6. Orientation reversing isometries. Using representation (4.9) and

following the same strategy, we try to look for fixed points of orien-

tation reversing isometries. The fixed point equation takes the form

c|z|2 + dz − az̄ − b = 0.

Separating real and imaginary parts, we get two cases:

(1) d + a = 0. In this case, there is a whole geodesic of fixed

points, and the transformation is a reflection in this geo-

desic, which geometrically is represented as inversion (if the

geodesic is a semicircle) or the usual sort of reflection (if the

geodesic is a vertical ray).

(2) d+a �= 0. In this case, there are two fixed points on the (ex-

tended) real line, and the geodesic connecting these points

is preserved, so the transformation is a glide reflection, and

can be written as the composition of reflection in this ge-

odesic and a hyperbolic isometry with this geodesic as its

axis.

Thus the picture for orientation reversing isometries is somewhat

more similar to the Euclidean case.
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γ

ζ
η

Figure 4.17. Parallels and ultraparallels.

b. Geometric interpretation of isometries. From the synthetic

point of view, the fundamental difference between Euclidean and hy-

perbolic geometry is the failure of the parallel postulate in the latter

case. To be more precise, suppose we have a geodesic (line) γ and a

point p not lying on γ, and consider the set of all geodesics (lines)

through p which do not intersect γ. In the Euclidean case, there is

exactly one such geodesic, and we say that it is parallel to γ. In the

hyperbolic case, not only are there many such geodesics, but they

come in two different classes, as shown in Figure 4.17.

The curves γ, η, and ζ in Figure 4.17 are all geodesics, and neither

η nor ζ intersects γ in H2. However, η and γ both approach the same

point on the ideal boundary, while ζ and γ do not exhibit any such

asymptotic behaviour. We say that η and γ are parallel, while ζ and

γ are ultraparallel.

Each point x on the ideal boundary corresponds to a family of

parallel geodesics which are asymptotic to x, as shown in Figure 4.14.

The parallel geodesics asymptotic to ∞ are simply the vertical lines,

while the parallel geodesics asymptotic to some point x ∈ R form a

sort of bouquet of curves.

A recurrent theme in our description of isometries has been the

construction of orthogonal families of curves. Given the family of

parallel geodesics asymptotic to x, one may consider the family of

curves which are orthogonal to these geodesics at every point; such

curves are called horocycles. As shown in Figure 4.14, the horocycles

for the family of geodesics asymptotic to ∞ are horizontal lines, while

the horocycles for the family of geodesics asymptotic to x ∈ R are

Euclidean circles tangent to R at x.
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The reason horocycles are sometimes called limit circles is illus-

trated by the following construction: fix a point p ∈ H2 and a geodesic

ray γ which starts at p. For each r > 0 consider the circle of radius

r with centre on γ which passes through p; as r → ∞, these circles

converge to the horocycle orthogonal to γ.

What do we mean by this last statement? In what sense do

the circles ‘converge’ to the horocycle? For any fixed value of r,

the circle in the construction lies arbitrarily far from some points on

the horocycle (those which are ‘near’ the ideal boundary), and so

we certainly cannot expect any sort of uniform convergence in the

hyperbolic metric. Rather, convergence in the hyperbolic plane must

be understood as convergence of pieces of fixed, albeit arbitrarily

large, length—that is, given R > 0, the arcs of length R lying on the

circles in the above construction with p at their midpoint do in fact

converge uniformly to a piece of the horocycle, and R may be taken

as large as we wish.

The situation is slightly different in the model, where we do have

genuine uniform convergence, as the complete (Euclidean) circles rep-

resenting (hyperbolic) circles converge to the (Euclidean) circle rep-

resenting the horocycle.

This distinction between the intrinsic and extrinsic viewpoints

raises other questions; for example, the above distinction between

parallel and ultraparallel geodesics relies on this particular model of

H2 and the fact that points at infinity are represented by real num-

bers, and so seems rooted in the extrinsic description of H2. Can we

distinguish between the two sorts of asymptotic behaviour intrinsi-

cally, without reference to the ideal boundary?

It turns out that we can; given two ultraparallel geodesics γ and

η, the distance from γ to η grows without bound; that is, given any

C ∈ R, there exists a point z ∈ γ such that no point of η is within

a distance C of z. On the other hand, given two parallel geodesics,

this distance remains bounded, and in fact goes to zero.

To see this, let γ be the imaginary axis; then the equidistant

curves are Euclidean lines through the origin, as shown in Figure 4.18,

and η is a Euclidean circle which is tangent to γ at the origin. The

distance from γ to the equidistant curves is a function of the slope
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γ η

Figure 4.18. Distance between parallel geodesics.

of the lines; steeper slope corresponds to smaller distance, and the

points in between the curves are just the points which lie within that

distance of γ. But now for any slope of the lines, η will eventually lie

between the two equidistant curves, since its slope becomes vertical

as it approaches the ideal boundary, and hence the distance between

γ and η goes to zero.

One can see the same result by considering a geodesic η which is

parallel to γ not at 0, but at ∞; then η is simply a vertical Euclidean

line, which obviously lies between the equidistant curves for large

enough values of y.

To get an idea of how quickly the distance goes to 0 in Fig-

ure 4.18, recall that the hyperbolic distance between two nearby

points is roughly the Euclidean distance divided by the height y,

and that the Euclidean distance between a point on the circle η in

Figure 4.18 and the imaginary axis is roughly y2 for points near the

origin; hence

hyperbolic distance ∼ Euclidean distance

y
∼ y2

y
= y → 0.

With this understanding of circles, parallels, ultraparallels, and

horocycles, we can now return to the task of giving geometric mean-

ing to the various categories of isometries. In each case, we found

two families of curves which intersect each other orthogonally; one

of these will comprise geodesics which are carried to each other by

the isometry, and the other family will comprise curves which are

invariant under the isometry.

In the elliptic case (E), the isometry f is to be thought of as

rotation around the unique fixed point p by some angle α; the two

families of curves are shown in Figure 4.13. Given v ∈ TpH
2, denote
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by γv the unique geodesic passing through p with γ′(p) = v. Then

we have

f : {γv}v∈TpH2 → {γv}v∈TpH2 ,

γv �→ γw,

where w ∈ TpH
2 is the image of v under rotation by α in the tangent

space. Taking the family of curves orthogonal to the curves γv at

each point of H2, we have the one-parameter family of circles

{ηr}r∈(0,∞)

each of which is left invariant by f .

In the parabolic case (P), the map f is just horizontal translation

z �→ z + 1. Note that by conjugating this map with a homothety,

and a reflection if necessary, we obtain horizontal translation by any

distance, so any horizontal translation is conjugate to the canonical

example. Given t ∈ R, let γt be the vertical line Re z = t; then the

geodesics γt are all asymptotic to the fixed point ∞ of f , and we have

f : {γt}t∈R → {γt}t∈R,

γt �→ γt+1.

The invariant curves for f are the horocycles, which in this case are

horizontal lines ηt, t ∈ R. For a general parabolic map, the fixed

point x may lie on R rather than at ∞; in this case, the geodesics

and horocycles asymptotic to x are as shown in the second image in

Figure 4.14. The invariant family of geodesics consists of geodesics

parallel to each other.

Finally, in the hyperbolic case (H), the standard form is fA(z) =

λ2z for λ = et, and the map is simply a homothety from the origin.

There is exactly one invariant geodesic, the imaginary axis, and the

other invariant curves are the equidistant curves, which in this case

are Euclidean lines through the origin. The curves orthogonal to these

at each point are the geodesics γr ultraparallel to each other, shown

in Figure 4.16, where γr is the unique geodesic passing through the

point ir and intersecting the imaginary axis orthogonally. The map

fA acts on this family by taking γr to γλ2r.

In the general hyperbolic case, the two fixed points will lie on

the real axis, and the situation is as shown in Figure 4.15. The
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invariant geodesic η0 is the semicircle connecting the fixed points,

and the equidistant curves are the other circles passing through those

two points. The family of orthogonal curves comprises the geodesics

intersecting η0 orthogonally, as shown in the picture.

Lecture 30

a. Area of triangles in different geometries. In our earlier in-

vestigations of spherical and elliptic geometry (by the latter we mean

the geometry of the projective plane with metric inherited from the

sphere), we found that the area of a triangle was proportional to its

angular excess, the amount by which the sum of its angles exceeds

π. For a sphere of radius R, the constant of proportionality was

R2 = 1/κ, where κ is the curvature of the surface.

In Euclidean geometry, the existence of any such formula was pre-

cluded by the presence of similarity transformations, diffeomorphisms

of R2 which expand or shrink the metric by a uniform constant.

In the hyperbolic plane, we find ourselves in a situation reminis-

cent of the spherical case. We will find that the area of a hyperbolic

triangle is proportional to the angular defect, the amount by which

the sum of its angles falls short of π, and that the constant of pro-

portionality is again given by the reciprocal of the curvature.

We begin with a simple observation, which is that every hyper-

bolic triangle does in fact have angles whose sum is less than π (oth-

erwise the above claim would imply that some triangles have area

≤ 0).

For that we use the open disc model of the hyperbolic plane, and

note that given any triangle, we can use an isometry to position one

of its vertices at the origin; thus two of the sides of the triangle will be

(Euclidean) lines through the origin, as shown in Figure 4.19. Then

because the third side, which is part of a Euclidean circle, is convex

in the Euclidean sense, the sum of the angles is less than π.

This implies the remarkable ‘fourth criterion of equality of trian-

gles’ above and beyond the three criteria which are common to both

the Euclidean and hyperbolic planes.
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Figure 4.19. A hyperbolic triangle has angles whose sum is
less than π.

Proposition 4.17. Two geodesic triangles with pairwise equal angles
are isometric.

Proof. We will use the disc model. Without loss of generality, we

may assume that both triangles have one vertex at the centre O and

that two of their sides lie on the same radii. Thus we have triangles

AOB and A′OB′ where the vertices A and A′ lie on one radius, and

B and B′ on another. The angles OAB and OA′B′ are equal and so

are the angles OBA and OB′A′.

Now there are two possibilities; either the arcs AB and A′B′

intersect, or they do not. Assume first that they intersect at some

point C. Then the triangle ACA′ has two angles which add to π,

which is impossible. Hence without loss of generality, we may assume

that arc AA′ lies inside the triangle OBB′. Then the sum of the

angles of the geodesic quadrangle AA′BB′ is equal to 2π, which is

again an impossibility since it can be split into two geodesic triangles,

at least one of which must therefore have angles whose sum is ≥ π.

This contradiction implies A = A′ and B = B′. �

b. Area and angular defect in hyperbolic geometry. Our proof

of the area formula is due to Gauss, and follows the exposition in Cox-

eter’s book Introduction to Geometry (Sections 16.4 and 16.5). It is

essentially a synthetic proof, and as such does not give us a value

for the constant of proportionality; to obtain that value, we must

turn to analytic methods. We will also deviate slightly from the true

synthetic approach by using drawings in the two models of H2.
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z1

z2

z3

w1

w2

w3

η2
η3

η1

γ2

γ1γ3

Figure 4.20. Computing the area of a hyperbolic triangle.

As with so many things, non-Euclidean geometry was first discov-

ered and investigated by Gauss, who kept his results secret because

he had no proof that his geometry was consistent. Eventually, the

introduction of several models (of which the Poincaré half-plane and

open disc models were not the earliest) showed that hyperbolic ge-

ometry is consistent, contingent upon the consistency of Euclidean

geometry; a contradiction in the former would necessarily lead to a

contradiction in the latter.

Theorem 4.10. Given a hyperbolic triangle ∆ with angles α, β, and
γ, the area A of ∆ is given by

(4.12) A =
1

−κ
(π − α − β − γ),

where κ is the curvature, whose value is −1 for the standard upper
half-plane and open disc models.
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Proof. The proof of the analogous formula for the sphere involved

partitioning it into segments and using an inclusion-exclusion formula.

This relied on the fact that the area of the sphere is finite; in our

present case, we must be more careful, as the hyperbolic plane has

infinite area. However, we can recover a setting in which a similar

proof works by considering asymptotic triangles, which turn out to

have finite area.

The idea is as follows: let z1, z2, z3 denote the vertices of the

triangle, and without loss of generality, take z1 to be the origin in the

open disc model. As shown in Figure 4.20, draw the half-geodesic γ1

which begins at z1 and passes through z2; similarly, draw the half-

geodesics γ2 and γ3 beginning at z2 and z3, and passing through z3

and z1, respectively. Let wj denote the point at infinity approached

by γj as it nears the boundary of the disc.

Now draw three more geodesics, as shown in the picture; η1 is to

be asymptotic to w3 and w1, η2 is to be asymptotic to w1 and w2, and

η3 is to be asymptotic to w2 and w3. Then the region T0 bounded by

η1, η2, and η3 is a triply asymptotic triangle. If we write Tj for the

doubly asymptotic triangle whose vertices are zj , wj , and wj−1, we

can decompose T0 as the disjoint union

T0 = T1 ∪ T2 ∪ T3 ∪ ∆

and so the area A(∆) may be found by computing the areas of the

regions Tj , provided they are finite.

Since these regions are not bounded, it is not at first obvious why

they should have finite area. We begin by making two observations

concerning triply asymptotic triangles.

First, all triply asymptotic triangles are isometric. That is, given

w1, w2, w3 ∈ ∂D2 and w̃1, w̃2, w̃3 ∈ ∂D2 with the same orientation,

Lemma 4.9 guarantees the existence of a unique fractional linear

transformation f taking wj to w̃j , which must then preserve ∂D2

and map the interior to the interior, and hence is an isometry of H2.

Secondly, a triply asymptotic triangle will have finite area iff each

of its ‘arms’ does, where by an ‘arm’ we mean the section of the

triangle which approaches infinity. How do we compute the area of

such an arm? A prototypical example is the singly asymptotic triangle
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Ω

Figure 4.21. A singly asymptotic triangle.

shown in Figure 4.21, where we use the half-plane model and choose

∞ as the point on the ideal boundary, so two of the geodesics are

vertical lines. The infinitesimal area element at each point is given

by 1
y2 dx dy where dx and dy are Euclidean displacements, and so the

area of the shaded region Ω is

A(Ω) =

∫
Ω

1

y2
dx dy,

which converges as y → ∞, and hence Ω has finite area. It follows that

the area of a triply asymptotic triangle is finite, and independent of

our choice of triangle; denote this area by µ. Note that any hyperbolic

triangle is contained in a triply asymptotic triangle, and so every

hyperbolic triangle must have area less than µ.

In order to complete our calculations for A, we must find a for-

mula for the areas of the doubly asymptotic triangles T1, T2, and T3

(the shaded triangles in Figure 4.20). Note first that by using an

isometry to place the non-infinite vertex of a doubly asymptotic tri-

angle at the origin, we see that the area depends only on the angle at

the vertex. Given an angle θ, let f(θ) denote the area of the doubly

asymptotic triangle with angle π − θ, so that if θj is the angle in the

triangle at the vertex zj , then A(Tj) = f(θj).

We may obtain a triply asymptotic triangle as the disjoint union

of two doubly asymptotic triangles with angles π − α, π − β where

α + β = π, and hence

f(α) + f(β) = µ.

Similarly, we may obtain a triply asymptotic triangle as the disjoint

union of three doubly asymptotic triangles with angles π − α, π − β,

and π−γ, where (π−α)+(π−β)+(π−γ) = 2π and hence α+β+γ = π,
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so we have

f(α) + f(β) + f(γ) = µ

for such α, β, γ. We may rewrite the above two equations as

f(α + β) + f(π − α − β) = µ,

f(α) + f(β) + f(π − α − β) = µ,

and comparing the two gives

f(α + β) = f(α) + f(β)

so that f is in fact a linear function. Further, the limit α → π corre-

sponds to a doubly asymptotic triangle whose non-zero angle shrinks

and goes to zero, and so the triangle becomes triply asymptotic; hence

f(π) = µ, and we have

f(θ) =
µ

π
θ.

It follows that

A(∆) = T0 − T1 − T2 − T3 = µ − µ

π
(θ1 + θ2 + θ3)

=
µ

π
(π − θ1 − θ2 − θ3),

which proves our formula, with constant of proportionality 1
−κ = µ

π .

In order to calculate the coefficient of proportionality for the stan-

dard half-plane model consider the triply asymptotic triangle T in the

upper half-plane bounded by the unit circle |z| = 1 and the vertical

lines Re z = 1 and Re z = −1. The area of T is given by

µ =

∫
T

1

y2
dx dy =

∫ 1

−1

∫ ∞

√
1−x2

1

y2
dy dx

=

∫ 1

−1

1√
1 − x2

dx =

∫ π/2

−π/2

dθ = π

using the substitution x = sin θ. This confirms the choice κ = −1 for

the usual model. �

Note that the formula is valid not only for finite triangles, but also

for asymptotic triangles, since taking a vertex to infinity is equivalent

to taking the corresponding angle to zero.

The above proof that the area µ of a triply asymptotic triangle is

finite relied on analytic methods, rather than purely synthetic ones.
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A
B E

C DH

F G

A
B E

C DH

F G

Figure 4.22. Decomposing an asymptotic triangle.

We sketch the purely synthetic proof given in Coxeter’s book, which

relies only on the fact that area is additive and that reflections are

isometries. As before, it suffices to prove that the area of a singly

asymptotic triangle is finite.

Consider such a triangle, given by the shaded region in Fig-

ure 4.22. Here we begin with the asymptotic triangle ABG and

extend the geodesic AB to the point F at infinity. Then we draw

the geodesic asymptotic to F and G and add the perpendicular AH,

which bisects the angle at A. Note that all the curves in this picture

represent geodesics—as this is a purely synthetic picture, it does not

refer to either of the models, and in particular, does not include the

ideal boundary. Reflecting BG in the line AH gives the geodesic EF ;

the geodesics BC, ED bisect the appropriate angles and meet the

geodesic FG orthogonally.

The bulk of the proof is in the assertion that by repeated reflec-

tions first in ED and then in AH, the rest of the shaded region can

be brought into the pentagon ABCDE. The first step is shown in

Figure 4.22, and the details of the proof are left to the reader. Once

it is established that ABG can be decomposed into triangles whose

isometric images fill ABCDE disjointly, it follows immediately that

the area of ABG is finite, and the proof is complete.

Exercise 4.21. Find all the isometries which preserve a triply as-

ymptotic triangle.

Exercise 4.22. Consider a line in the hyperbolic plane and a doubly

asymptotic triangle for which this line is one of the sides. Assume

the angle at the finite vertex is fixed, and find the locus of all finite

vertices.
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Lecture 31

a. Hyperbolic metrics on surfaces of higher genus. One model

we considered for the flat torus was the real plane modulo the integer

lattice. More formally, we took the quotient space R2/Z2, in which

points on the torus corresponded to orbits in R2 of the subgroup

Γ ⊂ Isom(R2) comprising integer translations. The discrete subgroup

Γ is generated by the translations (x, y) �→ (x + 1, y) and (x, y) �→
(x, y+1), and the orbit of a point (x, y) in R2 under the action of Γ is

simply the set containing all the images of (x, y) under compositions

of these maps and their inverses.

Thus far we have not seen an analogous model for surfaces of

higher genus; in the course of this lecture, we will exhibit such a

model, but in the hyperbolic plane, rather than the Euclidean. To

motivate this, consider an equivalent way of looking at the above

model. Rather than taking points on the torus to be entire orbits

of Γ, we may restrict our attention to a single fundamental domain
which contains exactly one point from each orbit, with the exception

of boundary points, which are identified somehow.

In the case of the torus, a fundamental domain is given by the

unit square [0, 1] × [0, 1], and opposite edges are identified via the

two translations mentioned above, which generate Γ. This is our

familiar planar model for the torus, and we see that the images of the

fundamental domain under Γ tile the Euclidean plane.

In the course of our topological classification of surfaces, we con-

structed such planar models for every compact surface, and it is nat-

ural to ask if the algebraic construction which works so well for the

torus might also be carried out for these planar models. As a concrete

example, consider the octagon with opposite sides identified via the

four translations

f1 : (x, y) �→ (x + 2, y),

f2 : (x, y) �→ (x +
√

2, y +
√

2),

f3 : (x, y) �→ (x, y + 2),

f4 : (x, y) �→ (x −
√

2, y +
√

2).
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This is a planar model of a surface S with genus two, and so we

might hope that if we consider the subgroup Γ ⊂ Isom(R2) generated

by {f1, f2, f3, f4} and take the quotient space R2/Γ, we would obtain

that same surface. However, things do not work out so nicely; indeed,

it is straightforward to verify that the orbit under Γ of each point

(x, y) ∈ R2 is in fact dense in the plane.

We may gain some insight into the problem by realising that

if this approach were to work, the images of the octagon under the

isometries in Γ would tile the plane, as was the case for the unit square

under integer translations. This is impossible, because the angles of

the octagon do not add up correctly—indeed, if just three octagons

were to meet at a common vertex, the sum of their angles would be

9π/4, which is already greater than 2π.

Here we encounter the same difficulty we ran into when attempt-

ing to place a smooth structure on S. In order for the surface to

inherit the geometry of the space tiled by its fundamental domain

(this space, if simply connected, is known as its universal cover), the

eight wedges which make up a neighbourhood of the vertex in the

fundamental domain must all be put together into a disc surrounding

that vertex; this requires that their angles sum to 2π, not 6π as is the

case in the current planar model.

In the Euclidean plane, this is impossible; any octagon, regardless

of shape and size, has angles which sum to 6π merely by virtue of

being an octagon. We have seen, however, that things are different in

the hyperbolic plane, where triangles, at least, have angles whose sum

is less than that of their Euclidean counterparts. By decomposing a

geodesic polygon in the hyperbolic plane into triangles, we see that

a similar formula holds, and the area is proportional to the angular

defect vis-à-vis the corresponding Euclidean polygon.

In particular, a geodesic octagon in the hyperbolic plane with

area 4π will have angles whose sum is 2π. We will find that H2 can

in fact be tiled with such octagons, and that everything works out

just as it did for R2 and the torus. In order to see this, we must find

isometries which will identify the sides of the octagon; while we no

longer have translations available in the Euclidean sense, we do have
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Figure 4.23. Geodesics for a hyperbolic translation.

isometries falling into the case (H) discussed last time, which may be

thought of as hyperbolic translations.

Given such an isometry f , we have two fixed points at infinity and

a unique geodesic γ connecting them. There exists r > 0 such that

any point p ∈ γ is taken by f to a point f(p) ∈ γ with d(p, f(p)) = r.

Indeed, given a geodesic γ and a distance r, there exists a unique

isometry f with these properties (provided we specify in which direc-

tion along γ the points are to be moved).

f also preserves the equidistant curves of γ; we will be most

interested, though, in the family of orthogonal geodesics which are

pairwise ultraparallel and which are parametrised by their intersection

with γ. If we choose coordinates on the open disc model in which γ is

a Euclidean line through the origin, then we have the picture shown

in Figure 4.23.

Returning to the question of finding a good model for the surface

with genus two, consider four geodesics through the origin in H2

which make angles of 0, π/4, π/2, and 3π/4 with the horizontal. We

may draw eight more geodesics, each orthogonal to one of the original

four, such that each of the eight new geodesics has the same Euclidean

radius.

For small values of this radius, these geodesics do not intersect,

and are ultraparallel, as shown in the first panel of Figure 4.24. As the

radius is increased, neighbouring geodesics eventually become parallel

and meet at infinity, as shown in the second panel; at this point the

angle between neighbouring geodesics is 0. As the radius is increased

still further, as shown in the third panel, this angle increases as well,

and the geodesics now intersect in H2 itself to form an octagon.
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Figure 4.24. Various attempts at a hyperbolic octagon.

In the limit as the radius goes to 1, the octagon becomes more

and more nearly Euclidean; correspondingly, its area goes to 0. The

individual angles approach (but do not reach) 3π/4, and so their

sum approaches (but does not reach) 6π. By the Intermediate Value

Theorem, there is some value of the Euclidean radius for which the

sum of the angles of the octagon is exactly 2π; this is the octagon we

want.

Recalling our discussion of hyperbolic translations, we see that

the four geodesics passing through the origin, together with the dis-

tance given by the diameter of the octagon, are sufficient to specify

four isometries f1, f2, f3, and f4.

Let Γ be the subgroup of Isom(H2) generated by {f1, f2, f3, f4},
and consider the quotient space H2/Γ whose points are orbits of Γ—

then as desired, we obtain the surface of genus two. The geodesic

octagon found above is the fundamental domain, and its images un-

der Γ tile H2, just as the images of the unit square under integer

translations tile R2. It may be checked that although the isometries

fj do not commute, they do satisfy the relation

f1 ◦ f2 ◦ f3 ◦ f4 ◦ f−1
1 ◦ f−1

2 ◦ f−1
3 ◦ f−1

4 = Id,

which is reminiscent of our earlier method of cataloguing edge iden-

tifications for planar models.

Thus we have succeeded in placing a locally hyperbolic metric on

the surface of genus two, as follows: on the interior of the octagon, S

obtains its metric directly from H2; along the edges, we may obtain

a patch by using one of the isometries fj and again inherit the metric
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from H2. Finally, at the vertex, where we ran into so much difficulty

in defining a smooth structure, there is now no trouble, because the

angle is π/4, and so under the appropriate isometries, the images of

the eight wedges in the fundamental domain all come together to fill

a neighbourhood of the vertex in H2, and the metric is passed down

without incident.

We may use a similar construction to place a locally hyperbolic

metric on any compact orientable surface of genus g ≥ 2. Beginning

with 4g−4 geodesics through the origin, we find a (4g−4)-gon in H2

whose angles sum to 2π and which has opposite edges identified by hy-

perbolic translations. By using the fact that any non-orientable sur-

face has an orientable double cover, we also have a locally hyperbolic

metric on any compact surface with negative Euler characteristic.

Recall that we can obtain a topological torus by taking any paral-

lelogram and identifying opposite edges by translation, but that these

tori will in general have different metric structures. For example, the

subgroups of Isom(R2) defined by

Γ = 〈 (x, y) �→ (x + 1, y), (x, y) �→ (x, y + 1) 〉,
Γ′ = 〈 (x, y) �→ (x + 1, y), (x, y) �→ (x + 1, y + 1) 〉

yield different flat metric structures on the tori R2/Γ and R2/Γ′, al-

though the two surfaces are identical topologically. Similarly, we may

choose a different set of isometries g1, g2, g3, g4 ∈ Isom(H2) and take

the quotient space of H2 by the action of these isometries; provided

the relation

g1 ◦ g2 ◦ g3 ◦ g4 ◦ g−1
1 ◦ g−1

2 ◦ g−1
3 ◦ g−1

4 = Id

still holds, this quotient space will be a surface of genus two, but

with a different hyperbolic metric. This observation is the precursor

to what is known as Teichmüller theory.

b. Curvature, area, and Euler characteristic. Why is it that

we were able to put a flat metric on the torus, which has χ = 0, but

not on surfaces of higher genus, for which χ < 0? We have just seen

that although we could not put a flat metric on these surfaces, we

could give them a locally hyperbolic metric; might it be possible to

do this for the torus as well?
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In order to put a locally hyperbolic metric on the torus, we must

find a planar model which lies in H2. If we proceed as before, draw-

ing two orthogonal geodesics passing through the origin and then

varying the geodesics orthogonal to these, we obtain an asymptotic

quadrilateral. Identifying opposite sides of this quadrilateral with the

appropriate hyperbolic translations yields a surface S which is topo-

logically equivalent to a punctured torus; that is, a torus with a point

removed. The metric induced on the torus by H2 has a singularity

at this point.

So far this is exactly the picture we began with for surfaces of

higher genus; for example, an asymptotic octagon with opposite sides

identified corresponds to a surface of genus two with a single point

removed and a singularity in the metric around this point. However,

for those surfaces we were able to remove the singularity by bringing

the geodesics bounding the planar model closer to the origin. This

is of no use for the hyperbolic quadrilateral, because as long as the

quadrilateral has positive area, the sum of its angles will be less than

2π, and so the singularity at the vertex persists.3

This method fails, then, to yield a locally hyperbolic metric on

the torus. A deeper reason for this failure is given by the following

theorem, which relates area, curvature, and Euler characteristic, and

foreshadows the important Gauss-Bonnet Theorem. Armed with this

theorem, we will be able to state categorically that it is impossible to

place a locally hyperbolic metric on the torus, whether by the method

attempted above, or by any other.

Theorem 4.11. Let S be a compact surface with a locally hyperbolic
metric (that is, a surface with a metric which is locally isometric to
patches of H2), and let A(S) denote the total area of S. Then

A(S) = −2πχ(S).

In general, if S is a compact surface with constant curvature κ, then

κA(S) = 2πχ(S).

Proof. We use the angular defect formula for the area of a hyperbolic

triangle, applied to a geodesic triangulation of S. The existence of

3What happens if we try this with a hexagon instead of a quadrilateral?
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such a triangulation is easy to establish, and the details are technical

rather than conceptual; simply choose a large number of points, draw

geodesics connecting them to obtain a geodesic map, and then refine

the map until a triangulation is obtained.

Using this triangulation, we have the usual formula for the Euler

characteristic:

χ(S) = F − E + V.

Furthermore, as for any triangulation, counting edges gives 3F = 2E,

and so F = 2E−2F . Finally, for every triangle τ in the triangulation,

the angular defect formula (4.12) tells us that

A(τ ) = π − α − β − γ

where α, β, γ are the angles of the triangle. Summing over all τ yields

A(S) = πF − 2πV

since the angles around each vertex sum to 2π, and every angle is

counted exactly once. The above information now yields the straight-

forward calculation

A(S) = π(F − 2V ) = π(2E − 2F − 2V ) = −2πχ(S)

which establishes the first formula.

Note that if we write (4.12) in the form

(4.13) κA(τ ) = α + β + γ − π,

then this proof goes through for the sphere (1.6) and the plane as

well, which have κ = 1, 0. To take care of all possible values of κ,

recall that if we scale the metric by a constant factor, the area scales

as the square of that factor, and the curvature scales as the inverse

of the area, so that the product κA(S) remains constant and equal

to 2πχ(S).

To gain the second statement in Theorem 4.11, it must be shown

that every surface of constant curvature is locally isometric to either

a sphere, the plane, or a hyperbolic plane,4 depending on whether the

curvature is positive, zero, or negative (note that the global structure

may be quite different, though). The proof of this uses geodesic polar

4We say ‘a’ hyperbolic plane because a value other than −1 for the curvature
demands that we scale the metric, as described above.
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coordinates, which we will see in the next lecture, and the notion of

a Jacobi field, which is beyond the scope of this course (for example,

see Proposition 10.9 in John M. Lee’s Riemannian Manifolds: An
Introduction to Curvature).

Taking for granted this classification of such surfaces, the above

argument establishes the claim for the three basic models, and hence

for any surface of constant curvature. �

We originally defined the Euler characteristic in terms of triangu-

lations, and then saw it turn up in homology via the Betti numbers,

and in Morse theory via critical points of smooth functions. Theo-

rem 4.11 illustrates yet another guise of the Euler characteristic, this

time in terms of curvature and area:

χ(S) =
κA(S)

2π
.

This result can in fact be extended to surfaces whose curvature is not

constant, as we will soon see when we study the Gauss-Bonnet Theo-

rem. The idea will be to take a triangulation which is fine enough that

curvature is nearly constant on each triangle, and then approximate

the area of each triangle by using the angular defect/excess formula in

its general form (4.13). By showing that this formula remains correct

up to a higher order error term in the case of variable curvature, we

will be able to replace the expression κA(S) with the integral of the

curvature, obtaining the general expression

χ(S) =
1

2π

∫
S

κ(x) dA(x)

for the Euler characteristic.

Lecture 32

a. Geodesic polar coordinates. Up to this point, we have dis-

cussed curvature in certain specific settings without giving a general

definition of curvature for an arbitrary surface with a Riemannian

metric. In order to do this, we first recall the three types of surfaces

of constant curvature that we have considered so far, and express

the metric on each in geodesic polar coordinates around a particular

point.
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Figure 4.25. Geodesic polar coordinates on surfaces with
positive, zero, and negative curvature.

To be more precise, we fix a point p ∈ S and choose polar co-

ordinates on a neighbourhood U of p such that a point q ∈ U has

coordinates (r, θ), where r is the distance from p to q along the unique

geodesic of minimal length connecting the two points, and θ is the

angle this geodesic makes with a fixed reference geodesic through p.

Let us conside our three standard symmetric examples, which

correspond to the three cases shown in Figure 4.25 (although of course

H2 cannot actually be embedded in R3).

On the Euclidean plane with p taken to be the origin, these are

just the usual polar coordinates (r, θ); the geodesics through p are

straight lines through the origin, and the metric is given by

(4.14) ds2 = dr2 + r2 dθ2.

On the sphere with radius R, we may take p to be the north

pole. Then the geodesics through p are the meridians (lines of con-

stant longitude); the point q = (r, θ) has longitude given by θ and

latitude chosen so that its distance from the north pole along that

line of longitude is r. One immediately sees that the metric in these

coordinates is

(4.15) ds2 = dr2 + R2 sin2
( r

R

)
dθ2.

Finally, on H2 in the disc model with p as the origin, we see that

the geodesics through p are straight lines through the origin, and a

straightforward calculation shows that the metric (4.4) becomes

(4.16) ds2 = dr2 + sinh2 r dθ2

in geodesic polar coordinates.
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In general, in the geodesic polar coordinates described above, the

curves θ = constant are geodesics, while for small values of c the

curves r = c are circles centred at p, i.e. the loci of points whose

distance from p is precisely c. The circles intersect the geodesics θ =

constant orthogonally; if it were not so, varying θ along a circle would

change r, a contradiction. This fact, together with the definition of

r, implies that the metric in these coordinates has the form

(4.17) ds2 = dr2 + (g(r, θ))2 dθ2

where g : R2 → R is some smooth function which is positive for r > 0

(away from p) and vanishes at p.

Exercise 4.23. Let S be the surface of revolution around the z-

axis of the curve z = φ(x) in the xz-coordinate plane, where φ is an

even function. Express the function g which appears in the geodesic

polar coordinates (4.17) around the point (0, 0, φ(0)) in terms of the

function φ.

b. Curvature as an error term in the circle length formula.
Our description of curvature in terms of geodesic polar coordinates

must come from the properties of the function g. We make the fol-

lowing definition, and then offer some geometric justification.

Definition 4.12. With g as above, the curvature of S at a point

q = (r, θ) is

(4.18) κ(q) = κ(r, θ) = −grr

g
= −1

g

∂2g

∂r2
.

Notice that in the three symmetric cases (4.14), (4.15), and (4.16),

one obtains κ ≡ 0, R, and −1, respectively.

Notice also that since g vanishes at r = 0, this expression does

not initially define curvature at the point p, the centre of the geodesic

polar coordinate system. We will show after Theorem 4.13 that the

limit of the right hand part of the expression (4.18) as r → 0 exists,

and this can be taken as the curvature at that point.

As we will see, this definition makes the proof of the Gauss-

Bonnet Theorem (which we will come to shortly) relatively straight-

forward. However, it lacks a clear geometric interpretation, and also
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has the weakness of being dependent (a priori, at least) on our par-

ticular choice of a coordinate system around p. What if we were to

define our polar coordinates around some other point on S? Why

should we expect to obtain the same value for κ at each point?

We address the first of these issues now, giving a coordinate-free

interpretation of the curvature at p in terms of the circumference of

small circles around p, assuming that the limit of −grr/g as r → 0

exists and is finite, which we will show in the next section. Fix r > 0

and let Cp(r) be the circle of radius r around p. Abusing notation

slightly, we write �(r) for the circumference of this circle, and we see

that

�(r) = �(Cp(r)) =

∫
Cp(r)

ds =

∫ 2π

0

g(r, θ) dθ.

In what follows, we sweep issues of the smoothness of g under the rug;

everything we say regarding the error estimates on g may be verified

using results from ODE theory and the calculus of variations, but we

will not get bogged down in the details here.

We fix a value of θ and take the Taylor expansion of g in r around

0; note that the constant term vanishes because g(0) = 0. To find the

linear term, note that as r goes to zero, we approach the Euclidean

case, and the circumference is 2πr plus some higher order terms. Thus

we have

gr|r=0 = 1.

The quadratic term requires a value of grr at r = 0; because g(0) = 0

and κ(p) = − limr→0 grr/g is finite, we must have

grr|r=0 = 0

and so the quadratic term vanishes. Finally, since grr = −κg+o(r) =

−κr + o(r), we have

grrr|r=0 = −κ,

which allows us to write the Taylor expansion for g as

g(r, θ) = r − κ

6
r3 + o(r3).

It follows that the circumference is given by

�(r) = 2πr − πκ

3
r3 + o(r3)
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and we have the following formula for the curvature κ:

(4.19) κ(p) = 3 lim
r→0

2πr − �(r)

πr3
.

This gives a nice geometric interpretation of curvature; however,

because it only applies to the curvature at the origin of the coordinate

system, we will need a different argument to show that κ(q) is in fact

independent of our choice of origin p, and that the limit used above

does in fact exist.

Exercise 4.24. Given a surface with Riemannian metric, express

the curvature at a point through the error term in the area of a disc

centred at this point as the radius goes to zero.

Exercise 4.25. Let S be a surface in R3, fix a point p ∈ S, and

suppose that the degree of tangency between S and its tangent plane

at p is greater than one—that is, the distance between a point on the

surface at a distance r from p and its projection to the tangent plane

is O(r3). Prove that the curvature of S at p is equal to zero.

Exercise 4.26. As before, write �(r) and A(r) for the length and

area of a circle and a disc of radius r in the hyperbolic plane. Find

(1) limr→∞
log �(r)

r ;

(2) limr→∞
log A(r)

r .

The conclusion of the last exercise is rather surprising. It shows

that both the length of a circle and the area of a disc grow expo-
nentially with the radius, in contrast with the linear and quadratic

growth seen in Euclidean geometry.

c. The Gauss-Bonnet Theorem. We are now in a position to

state and prove the Gauss-Bonnet Theorem for a general geodesic

triangle with variable curvature (Figure 4.26). In the following, we

write dS for an infinitesimal area element.

Theorem 4.13. Let A, B, and C be the vertices of a geodesic triangle
∆ on a surface S, and let α, β, and γ be the angles at these vertices.
Then the integral of the curvature of S over ∆ is equal to the angular
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Figure 4.26. A geodesic triangle with variable curvature.

excess:

(4.20)

∫
∆

κ dS = α + β + γ − π.

Proof. Choosing geodesic polar coordinates centred at A, the inte-

gral in question is∫
∆

κ dS =

∫
∆

κg(r, θ) dr dθ = −
∫

∆

grr(r, θ) dr dθ.

For 0 ≤ θ ≤ α, let γθ be the geodesic through A which makes an

angle of θ with the geodesic AB (as in Figure 4.27), and let ρ(θ) be

the distance along γθ from A to the opposite side BC. Then the

above integral may be rewritten as

−
∫ α

0

∫ ρ(θ)

0

grr(r, θ) dr dθ = −
∫ α

0

gr(r, θ)

∣∣∣r=ρ(θ)

r=0
dθ

=

∫ α

0

−gr(ρ(θ), θ) + 1 dθ = α −
∫ α

0

gr(ρ(θ), θ) dθ.

Lemma 4.14. With γθ as above, let ψ(θ) be the angle of intersection
of γθ and the geodesic BC. Then

dψ

dθ
= −gr(ρ(θ), θ).

Proof. Parametrising the geodesic BC by arc length s, we see (Fig-

ure 4.27) that

cos ψ =
dr

ds
, sin ψ = g

dθ

ds
.

Differentiating the first and then using the second yields

(4.21)
d2r

ds2
= − sin ψ

dψ

ds
= −g

dθ

ds

dψ

ds
.
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A B

C

ψ

θ

γθ

ψ
dr

dsg dθ

Figure 4.27. Computing dψ
dθ

.

In order to complete the proof, we need to appeal to the equations

for a geodesic, which we did not derive explicitly. However, for the

particular case of geodesic polar coordinates, they are not so bad;

recall that we defined geodesics as those curves which minimise the

action functional∫ b

a

1

2
‖γ̇‖2 dt =

∫ b

a

1

2
ṙ2 + g(r, θ)2θ̇2 dt,

and so since BC is a geodesic, the Euler-Lagrange equations from

Proposition 4.10 become

ggr θ̇
2 =

d

dt
ṙ = r̈,

ggθ θ̇
2 =

d

dt
g2θ̇.

We only need the first of these; since the action functional can only

be minimised when γ is parametrised by arc length, we have ds = dt,

and (4.21) gives

ggr

(
dθ

ds

)2

= ggr θ̇
2 =

d2r

ds2
= −g

dθ

ds

dψ

ds
,

from which the lemma follows. �

Using this lemma, we may continue the above computations and

write the integral as

α +

∫ θ=α

θ=0

dψ = α + ψ(θ)

∣∣∣θ=α

θ=0
= α + γ − (π − β) = α + β + γ − π,

which completes the proof. �
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Of course, so far we have not shown that the definition (4.18)

of the curvature κ(q) is independent of our choice of the origin p,

and so we really should replace the word ‘curvature’ in the above

theorem with the phrase ‘curvature in the coordinates centred at A’.

However, it is not too hard to show that the result holds for any

choice of origin p, provided that p is close enough to the vertices of

the triangle to guarantee the existence of a unique shortest geodesic

from p to each vertex. Then if p is inside ABC, we can decompose

the triangle ABC into three smaller triangles pAB, pBC, and pCA;

using p as the origin, the theorem holds for each, and summing the

resulting formulae gives (4.20) for the coordinates centred at p. The

case where p lies outside ABC can be handled similarly.

Now we can finally show that the value in (4.18) at a given point

q does not depend on the choice of the centre point p for the geodesic

polar coordinate system. This is because (4.20) implies that curvature

can be defined intrinsically—even though this intrinsic definition is

an immediate corollary of Theorem 4.13, it is an important enough

fact to warrant formulation as a separate proposition.

Proposition 4.18. The curvature at a point p of a surface with a
Riemannian metric is equal to the limit of the ratio of the angular
excess of a small geodesic triangle ∆ (that is, the difference between
the sum of its angles and π) and the area of ∆, taken as all vertices
of ∆ converge to p.

This generalises to geodesic polygons in the natural way.

In order to tie up all the loose ends of our exposition, it remains

only to justify our derivation of (4.19) by showing that limr→0 −grr/g

exists. But we have just shown that the quantity in the limit is

independent of our choice of p, and so choosing some other origin,

the limit in question becomes

lim
(r,θ)→(r0,θ0)

−grr

g
,

where r0 �= 0, and this limit obviously exists.

Returning to the statement of Theorem 4.13, if we consider the

boundary of the triangle as a single closed curve, then it is a piecewise

smooth curve which is a geodesic at all but three points where it has
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a corner. The content of the theorem is that the integral of the

curvature is equal to the sum of the angles at these corners minus

π; there is a more general version of this theorem which deals with

curves with more than three corners, and even with curves which are

not geodesics. In the latter case, we must include a term accounting

for the geodesic curvature of the boundary, as well as any angles where

the curve is not smooth.

Now we give an example, in the form of two exercises, which shows

that Proposition 4.18 can sometimes be used to calculate curvature.

Here H is the one-sheeted hyperboloid in R3 given by the equation

x2 + y2 − z2 = 1.

Exercise 4.27. Prove that through every point of H pass two straight

lines which lie in H. Find the equations of these lines using the

coordinate z as a parameter, and prove that the lines are geodesics

in H.

Exercise 4.28. Prove that H has negative curvature at every point.

As an important corollary of Theorem 4.13, we obtain another

classical description of the Euler characteristic.

Theorem 4.15 (Gauss-Bonnet). For any Riemannian metric on a
compact surface S, ∫

S

κ dS = 2πχ(S).

The Gauss-Bonnet Theorem is deduced from Theorem 4.13 in

the same way as in the case of constant curvature. In that case we

added areas of triangles, while here we add integrals over triangles,

but the rest of the proof is verbatim. We only need to make sure that

there exists a triangulation of the surface into geodesic triangles—for

this we take a finite but sufficiently dense set of points and connect

pairs of points from the set which are sufficiently close to each other

by unique short geodesic segments. Looking at the part of the pic-

ture which lies inside any particular coordinate chart, we obtain a

decomposition of the patch into geodesic polygons, which then can

be further triangulated.

Figure 4.28 shows a sphere with two handles, shaded by curva-

ture; darker areas have positive curvature, lighter areas have negative
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Figure 4.28. Gaussian curvature on a sphere with two handles.

curvature, and points with zero curvature are indicated by the dark

curves and the ‘X’-shaped region in the middle of the figure eight. Be-

cause the Euler characteristic of the surface is negative, Theorem 4.15

implies that the average curvature is negative as well; a calculation

of the values of the curvature (which we do not carry out here) shows

that |κ| is roughly twice as large in the lighter regions of Figure 4.28

as in the darker regions, and hence the negative values predominate

upon integration over the whole surface.

d. Comparison with traditional approach. The path that we

have taken to reach this point is somewhat different from the tra-

ditional approach to differential geometry. One of the fundamental

difficulties of the subject is the lack of a preferred coordinate system

in which to make definitions, perform calculations, etc. In our treat-

ment of curvature, we used geodesic polar coordinates as our preferred

system, but these still suffer from two drawbacks. In the first place,

as we remarked above, they depend on the choice of origin, and so

are not completely general; in the second place, they are singular at

that origin, and so cannot be used on the tangent space of the point

in which we are most interested!

The traditional approach to the difficulty of coordinate systems is

to consider a surface which is embedded in R3, for then we do indeed

have the preferred coordinates (x, y, z) which are inherited from the
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Figure 4.29. Directions of principal curvature on a sphere
and a hyperboloid.

ambient space. Given a particular chart φ : (x, y, z) �→ (u, v), we may

do our calculations of curvature and other geometric properties in

terms of x(u, v), y(u, v), and z(u, v), and then derive their forms in

terms of u and v from the coordinates in R3.

In this philosophy, the approach to curvature is as follows. At

each point of S ⊂ R3, we have a unit normal vector n. Given a

tangent vector v at a point p ∈ S, we may consider the plane spanned

by n and v; this plane intersects S in a curve γ through the point

p. Since γ lies in a plane, we know how to compute its curvature

(osculating circles), and we say that this is the curvature of S in the

direction v.

In the course of these calculations, a 2 × 2 matrix arises which

determines how the curvature changes as v changes; the eigenvalues

of this matrix are the principal curvatures of S at p. On a positively

curved surface such as a sphere or an ellipsoid, both principal curva-

tures have the same sign, which is reflected in the fact that the two

curves on the sphere which are highlighted in Figure 4.29 open in the

same direction. On a negatively curved surface, the principal curva-

tures have different signs from each other, and so the two highlighted

curves on the hyperboloid pictured open in different directions.

The punchline of all of this is that while all of the definitions are

completely extrinsic, being dependent on the particular choice of em-

bedding into R3, the product of the principal curvatures, the so-called

Gaussian curvature, is in fact completely intrisically determined (this

is our κ). That is, the embedding of S into R3 induces a Riemannian
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metric on S from the metric on R3, and the Gaussian curvature de-

pends only on this metric, and not on the embedding; this is Gauss’

Theorema Egregium.

In our treatment here, we have eschewed the traditional approach,

avoiding the technical discussions and computations it inevitably en-

tails; for example, we have made no mention of Christoffel symbols,

which the reader will encounter in any more in-depth studies of dif-

ferential geometry. This has allowed us to cover more ground than we

would have otherwise, but the reader ought to be aware that certain

common topics have been omitted, as they will undoubtedly appear

in any further studies of this material.

                

                                                                                                               



Chapter 5

Topology and Smooth
Structure Revisited

Lecture 33

a. Back to degree and index. In examining vector fields, curves,

etc. on a smooth surface S, there is a natural ambiguity in the termi-

nology surrounding the notion of ‘index’—do we speak of the index

of a vector field at a critical point, or the index of a critical point of

a vector field? In terms of curves on S, do we speak of the index of a

curve with respect to a point, or the index of a point with respect to

a curve?

Both options make perfect sense, and indeed both are legitimate.

For the sake of concreteness, though, we shall choose the former for

the time being, and refer to the index of a curve γ with respect to a

point x, denoted indx γ.

As we have seen, this index is independent of parametrisation;

nevertheless, in order to work with the curve and determine properties

of the index, we fix a parametrisation

γ : S1 → R2.

It is worth pointing out at this juncture that if the curve is not smooth

and is allowed to have self-intersections, it may have certain patholog-

ical properties. Smooth curves, even with self-intersections, behave
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more or less according to our intuition; even curves which are merely

continuous exhibit many nice properties, provided γ is injective and

the curve does not intersect itself.

In the most general case, however, our intuition fails; it turns

out that we can find a continuous curve γ such that γ(S1) has a

non-empty interior. The classic example is the Peano curve, a contin-

uous surjective map from the unit interval [0, 1] onto the unit square

[0, 1] × [0, 1]. This is usually constructed via an inductive geometric

procedure, but could also be given explicitly in terms of the binary

expansion of the parameter t ∈ [0, 1].

Recall that given a curve γ and a point x ∈ R2 \ γ(S1), we define

the index of γ around x by means of a circle map φx,γ . This map is

defined by

φx,γ : S1 → S1,

t �→ γ(t) − x

‖γ(t) − x‖ ,

where the fact that we subtract x from γ(t) also illustrates the need

to fix a choice of local coordinates. The index is given by

indx γ = deg φx,γ .

Note that the quantity ‖γ(t)−x‖ is non-vanishing because x /∈ γ(S1).

Further, by compactness of S1, this quantity attains its minimum, and

hence is bounded away from zero; that is, there exists ε > 0 such that

‖γ(t) − x‖ ≥ ε for every t ∈ S1.

What properties does the index have? How does it behave if we

vary x or γ? We begin by investigating what happens as x varies—

note that the complement R2 \ γ(S1) is an open set, and so upon

decomposing it into connected components, we find that these compo-

nents must themselves be open, and hence are path-connected. This

allows us to prove the following:

Proposition 5.19. Let C be a connected component of R2 \ γ(S1).
Then indx γ is constant on C as a function of x.

Proof. Given x0, x1 ∈ C, the above discussion shows the existence

of a curve δ : [0, 1] → C such that δ(0) = x0, δ(1) = x1. Now define
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Figure 5.1. Index of points w.r.t. a curve.

f : [0, 1] → Z by

f(t) = indδ(t) γ.

Because the circle map φx,γ depends continuously on x, the function

f is continuous, and hence constant since the integers are discrete. It

follows that

indx0 γ = f(0) = f(1) = indx1 γ. �

How does the index change if x passes from one connected com-

ponent to another? In the simplest case, we consider passing through

a point at which the curve is smooth, regular, and injective (see Fig-

ure 5.1). Formally, we assume that t ∈ S1 is such that γ is smooth

at t and γ(t) is non-critical; that is, γ′(t) �= (0, 0) using local coor-

dinates. It is worth noting that the Implicit Function Theorem then

guarantees the existence of some system of local coordinates in which

γ(t) = (t, 0), so γ is just one of the coordinate axes.

Under the further assumption of injectivity, that there does not

exist any parameter value s �= t with γ(s) = γ(t), we will show in

the next lecture that as x passes from one connected component to

another through the point γ(t), the index indx γ changes by one.

Whether it increases or decreases depends on the direction of the
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parametrisation relative to the direction in which x moves across the

curve.

This gives us a sense of how the index responds to variations in

the point x. What happens if the curve γ changes? It turns out that

we find a similar continuous dependence; here the topology on the

space of all possible curves is the C0 topology, which is generated by

the following metric:1

d(γ1, γ2) = max
t∈S1

d(γ1(t), γ2(t)).

Let ε > 0 be as before, so that ‖γ(t) − x‖ > ε for all t; then for any

curve γ̃ with d(γ, γ̃) < ε we have

indx γ̃ = indx γ.

It follows that the index remains constant under continuous deforma-

tions. To be precise, suppose γs is a continuous one-parameter family

of curves, with x /∈ γs(S
1) for every s ∈ [0, 1]. Then the value of

indx γs is constant.

Exercise 5.1. Let γ : S1 → R2 be a closed curve and f : S1 → S1 a

continuous map. Let γf (t) = γ(f(t)). Prove that

indx γf = deg f · indx γ.

b. The Fundamental Theorem of Algebra. The fact that con-

tinuous deformation of the curve γ does not change its index with

respect to the point x is central to one proof of the Fundamental

Theorem of Algebra, which states that every polynomial with com-

plex coefficients has a complex root. It is a somewhat odd fact that

despite the completely algebraic nature of this statement, there is no

purely algebraic proof known.

The name is also belied by the fact that modern algebra has

followed a direction in which the complex numbers are no longer the

most important objects, and so the theorem is not so fundamental to

algebra anymore. Classically, however, it forms the capstone of the

steady progression from the natural numbers to the integers, from

1Note that under this definition, reparametrisations of the same curve are con-
sidered to be different curves, lying a positive distance from each other. If we want
to consider reparametrisations as equivalent, then we must take the infimum over all
parametrisations.
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the integers to the rationals, from the rationals to the reals, and from

the reals to the complex numbers, each step of which may be seen

as being motivated by the desire to include roots of more and more

polynomials.

Theorem 5.1. Let p ∈ C[z] be a polynomial with complex coefficients.
Then there exists z0 ∈ C such that p(z0) = 0.

Corollary 5.2. Every polynomial map p : C → C is surjective—for
every c ∈ C there exists z ∈ C such that p(z) = c.

Corollary 5.3. Every polynomial with complex coefficients factors as
a product of linear terms; given any p ∈ C[z] there exist a, z1, . . . , zn ∈
C such that

p(z) = a(z − z1) . . . (z − zn).

Proof of the theorem. Consider the circle of radius r around the

origin:

Cr = { z ∈ C | |z| = r }.
Cr is homeomorphic to S1 via a simple homothety, and so the restric-

tion of p to Cr defines a curve

γr : S1 → C.

Now γr gives a continuous family of curves with r ∈ [0,∞). We

consider the index ind0 γr of these curves around the origin as r varies,

and proceed by contradiction. Suppose p(z) �= 0 for every z ∈ C.

Then in particular, z /∈ γr(S
1) for all values of r, and so our previous

result implies that ind0 γr is constant. Since γ0(S
1) is just a point,

the associated circle map is a constant map, and we have

ind0 γr = 0

for every r ≥ 0.

We now claim that this fails for very large values of r:

Lemma 5.2. For sufficiently large values of r, we have

ind0 γr = deg p.

Proof of the lemma. Let n = deg p, and write

p(z) = anzn + q(z),
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0
γr

Γr

Figure 5.2. γr has non-zero index around 0 when r is large.

where deg q ≤ n − 1. Then we have

γr(t) = p(re2πit) = anrne2πint + q(re2πit).

Let Γr be the curve given by the leading term:

Γr(t) = anzn = anrne2πint

where z = re2πint. The circle map associated to Γr is just the ex-

panding map t �→ nt, which has degree n, and hence ind0 Γr = n.

It remains to show that γr and Γr have the same index around the

origin (see Figure 5.2).

Consider the family of curves

γs
r(t) = anzn + (1 − s)q(z)

which has γ0
r = γr and γ1

r = Γr. Since q has degree at most n − 1,

there exists some constant C > 0 such that |q(z)| ≤ C|z|n−1 whenever

|z| > 1, and so we have for any t ∈ S1 that

|γs
r (t)| ≥ |an|rn − Crn−1.

For sufficiently large values of r (in particular, r > C/|an|), this is

always positive, and hence all the curves γs
r avoid the origin. It follows

that ind0 γs
r is constant in s, and so ind0 γr = ind0 Γr = n. �

From this contradiction, we deduce that there must exist some

z ∈ C with p(z) = 0, which completes the proof of the theorem. �
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Lecture 34

a. Jordan Curve Theorem. Common sense tells us that a circle

has an inside and an outside—if we draw a circle in the dirt and

then stand at a point which is not part of the circle, then we are

either inside the circle or outside of it. Mathematically, this may be

rephrased as the statement that the plane with a circle removed has

exactly two connected components.

The generalisation of this assertion from circles to arbitrary con-

tinuous closed curves without self-intersection is known as the Jordan
Curve Theorem, which we will state momentarily and then proceed

to prove in the course of this and the next lecture. As is often the

way of things in topology, this innocuous-looking theorem is rather

more difficult to prove than näıve intuition would lead us to expect,

due in part to the fact that the homeomorphic image of a circle (that

is, a continuous closed curve without self-intersection) may have a

fantastically complicated local structure, even taking the form of a

fractal.

Recall that the plane is homeomorphic to the sphere with a point

removed, and hence we have a correspondence between curves in R2

and curves on S2 (via stereographic projection, for example). In the

prototypical example where our curve is the unit circle, the interior

of the curve is a disc, and the exterior of the curve is homeomorphic

to a disc if we include the point at infinity. This may readily be seen

by considering the form this curve takes on the sphere, where it is

simply the equator. The equator separates S2 into two connected

components, the northern and southern hemispheres, each of which

is homeomorphic to a disc.

Theorem 5.3 (Jordan Curve Theorem). Let γ : S1 → R2 be a home-
omorphism onto its image. Then R2 \γ(S1) consists of two connected
components.

As discussed above, the same result holds if we replace R2 with

S2. In fact, we can strengthen this theorem (in R2 or S2) and relate

it directly to the prototypical case.
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Theorem 5.4 (Schoenflies). Let γ : S1 → R2 be a homeomorphism
onto its image. Then there exists a homeomorphism h : R2 → R2 such
that h(γ(S1)) is the unit circle.

If γ is a smooth regular curve, then h can be chosen to be a
diffeomorphism.

By adding the point at infinity, one again obtains the correspond-

ing result for the sphere.

An important corollary of the Schoenflies Theorem is that all

handles are the same—in other words, the procedure of attaching a

handle is uniquely defined up to a homeomorphism. The same holds

true for Möbius caps. Since we do not plan to give a complete proof

of the Schoenflies Theorem, we omit the details of these deductions.

The proofs of both the Jordan Curve and Schoenflies Theorems

rest upon the technique of approximating an arbitrary continuous

curve γ with smooth or piecewise smooth curves, so we begin by

restricting our attention to such curves. The notion of index of a

curve (which will be fixed) with respect to a point (which will change)

plays a central role in this argument.

Theorem 5.5 (Smooth Jordan Curve Theorem). Let γ : S1 → R2

be smooth, regular (which in this case means that the derivative does
not vanish), and without self-intersection. Then R2 \ γ(S1) consists
of two connected components.

Proof. First note that the result is true locally, as a consequence

of the Implicit Function Theorem. That is, given a neighbourhood

U ⊂ R2 such that γ(S1) ∩ U is homeomorphic to a line (in other

words, γ passes through U exactly once), we can find coordinates on

U such that γ(S1) ∩U is the x-axis. Thus U \ γ(S1) has exactly two

components, corresponding to the upper and lower half-planes.

This picture allows us to prove the claim from the last lecture

that passing over such a segment of γ(S1) changes the index indx γ by

exactly one. Consider two points x1 and x2 in U which lie just above

and just below the x-axis, respectively, in our coordinate system, such

that the distance between them is small compared with the distance

to the edge of U (Figure 5.3). Then for points γ(t) /∈ U , the vectors
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x1

x2

U

Φx1,γ Φx2,γ

t t

Figure 5.3. Crossing a curve changes index by one.

γ(t) − x1 and γ(t) − x2 are nearly identical, and so the circle maps

associated with x1 and x2 differ substantially only on the interval

(a, b), where γ(S1) ∩ U = γ((a, b)); this is the shaded area in the

graphs of Φxi,γ in Figure 5.3.

As t goes from a to b, the direction of the vector γ(t)−xi changes

by an amount nearly equal to π. The difference between x1 and x2 is

that the direction in which γ(t)−xi moves on that interval is different

for each one, and hence the degrees of the circle maps differ by one.

Returning to our proof of the theorem, we observe that every

x ∈ R2 \ γ(S1) belongs to a connected component which contains

points arbitrarily close to the curve. This follows by considering a

line � connecting x and some point on the curve, then taking the

point of � ∩ γ(S1) which lies nearest x.

In order to complete the proof, we need the idea of a tubular
neighbourhood, which is important in differential topology. We state

and prove a lemma for curves on surfaces, an analogue of which holds

for submanifolds of higher-dimensional smooth manifolds. We will use

a Riemannian metric as a convenient auxiliary tool—in the plane, of

course, one can use the standard Euclidean metric, and the geodesics

in question become simply line segments.

Lemma 5.6. Given a smooth regular curve γ : S1 → S without self-
intersections on an orientable smooth surface S, there exists a neigh-
bourhood U ⊃ γ(S1) and a diffeomorphism Γ: A → U , where A ⊂ R2

                

                                                                                                               



252 5. Topology and Smooth Structure, II

is an annulus with coordinates (r, θ), θ ∈ S1, r ∈ (1 − ε, 1 + ε), such
that Γ(1, θ) = γ(θ).

Proof of the lemma. We use Fermi geodesic coordinates, which are

an analogue of the geodesic polar coordinates we used in our discus-

sion of curvature. At each point γ(t) on the curve, there exists a

unique geodesic ηt which intersects the curve orthogonally; along each

such geodesic, we introduce an arc length parametrisation such that

ηt(1) = γ(t) and the positive direction η′
t(1) varies continuously with

t (this is possible because S is orientable).

Defining Γ by Γ(r, θ) = ηθ(r), it remains only to show that Γ is a

diffeomorphism for a sufficiently small value of ε. This holds because

γ(S1) is compact—for each geodesic ηt, we may consider the minimal

value of s such that either of ηt(1 + s) or ηt(1− s) lies on some other

geodesic ητ . This value is continuous with respect to t, and is always

positive, hence is bounded away from zero. �

Note the analogy with our discussion of the isometries of the hy-

perbolic plane—for fixed values of r, the curves Γ(r, θ) are equidistant

curves from γ, which intersect the one-parameter family of geodesics

ηθ orthogonally.

Fixing a tubular neighbourhood of γ(S1), we see that it has ex-

actly two components, which are the images under Γ of (1−ε, 1)×S1

and (1, 1 + ε) × S1. Then since as we observed before, any point

x ∈ R2 \ γ(S1) lies in the same component as points arbitrarily near

γ(S1), Theorem 5.5 follows. �

The index argument depends on the global structure of the plane;

on compact orientable surfaces other than the sphere, existence of a

tubular neighbourhood does not guarantee that the curve separates

the surface into two different components, since points in the two

halves of the neighbourhood may be connected through the outside

of it. A simple example is given by the curve γ(t) = (t, 1/2) on the

flat torus [0, 1] × [0, 1]/ ∼.

On a non-orientable surface, Lemma 5.6 holds for some curves and

fails for others. Whether it holds or not depends on what happens to

a vector in the normal direction when it is carried around the curve. If
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it changes orientation (consider, for example, the middle circle of the

Möbius strip), the neighbourhood remains connected after the curve

itself is removed. We will see that this has something to do with the

different relations between the genus g and the Euler characteristic χ

for orientable (χ = 2 − 2g) and non-orientable (χ = 2 − g) surfaces.

Exercise 5.2. Let γ : S1 → R2 be a smooth regular closed curve

with one transversal (non-tangential) self-intersection, i.e. the curve

intersects itself in just one point at a non-zero angle. Prove that

the complement of γ consists of three connected components, and

list (with a proof) all possibilities for the indices of points in those

components with respect to γ.

Exercise 5.3. Prove Theorem 5.5 for piecewise smooth curves.

Notice that any polygonal broken line without self-intersections is

a piecewise smooth curve. Hence it separates the plane into two parts,

one compact and one not. Now one can apply Lemmas 2.5 and 2.7

to deduce that the compact part is indeed homeomorphic to a closed

disc. One can also consider the non-compact part as a polygonal

domain by adding a point at infinity and tinkering with coordinates

a bit. Thus one may construct a triangulation which agrees with the

triangulation of the first domain along the boundary, and thus prove

the Schoenflies theorem for a polygonal curve on the sphere, which of

course implies the similar statement for the plane. Finally, one can

deduce the theorem for a smooth or even piecewise smooth curve by

using polygonal approximation.

Exercise 5.4. Given a piecewise smooth closed curve γ : S1 → R2

without self-intersections, show that there exists a polygonal curve γ̃

and a homeomorphism h : R2 → R2 such that h(γ(S1)) = γ̃(S1).

b. Another interpretation of genus. Thanks to our classifica-

tion of surfaces admitting triangulations, which implies that any such

surface S is homeomorphic to a sphere with some number of handles

and/or Möbius caps, we know that S admits a smooth structure. The

converse is also true; given a smooth surface, taking an appropriate
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Figure 5.4. Two disjoint curves which do not disconnect a
surface of genus two.

set of points and drawing geodesics between them yields a triangula-

tion.2 Hence the class of surfaces admitting triangulations is the same

as the class of surfaces admitting smooth structures—this allows us

to give an interpretation of the genus of a surface in terms of smooth

closed curves.

Theorem 5.7. The genus g of a smooth surface S is equal to the
maximum number of pairwise disjoint smooth regular curves without
self-intersection which may be found on S such that the complement
of their union is connected.

Proof. Consider orientable surfaces first. Let N be the maximum

number of such curves. By considering a sphere with N handles and

drawing a curve on each handle as shown in Figure 5.4 for the case

g = 2, we see that N ≥ g.

To obtain the reverse inequality, consider a collection of g + 1

pairwise disjoint smooth regular curves without self-intersection on

S. Let T be a triangulation of S such that each curve γ is a union of

edges of the T . Upon removing γ from S, we are left with a surface

of genus g − 1 with 2 holes (boundary components). Filling these

holes in gives a surface in which the number of edges and the number

of vertices have both been changed by the same amount, while the

number of faces has increased by 2, and hence χ has increased by 2.

2Recall that we used existence of a triangulation into geodesic triangles in our
proof of the Gauss-Bonnet Theorem.
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The Euler characteristic of an orientable surface is χ = 2 − 2g,

and so repeating this g times, we obtain a surface with χ = 2, which

must be the sphere. Thus the next curve disconnects the surface, by

Theorem 5.5, and so N ≤ g.

Now consider a sphere with q Möbius caps. The boundaries of

these caps are disjoint closed curves (recall that the boundary of a

Möbius strip is a circle), the removal of which still leaves a connected

surface. Thus N ≥ q.

Conversely, consider any collection of q+1 disjoint closed (smooth

non-self-intersecting) curves. Once again we can assume there is a

triangulation for which each curve is a collection of edges. Removing

a curve makes either two holes (if a tubular neighbourhood exists) or

one (otherwise), and filling each hole increases the Euler characteristic

by one.

Recall that the Euler characteristic of a non-orientable surface is

χ = 2−g. Filling all the holes created in the previous step, we observe

that since the maximal Euler characteristic of a connected surface is

two, and the only surface with χ = 2 is the sphere, Theorem 5.5 once

again implies that q + 1 curves separate the surface. �

It is natural to try to prove the full Jordan Curve Theorem 5.3 by

approximating a given continuous non-self-intersecting curve γ with

a sequence of smooth curves, to which Theorem 5.5 may be applied.

Since γ is given in local coordinates by a pair of continuous functions,

which can be easily approximated by smooth functions, we may try to

approximate γ globally by ‘gluing together’ the local approximations

using a partition of unity.

Two problems appear, however—the resulting curves may not be

regular, and they may have self-intersections. The first problem is

technical and can be easily solved; the second is more serious. An

indication of how it can be addressed has been given already in the

proof of Theorem 2.4—in particular, see Figures 2.9 and 2.10.

Lecture 35

a. A remark on tubular neighbourhoods. One of the hypothe-

ses in the statement of the lemma on tubular neighbourhoods was the
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Figure 5.5. Approximating γ with γ̄.

assumption that the surface in question is orientable. This was used

to guarantee the existence of a continuous positive direction along the

normal geodesics—recall that a surface is non-orientable precisely if it

admits some curve along which no such continuous positive direction

can be found.

In order to give a proper answer to the question of which curves on

a non-orientable surface S admit tubular neighbourhoods and which

do not, we would need to develop an understanding of the funda-

mental group, which we have not examined here. The key result is

that the fundamental group, whose elements may be thought of as

closed curves on S (technically, they are homotopy classes of such

curves), contains a subgroup of index two with the property that

one coset contains all curves which admit tubular neighbourhoods,

while the other coset contains all curves which do not admit tubu-

lar neighbourhoods. The fact that the tubular neighbourhood lemma

only applies to ‘half’ the curves on a non-orientable surface is related

to the difference in the expressions 2 − 2g and 2 − g for the Euler

characteristic of orientable and non-orientable surfaces.

b. Proving the Jordan Curve Theorem. We now present a proof

of the Jordan Curve Theorem for arbitrary continuous curves without

self-intersections. As mentioned in the previous lecture, the main idea

is to approximate the curve with a piecewise linear, or polygonal,

curve, for which the result is easier to obtain.

Proof of Theorem 5.3. Step 1. Because S1 is compact, continuity

of γ : S1 → R2 implies uniform continuity. Hence for every ε > 0

there exists δ > 0 such that |t1 − t2| < δ implies ‖γ(t1) − γ(t2)‖ < ε.

Choose N such that 1/N < δ, and let γ̃ be the piecewise linear curve,
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U1U

Figure 5.6. Approximating the interior of γ with a polygon.

or polygon, with vertices at γ(k/N) for k = 0, . . . , N . That is,

γ̃(t) = (1 − s)γ

(
k

N

)
+ sγ

(
k + 1

N

)
,

where t = k+s
N for s ∈ [0, 1].

Step 2. γ̃ may have self-intersections, so we must remove these

before we continue. The idea will be to ‘chop off’ the loops created by

these self-intersections, and the key observation is that we can only

have γ̃(t1) = γ̃(t2) if t1 and t2 are close to each other, so that we

are not removing much of the curve when we do this. In particular,

because γ itself is injective and S1 is compact, for every δ > 0 there

exists ε > 0 such that ‖γ(t1)−γ(t2)‖ < ε implies |t1−t2| < δ. Hence if

γ̃ approximates γ to within ε (which can be accomplished by taking a

sufficiently large value of N in Step 1), we can only have γ̃(t1) = γ̃(t2)

if |t1 − t2| < δ.

Now beginning at t = 0, let ta1 be the first parameter value such

that γ̃(ta1) is a point of self-intersection, and let tb1 be the largest

parameter value such that γ̃(tb1) = γ̃(ta1). Then ta1 < tb1 < ta1 + δ,

and we may similarly find tai < tbi < tai + δ for i = 2, . . . , n such that

γ̃(tai ) = γ̃(tbi), and γ̃ has no self-intersections between tbi and tai+1.

Thus we may define a new approximation, γ̄, by taking only the

pieces of γ̃ lying between tbi and tai+1 for i = 0, . . . , n (Figure 5.5).

γ̄(S1) still lies in an ε-neighbourhood of γ(S1), and now we may

construct a tubular neighbourhood of γ̄(S1) as in the proof of Theo-

rem 5.5, which allows us to use the same argument as in that proof to

show that R2 \ γ̄(S1) has two connected components, U and V . One

of these (say U) is bounded, and the other (say V ) is unbounded.
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Step 3. Since γ̄ is a polygonal curve, U is the interior of a polygon,

and hence can be triangulated (Figure 5.6). Thus it is topologically

a disc—there exists a homeomorphism h : D2 → Ū = U ∪ γ̄(S1).

Denote by D2
r the disc with radius r—for r < 1, this is D2 with a

neighbourhood of the boundary removed. Take r < 1 as large as

possible, but small enough that h(D2
r) ∩ γ(S1) = ∅, that is, that the

homeomorphic image of D2
r under h does not intersect our original

curve γ. This is possible since γ(S1) lies in an ε-neighbourhood of

γ̄(S1). Call this image U1—then U1 is a subset of some connected

component of R2 \ γ(S1), and the boundary of U1 lies near γ(S1).

By choosing a better approximation γ̄ in the same way and fol-

lowing the same procedure, we may obtain a larger open set U2 ⊃ U1

which still lies in a single connected component of R2 \ γ(S1). Iterat-

ing, we obtain a sequence U1 ⊂ U2 ⊂ · · · such that every point x in

each Ui has non-zero index with respect to γ. Taking the union of all

the sets Ui and observing that their boundaries lie within arbitrar-

ily small neighbourhoods of γ(S1), we see that the union U contains

every such point, and this is one of our two connected components.

A similar procedure may be carried out for the sets Vi lying out-

side the curve (if we work on the sphere instead of the plane, the

argument is exactly the same for both sides of the curve), and so we

obtain a connected open set V which contains all points whose in-

dex with respect to γ is zero. This exhausts the possibilities, and so

R2 \ γ(S1) has exactly two connected components. �

With a little care, this can be extended to a proof of Schoenflies

Theorem. The key moment comes in step 3, when we are choosing a

better refinement γ̄ and obtaining U2, U3, . . . . If we proceed carefully

and choose a triangulation of U which preserves the triangulation

from the previous step, then each successive refinement simply ex-

tends the domain of the homeomorphism h, until in the limit the

domain is the entire disc, and h is well defined.

The main idea of the above proof of the Jordan Curve Theorem

was the fact that for every ε > 0, the set R2 \ B̄ε(γ(S1)) has exactly

two connected components, which we used to establish our result by

letting ε go to zero. It is worth noting that the compactness of S1 was
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Figure 5.7. The vector field −∇f associated with the height
function f on a sphere.

crucial to our proof, since it allowed us to establish a uniform bound

on how close to self-intersection γ could come for parameter valuess

not near each other, and also that we made use of the geometric
structure of the plane (drawing lines, etc.) even though the result is

of a purely topological nature.

c. Poincaré-Hopf Index Formula. Consider a compact smooth

surface S, and a continuous vector field V on S which has only isolated

zeroes. The reader who has some knowledge of ordinary differential

equations will notice that this condition on V is too weak to guarantee

the existence and uniqueness of integral curves for the vector field,

and so we should not use such curves in the proof of the formula we

are about to state, which highlights yet another incarnation of the

Euler characteristic.

Theorem 5.8 (Poincaré-Hopf). Under the conditions above, the Eu-
ler characteristic is the sum of the indices of the critical points:

(5.1)
∑

V (x)=0

indx V = χ(S).

We postpone a proof of this result until the next lecture, and

content ourselves for the time being with an example. Consider the

unit sphere in R3 with vector field V running along the meridians

from the north pole to the south pole, such that the magnitude of

the vector at each point (x, y, z) is
√

x2 + y2 =
√

1 − z2, as shown

in Figure 5.7. This vanishes at the poles and is non-zero everywhere

else—the north pole is a source, since the vector field points away
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from it in all directions, and the south pole is a sink, since the vector

field points toward it from all directions.

Looking at a neighbourhood of the north pole in coordinates given

by projection to the horizontal plane, we see that the vector field is

given by V (x, y) = (x, y), and so the associated circle map is the

identity, which has degree 1. Thus the index of the north pole is 1.

Following the same approach at the south pole, we have V (x, y) =

(−x,−y), so the associated circle map is rotation by π, which also has

degree 1, and the index here is 1 as well. Thus the indices sum to 2,

which is the Euler characteristic of the sphere.

Lecture 36

a. Proving the Poincaré-Hopf Index Formula. We devote the

final lecture in these notes to a proof of the Poincaré-Hopf Index

Formula (5.1) and a few corollaries. As before, S is a compact surface,

and V is a continuous vector field on S with isolated zeroes.

Proof of Theorem 5.8.

Step 1. It suffices to consider orientable surfaces, as follows;

any non-orientable surface S has a standard orientable double cover

π : S̃ → S. We have χ(S̃) = 2χ(S), and V lifts to a vector field

Ṽ on S̃ with two zeroes for every zero of V , so that the left side

of the equation is multiplied by two as well, and thus the formula

for the non-orientable surface S will follow from the formula for the

orientable surface S̃.

Step 2. One of the standard models for an orientable surface of

genus g is as the quotient space of two discs with g holes identified

appropriately along boundaries. For example, a disc with one hole

is an annulus, or a cylinder, and gluing two cylinders together along

their boundaries, we obtain a torus, the orientable surface of genus 1;

the corresponding construction for g = 2 was illustrated in Figures 3.6

and 3.7.

We decompose S as such a union D1 ∪ D2/ ∼, where each Di

is a disc with g holes. By using this two-disc model of our surface,

we can now work with vector fields in the plane. The vector field V
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Figure 5.8. The decomposition of a surface of genus 2.

on our surface S passes to vector fields Vj on the two domains Dj ,

as shown in Figure 5.8. For simplicity of representation, Vj has only

been drawn along the boundaries—in fact, it is defined on the entire

domain, but we will be particularly interested in Vj on the boundaries

of the domain. We denote these curves by γ0, γ1, . . . , γg, where γ0 is

the exterior boundary (the large circle), and γ1, . . . , γg are the smaller

circles.

Technically, since we are interested in vector fields we must use a

smooth atlas on S, while the above construction is merely topological.

The solution is to extend each disc slightly to include a tubular neigh-

bourhood of γi for each i—then instead of gluing along the curves γi

we glue the two domains together along these ‘collars’.

Step 3. Without loss of generality (by moving the boundary com-

ponents a little, if necessary), we assume our decomposition to be such

that all the zeroes of V1 and V2 lie in the interior of the two domains

D1 and D2, so that the vector field is non-vanishing on each curve γj .

Assign the positive orientation (counterclockwise) to γ0, and the neg-

ative orientation (clockwise) to the other curves γ1, . . . , γg—then we

may define the index of the vector field with respect to the composite

boundary as

indDj
Vj =

g∑
i=0

indγi
Vj .

It remains to relate this sum to the indices of the zeroes of V ,

and to relate the values of indγi
V1 and indγi

V2, since as indicated
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η

(a)

η1

η2

η1

η2

(b)

Figure 5.9. Decomposing curves and boundaries.

in Figure 5.8, V1 and V2 take different forms along the curves γi,

which reflects that these domains lead us to view the curve from two

different sides (think of the equator on the sphere, with stereographic

projection from the poles).

Step 4. In fact, we find that indDj
Vj is the sum of the indices of

the zeroes contained in Dj :

indDj
Vj =

∑
x∈D

Vj(x)=0

indx Vj .

To see this, consider a closed curve η, and decompose η as the

composition of η1 and η2 (that is, following the first one, then the

other) as shown in Figure 5.9(a). Here η is the boundary of the circle,

η2 is the ‘D’-shape on the right, and η1 is the reversed ‘D’-shape on

the left. If V is any non-vanishing vector field along η, an examination

of the associated circle maps shows that indη V = indη1 V + indη2 V .

We may carry out a similar decomposition on our domains Dj—

Figure 5.9(b) shows an example of the case g = 1. Here γ0 and γ1

are as described before, and η1 and η2 are the boundaries of the left

and right ‘C’-shapes, respectively. We see that

indD V = indγ0 V + indγ1 V = indη1 V + indη2 V.

By continuing this decomposition until each curve ηi surrounds ex-

actly one zero of V , we obtain the formula claimed at the beginning

of this step, and see that

indD1 V1 + indD2 V2 =
∑

V (x)=0

indx V.
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Thus it only remains to examine the relationship between V1 and V2

along each curve γi.

Step 5. We claim that for 1 ≤ i ≤ g, the indices of Vj along γi are

related by the formula indγi
V1 + indγi

V2 = −2, while for i = 0 (the

outer boundary in Figure 5.9), the sum is 2. Then summing over all

values of i and applying the formula from step 4 will give∑
V (x)=0

indx V = 2 − 2g = χ(S),

so it only remains to prove the claim. We see that the difference in

sign is due to the different orientation of the curves, so it suffices to

consider the exterior boundary γ0.

In considering the relationship between V1 and V2, the example

to keep in mind is the equator of the sphere, with tubular neighbour-

hood given by a small region of the tropics. Then the two vector

fields V1 and V2 in the plane correspond to the representations of V

under stereographic projection from the two poles, and are related by

reflection in the line tangent to the circle at the given point, as shown

in Figure 5.8.

To formalise this, we parametrise γ0 by (x, y) = (cos θ, sin θ), and

let vj(θ) denote the angle that the vector Vj(x(θ), y(θ)) makes with

the positive x-axis. Then the tangent line to γ0 at (x, y) makes an

angle α = θ + π/2 with the horizontal, and reflection in this line is

given by the map

v �→ 2α − v

where again, v is the angle a vector makes with the positive x-axis.

Because V1 and V2 are the images of each other under this reflection,

we have

v2(θ) = 2(θ + π/2) − v1(θ),

and so we see that

v1(θ) + v2(θ) = 2θ + π.

It follows that the circle maps have degrees which sum to 2, and so

indγ0 V1 + indγ0 V2 = 2,

which completes our proof. �
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One immediate application of the index formula (5.1) is the ex-

istence of zeroes for any vector field on a surface with non-zero Euler

characteristic.

Corollary 5.4. Let S be a smooth compact surface other than the
torus or the Klein bottle. Then any continuous vector field on S has
at least one zero.

Proof. In order to apply the index formula we need to know that

all zeroes are isolated. Then of course there is at least one zero since

otherwise the sum in (5.1) is taken over an empty set. If the zeroes

are not isolated then the index formula does not apply, but of course

this can only happen if there are already a great many zeroes; in fact,

infinitely many of them. �

This statement is sharp—a simple example of a non-vanishing

vector field on the torus is given by ∂
∂x in the standard flat model

(see also Exercise 3.22), and this projects to the Klein bottle under

the covering map (x, y) �→ (x + 1/2,−y).

On every other surface, the corollary implies the existence of at

least one zero for any vector field, and in fact there always exists a

vector field with a single zero which ‘absorbs’ all the index. This is

easiest to see on the projective plane, since rotations have a single

fixed point, and so one can take the vector field which generates the

family of rotations around a point. If we try to find an example on the

sphere by lifting this vector field, the fixed point becomes two fixed

points, which must be merged somehow—this leads to one possible

solution of Exercise 3.23.

On every orientable surface with negative Euler characteristic one

can make the following construction. Take the standard 4n-gon model

with pairs of opposite sides identified by translations. The horizontal

vector field (defined just as it was for the torus) is non-zero except for

the vertex, where it is discontinuous. To make it continuous, or even

smooth, one makes a time change, multiplying it by a non-negative

smooth function which is positive away from the vertex and which

decays quickly to zero near the vertex. A direct calculation using

the smooth structure described in Lecture 18(d) confirms that this is

indeed a smooth vector field.
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Exercise 5.5. Construct a smooth vector field with a single zero on

any non-orientable surface with negative Euler characteristic.

b. Gradients and index formula for general functions. With

the Poincaré-Hopf Index Formula in hand, we can extend our earlier

result connecting Morse functions and Euler characteristic to a result

which is valid for any smooth function with isolated critical points,

possibly degenerate, by considering the indices of the zeroes of a gra-

dient vector field. One small problem here is that our gradient vector

fields so far have been defined locally—although we showed that with

this local definition, indices of critical points are independent of the

choice of coordinates (Proposition 3.9), we will still need a global

definition of a gradient vector field for a function in order to apply

formula (5.1).

There is one case, the torus, where the solution is easy—here we

can choose local coordinate systems in such a way that the transi-

tion maps are translations, and hence derivatives of any function (in

particular, the gradient) are defined coherently for all patches.

This fails to generalise to surfaces without an additive structure,

however, and the most convenient solution in the general case is also

the most elegant, making use of a Riemannian metric. Given a smooth

function F on a surface S with Riemannian metric g, one defines the

(Riemannian) gradient ∇gF of F as follows:

At any non-critical point x, there is a unique direction of fastest

increase of F—that is, a tangent vector v ∈ TxS such that the de-

rivative DvF of F along v, which measures the rate of increase of

F along any parametrised curve tangent to v, is maximal among all

derivatives along tangent vectors of unit length. Define

∇gF (x) =

{
Dv(x)F · v(x) if x is non-critical,

0 if x is critical.

Exercise 5.6. Prove that ∇gF is a smooth vector field which is

orthogonal to the level curves of the function F at all non-critical

points.
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Notice that the coordinatewise definition of gradient corresponds

to this construction for the metric

(5.2) ds2 = dx2 + dy2,

and so the global gradient on the torus (as defined above) corresponds

to this construction for the standard flat metric. Similarly, one can

avoid the calculations needed for the solution of Exercise 5.6 and still

be able to use the index formula (5.1) by picking a Riemannian metric

which has the standard form (5.2) for some local coordinate system

near each critical point. This can be done using a partition of unity

for an atlas where every critical point belongs to a single chart.

A natural relationship between vector fields and continuous maps

is given by the construction of solutions of ordinary differential equa-

tions. ODEs can be formulated as vector fields, and solutions of ODEs

correspond to integral curves—the flow along these curves is a one-

parameter group of continuous maps. Here the parameter is usually

thought of as time, and fixing a time interval corresponds to choosing

a particular map.

As a brief aside, we will use this idea to demonstrate the use-

fulness of both the existence and uniqueness result for ODEs and

the construction of the gradient vector field for a smooth function by

outlining a proof of Lemma 3.19.

Introduce a Riemannian metric on the surface, and consider the

gradient vector field for the Morse function f . Notice that for any

open set U , any smooth vector field V , and any t ∈ R, the time-t

shift φt along the orbits of V is a diffeomorphism between U and

φt(U). This is essentially a reformulation of existence, uniqueness,

and smooth dependence on the initial conditions for the solutions of

an ODE. Now reparametrise the gradient vector field in such a way

that the total time between f−1(c) and f−1(c′) along any integral

curve becomes constant, say t. This can be done using cutoff func-

tions, and it is at this step that we use the key requirement that

the interval (a, b) contains only regular values, since this implies that

every integral curve which intersects f−1(c) will reach f−1(c′) in fi-

nite time. Having done this, the time-t map for the reparametrised

gradient flow maps Sc onto S′
c, and we are done.
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p

γ f(γ)

Figure 5.10. Associating a circle map to a continuous map
near a fixed point.

c. Fixed points and index formula for maps. We used a de-

gree argument in our proof of Brouwer’s fixed point theorem in Lec-

ture 21(c). Since degree and index are closely related, it is not too

surprising that a similar result can also be derived from a close rel-

ative of the Poincaré-Hopf Index Formula—to achieve this, we must

formulate the result in terms of continuous maps rather than vector

fields.

We have just seen how to associate a continuous map to a vector

field in a natural way, by flowing along its integral curves. In order

to define the notion of index for a continuous map, we proceed in

the opposite direction, taking a map in the neighbourhood of a fixed

point (or more generally, a map close to the identity) and defining a

related vector field.

To this end, let S be a surface, f : S → S a continuous map, and

p an isolated fixed point. Take local coordinates in a neighbourhood

of p, and consider a small closed curve γ around p which has no other

fixed point of f in its interior—for example, a circle of small radius

with centre at p, as shown in Figure 5.10. We proceed as in Lecture

22, replacing the vector field which was given to us in that case by

the vector field f(x) − x, which of course depends on the coordinate

system. Using this vector field, we define the circle map φγ as in (3.8);

that is, we associate with each parameter t ∈ S1 = [0, 1]/ ∼ (or, if

you prefer, the point exp 2πit ∈ S1 ⊂ C) the normalised vector

f(γ(t)) − γ(t)

‖f(γ(t)) − γ(t)‖ .

The degree of this map (Figure 5.11) is called the index of the map
f at p, and is denoted indp f . As before, this definition is invariant
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t

Φγ

Figure 5.11. The degree of a continuous map at a fixed point.

under continuous changes of the curve γ, as long as γ is moved without

touching other fixed points of the map f .

Now we must show that this definition is invariant under smooth

coordinate changes, even though these will of course change the map

φγ . First note that for a linear coordinate change, invariance follows

from considering the effect of the coordinate change on f(x) − x.

A non-linear coordinate change is a composition of a linear one (its

derivative at p) with a smooth coordinate change whose derivative at p

is the identity—the latter, however, changes both the curve γ and the

direction of the vector f(x)−x only slightly, hence by Proposition 3.9,

the index does not change.

Once again, as for the gradient, this construction can be made

global by using the Riemannian metric, at least for any map f which

is ‘not too far’ from the identity. Specifically, it is sufficient that

for any x ∈ S there be a unique shortest geodesic between x and

f(x)—this is the case, for instance, if the distance between any point

and its image is less than the number ε from Proposition 4.12. Note

that this number does not have to be small. For example, a sufficient

condition on the sphere is that x and f(x) are never diametrically

opposite, while ε = 1/2 works on the standard flat torus. On any

such surface, a compactness argument shows that the unique shortest

geodesic depends continuously on x as long as x is not a fixed point.

Given any map f satisfying this assumption, we may define a

vector field Xf as follows—if x is not a fixed point, take the unique

shortest geodesic from x to f(x), and let Xf (x) be the tangent vector

to this geodesic at x, of length d(x, f(x)). If x is a fixed point, put

Xf (x) = 0. Then it is easy to see that for any fixed point p of the
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map f we have

indp f = indp Xf .

This follows from the simple observation that in a coordinate system

containing two nearby points x and y, the angle between the line

segment from x to y and the tangent vector to the shortest geodesic

connecting x and y is small.

Thus as a corollary of the Poincaré-Hopf Index Formula (Theo-

rem 5.8), we obtain the corresponding result for continuous maps:

Theorem 5.9. Let S be a surface with a Riemannian metric, and
f : S → S a continuous map such that for any x ∈ S there is a unique
shortest geodesic between x and f(x). Then

(5.3)
∑

x∈S:f(x)=x

indx f = χ(S).

As before, an immediate corollary is the existence of fixed points

in certain situations.

Corollary 5.5. Under the assumption of Theorem 5.9, if S is not
the torus or the Klein bottle, then the map f has a fixed point.

For the sphere, where the condition on f reduces to demanding

that no point be mapped to its antipode (the point diametrically

opposite), and hence also for its factor space the projective plane, we

have an even more interesting conclusion.

Corollary 5.6. Any continuous map f : S2 → S2 has a fixed point
or a point which maps to the point diametrically opposite it.

Corollary 5.7. Any continuous map f : RP 2 → RP 2 has a fixed
point.

d. The ubiquitous Euler characteristic. The Euler characteris-

tic has appeared in many guises throughout this course, from many

different sorts of considerations—combinatorial, algebraic, differen-

tiable (smooth functions and ODE), topological, and geometric.

We end these notes by summarising the different ways in which

the Euler characteristic has appeared with relation to surfaces. Let

S be a compact closed surface which admits a map or, equivalently,
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a smooth structure (see Lecture 32(c)).3 Then χ(S), the Euler char-

acteristic of S, is equal to any of the following:

(1) #(faces)−#(edges)+#(vertices) for any map (in particular,

any triangulation) of S;

(2) β2 − β1 + β0 where βi, i = 0, 1, 2, are the Betti numbers

which arise from the chain complex associated with any tri-

angulation or map of S;

(3) #(maxima)−#(saddles) + #(minima) for any Morse func-

tion on S;

(4) The sum of the indices of critical points for any differentiable

function on M with finitely many critical points;

(5) The sum of the indices of zeroes of any continuous vector

field with finitely many zeroes;

(6) The sum of the indices of fixed points of any continuous

map f : S → S with finitely many fixed points which is

sufficiently close to (or rather ‘not too far from’) the identity;

(7) The integral of curvature with respect to any Riemannian

metric on S divided by 2π.

The Euler characteristic is a prototypical example of a topological

invariant for a manifold which can be expressed through various struc-

tures. The situation in higher dimensions is, at first sight, somewhat

surprising—on even-dimensional compact manifolds, the Euler char-

acteristic can be defined as the alternating sum of the Betti numbers,

just as in (2), and some, but not all, of its guises extend to this case.

For orientable odd-dimensional manifolds, however, the sum in (2)

vanishes. This renders the obvious generalisation useless, but is itself

a manifestation of one of the most remarkable facts in topology—

Poincaré duality.

3In fact, any surface admits these structures, but we have not proved that in this
course.

                

                                                                                                               



Suggested Reading

There are many books which cover various aspects of the subjects

developed or touched upon in this book. We restrict our selection to

a few titles which can be considered classical, or nearly so.

Concurrent reading

Euclidean geometry, projective geometry, and hyperbolic geometry

all receive an excellent exposition, primarily from the synthetic point

of view, in

H. S. M. Coxeter, Introduction to Geometry, Wiley, New

York, 1969,

which we have followed in several of our proofs. Coxeter also intro-

duces curvature and related properties for curves and surfaces follow-

ing the more traditional exposition via normal and principal curva-

tures, Christoffel symbols, etc.

For the topological side of things, we recommend

Andrew H. Wallace, Differential Topology: First Steps,
Dover, Mineola, NY, 2006,
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which requires about the same background as the present book, but

has a more narrow scope, allowing it to go considerably further in the

direction of differential topology and Morse theory.

A good complement to Wallace’s book is the short classic

John W. Milnor, Topology from the Differentiable Viewpoint,
Princeton University Press, Princeton, NJ, 1997,

written with fewer details but with excellent insights.

Further reading

The fundamental group, covering spaces, homology and homotopy

theory, and other aspects of the subject are covered in

Allen Hatcher, Algebraic Topology, Cambridge, 2001,

which has the added benefit of being available as a free download

from the author’s web page. This is the standard text on algebraic

topology at present.

A good introduction to curvature (as the title implies) and many

other topics that we cover in Chapter 4, which explores the attendant

definitions and their generalisations to higher dimensions rather more

thoroughly than we have done here, may be found in

John M. Lee, Riemannian Manifolds: An Introduction to
Curvature, Graduate Texts in Mathematics 176, Springer,

New York, 1997.

A more encyclopedic treatment of these topics, which includes

(among other things) an introduction to the calculus of variations

and a derivation of the Euler-Lagrange equations, is

B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern
Geometry—Methods and Applications: Part 1: The Geometry
of Surfaces, Transformation Groups, and Fields, Graduate

Texts in Mathematics 93, Springer, Berlin, 1991.

Discussions of Riemann surfaces, symmetric spaces and Lie the-

ory, Morse theory, higher-dimensional versions of degree and index,
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algebraic topology (homology and homotopy groups), and much more

besides, may be found in the remaining two volumes of that work:

B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern
Geometry—Methods and Applications: Part 2: The Geometry
and Topology of Manifolds, Graduate Texts in Mathematics

104, Springer, Berlin, 1985.

B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern
Geometry—Methods and Applications: Part 3: Introduction
to Homology Theory, Graduate Texts in Mathematics 124,

Springer, Berlin, 1990.

The reader is warned that unlike the other books quoted above,

the standards of rigor in these last three books are less uniform, and

sometimes rather lax. Hence one should not expect to understand all

the proofs just by following the text, without consulting other sources

or making a considerable mental effort.

Background reading

The basic concepts of point set topology (open, closed, compact, con-

nected, etc.), along with the Inverse Function Theorem, the Implicit

Function Theorem, and a host of other basic results and techniques,

may be found in any of the following:

Jerrold E. Marsden and Michael J. Hoffman, Elementary
Classical Analysis, W.H. Freeman, New York, 1993.

Charles C. Pugh, Real Mathematical Analysis, Springer-

Verlag, New York, 2002.

Halsey L. Royden, Real Analysis, Macmillan, New York,

1988.

Walter Rudin, Principles of Mathematical Analysis,
McGraw-Hill, New York-Auckland-Düsseldorf, 1976.
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More details regarding holomorphic functions, conformal map-

pings, fractional linear transformations with arbitrary complex co-

efficients, and other results from complex analysis may be found in

either of these two books:

Jerrold E. Marsden and Michael J. Hoffman, Basic Complex
Analysis, W.H. Freeman, New York, 1999.

Walter Rudin, Real and Complex Analysis, McGraw-Hill,

New York, 1987.

The existence and uniqueness theorems for ODEs referred to in

the text, and other related results, can be found in a convenient form

in

Vladimir I. Arnold, Ordinary Differential Equations,
Springer-Verlag, Berlin, 1992.

Jordan normal form, of which the classification of 2×2 matrices in

Proposition 4.16 is a special case, along with any other concepts from

linear algebra of which the reader may need reminding, is presented

in

Kenneth Hoffman and Ray Kunze, Linear Algebra, Prentice

Hall, Upper Saddle River, NJ, 1971.

                

                                                                                                               



Hints

Chapter 1

1.3. Visualise how the square can be bent or folded to make the

identifications specified.

1.4. Modify the isometries in the definition of T2 = R2/Z2.

1.5. Consider the intersection of the generating curve with the axis

of revolution.

1.6. Find a function of two variables whose zero set is the intersection

of the two-handled sphere with one of its planes of symmetry.

1.7. This will turn out to be, in some sense, a reflection in the

equator.

1.8. Write a parametric equation for the original circular cross-

section, then add a second parameter to incorporate revolution.

1.9. This time begin with a parametrised line segment, which will

both rotate (around its centre) and revolve (around the z-axis) as the

second parameter varies.

1.11. The length of a planar curve is given by integrating the arc

length ds2 = dx2 + dy2. Begin by finding parametric coordinates

(x(u, v), y(u, v), z(u, v)) on the cylinder and cone in which the arc

length of a curve on the surface is ds2 = dx2 +dy2 +dz2 = du2 +dv2,

and then use the fact that geodesics in the plane are straight lines.
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1.13. Construct a self-intersecting projective plane as the image of

a map f : S2 → R3 such that f(−x,−y,−z) = f(x, y, z), and then

compose f with the usual parametric representation of the sphere.

Follow a similar procedure in R4, using the extra coordinate to avoid

self-intersections.

1.15. To show that this is a torus, cut and paste to turn the hexagon

into a parallelogram or a rectangle. To show that it is not isometric to

the standard flat torus, find some property which is invariant under

isometries but which differs for the two surfaces; consider properties

related to diameter, area, geodesics, etc.

1.16. Consider separately the four types of isometries, and do this in

conjunction with the next exercise.

1.18. Look for fixed points of this isometry or of its composition with

some translation.

1.19. Consider the lifts of x, y, and any geodesics connecting them,

to the sphere.

1.20. Decompose it into triangles.

1.21. Each of these is R2 modulo some group of isometries Γ ⊂
Iso(R2), and so each point x ∈ R2 is identified with its orbit under

Γ. Each isometry of the quotient space will lift to an isometry of

R2, which must map orbits to orbits in order to be well defined.

(Algebraically, it must lie in the normaliser of Γ.)

1.22. For (3), observe that translations of R preserve equivalence

classes.

1.23. Lifting to R2, recall that an isometry with a fixed point is a

rotation or a reflection. The latter has order 2. For rotation by θ,

use the fact that the lifted isometry maps L to L. One way is to

consider the matrix representation, and obtain restrictions on θ by

showing that the trace of the matrix must be an integer. Another

way uses discreteness of L; argue that if L contains a regular n-gon

for θ = 2π/n, then it contains arbitrarily small n-gons unless n = 2,

3, 4, or 6.
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Chapter 2

2.1. (a) Given x, show that the set of points z for which there is a

path from x to z is both open and closed. (b) For example, begin

with the graph of sin(1/x).

2.2. Find a fundamental domain and determine the edge identifica-

tions.

2.3. Find a neighbourhood of each point homeomorphic to R2. Con-

sider separately points within faces, points on edges, and vertices.

2.4. By counting edges between faces and edges between vertices,

establish that 3F = 2E =
∑

degree of vertices ≤ V (V − 1). Use the

fact that χ = 0 to obtain V ≥ 7, then find a triangulation which

achieves this bound, using the planar model on either the square or

the hexagon.

2.5. The argument from the previous exercise may be modified to

give a potential lower bound.

2.6. Find a covering space whose Euler characteristic is known.

2.7. Cut and paste with wild abandon.

2.8. By relabeling two adjacent adges of the hexagon as a single edge,

it is sometimes possible to reduce to a planar model on the square;

for example, writing d = bc, we see that abcac−1b−1 = adad−1 is a

Klein bottle.

2.9. Given a regular 2n-gon with opposite sides identified by trans-

lations, cut two holes at opposite vertices to obtain a 2n+2-gon with

one pair of opposite sides left free. Finish adding a handle by gluing

a cylinder between these sides; cut and paste to obtain a 2n + 4-gon

with opposite sides identified. Induction does the rest.

a

b

c

d

a−1

b−1

c−1

d−1

2.10. Follow the centre circle and see what happens.
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2.11. What does it mean to choose a positive direction of rotation

at a point within a face? on an edge? at a vertex?

2.12.

2.13. Use the standard planar model for a sphere with m Möbius

caps as a 2m-gon with identifications a1a1 . . . amam, and choose a nice

triangulation. What happens if you choose a ‘pseudo-triangulation’—

for example, by drawing lines from the centre of the 2m-gon to each

vertex? This fails to be a triangulation because all vertices of the

2m-gon are identified.

Chapter 3

3.1. Show that the atlas which comes from the usual parametrisation

of the torus of revolution is compatible with the atlas which comes

from the Implicit Function Theorem via the embedding of the torus

in R3 as a level set.

3.2. Fix an orientation on one patch and show that this determines

orientations on all the others (assuming the surface is connected) in

a coherent fashion.

3.3. Write down the formulae of the transition maps.

3.4. Find a smooth change of coordinates φ : (x, y, z) → (x̃, ỹ, z̃) such

that F̃ (x̃, ỹ, z̃) := F ◦ φ−1(x̃, ỹ, z̃) = x̃2 + ỹ2 + z̃2.

3.5. Use a fractional linear transformation z �→ (az + b)/(cz + d)

to go from the open disc to the upper half-plane, and use various

elementary functions to obtain the strips, perhaps via the first quad-

rant if necessary. For the open square, one needs an elliptic integral,
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which is related to the Schwarz-Christoffel formula (see Marsden and

Hoffman’s book for details). For the ellipse, consider the Zhukovsky
map z �→ z + 1/z.

3.6. Find a holomorphic map which takes any two given points to 0

and ∞.

3.7. Consider transformations of the form z �→ (az + b)/(cz + d).

3.8. Given a holomorphic equivalence, use the fact that its lift to C
is conformal.

3.9. Rotations and homotheties are holomorphic equivalences.

3.10. Given z near p, consider w(z) = f(z) − f(p).

3.11. Compute Df in a suitable local coordinate system.

3.12. If we write r(x, y) for the remainder term of order o(x2 + y2),

then the level set is {(x, y) | x2 − y2 + r(x, y) = 0}.
3.13. Find the necessary coordinate change along the level sets, and

extend it smoothly to a neighbourhood.

3.14. Along the curve y = 0, the origin is a local minimum, so

on some neighbourhood of p, this curve intersects each curve f = c

exactly twice, once for x > 0 and once for x < 0. Parametrising these

curves by arc length, find a smooth map which takes each f = c to

x′y′ = c.

3.15. For each angle θ, f is at first strictly increasing as we move

away from p along the ray which makes an angle θ with the positive

x-axis. Let g(θ) be its value at the first point when it is no longer

strictly increasing along the ray. Show that g is continuous and use

compactness of S1.

3.16. Recall Exercise 1.6.

3.18. Try perturbing it with a quadratic polynomial.

3.19. (1) Argue as in Exercise 3.12. (2) Perturb the function as in

the example.

3.20. The lift of f ◦ g is F ◦ G.

3.21. x is a fixed point of f iff the lift F has F (x) = x + k for some

k ∈ Z. Draw a graph.

3.22. Consider constant vector fields.
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3.23. Via stereographic projection, the sphere is the plane with a

point at infinity. Construct a non-vanishing vector field on the plane

and pull it back to the sphere.

3.24. Find a vector field whose associated circle map lifts to the map

x �→ kx, k ∈ Z.

Chapter 4

4.1. Given two tangent vectors in the coordinate plane, find their

preimages as tangent vectors to the embedding in R3, and use the

usual Euclidean inner product.

4.3. First put such a metric on each patch, and then use a partition

of unity to build a metric on the whole surface.

4.5. Use the law of cosines again.

4.7–8. Take p and q as in Proposition 4.12 to lie on a plane of

symmetry, and use the uniqueness result.

4.9. Use the previous exercise.

4.11. Use Proposition 4.11.

4.12. Prove that this formula is invariant under isometries, and then

show that it holds when z1 and z2 have the same real part.

4.13. Perform a change of coordinates to determine what form these

maps take in the upper half-plane model.

4.14. Show that the vertical line passing through the Euclidean cen-

tre passes through the hyperbolic centre as well.

4.15. Argue as in Exercise 4.13.

4.16. One way is to do it first for a particular choice of z1 and z2,

and then use the fact that isometries take horocycles to horocycles.

4.17. The centre of a (Euclidean) circle containing two points must

lie on their perpendicular bisector, and any such circle is either a

hyperbolic circle, a geodesic, a horocycle, or an r-equidistant curve

for some r. Investigate how r varies as the centre of the circle moves

along the bisector.

4.18. Find the points which lie on the ideal boundary, and find the

geodesic connecting those two points.
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4.19. Proposition 4.16 partitions SL(2, R) into conjugacy classes; a

normal subgroup must be the union of some or all of these classes.

Show that each non-trivial conjugacy class generates the whole group.

4.20. Look for points or curves which are invariant under the product

of the reflections.

4.21. Recall that a fractional linear transformation is determined by

its action on three points.

4.22. Take one of the infinite vertices to be at infinity, so that two

of the sides are vertical lines.

4.23. Note that, as for the three standard examples, g depends only

on r and is independent of θ, so that an expression for the circumfer-

ence of a circle of radius r centred at (0, 0, φ(0)) will yield an expres-

sion for g(r).

4.24. Integrate the formula (4.19) for the circumference.

4.25. Write the points on the (geodesic) circle of radius r as the

points on a (Euclidean) circle of radius r in the tangent plane plus a

small error term, and show that �(r) = 2πr + O(r4).

4.27. Straight lines through the point (x, y, z) may be parametrised

as (x, y, z) + t(a, b, c), where a, b, c are fixed and t is the parameter.

Find conditions on a, b, c to guarantee that points of this form lie on

H.

4.28. Proposition 4.18 may be generalised to geodesic polygons, in-

cluding quadrilaterals.

Chapter 5

5.1. Recall Exercise 3.20.

5.2. Modify the statement and proof of the lemma on tubular neigh-

bourhoods to accomodate the case where γ intersects itself. The proof

in the text still shows that Γ is a local diffeomorphism.

5.3. In the tubular neighbourhood lemma, Γ will be diffeomorphic on

each smooth segment of the curve, but the images will overlap near

the corners. Modify Γ so that it is a homeomorphism.
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5.4. Take a very fine triangulation so that on each triangle, γ is nearly

a straight line. Then define h piecewise as a change of coordinates on

each triangle.

5.5. Use the orientable double cover (modifying one of the standard

planar models from Exercise 2.9) and follow the construction in the

text.

5.6. Work in local coordinates.
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[·, ·], 33

(·, ·; ·, ·), 188

〈·, ·〉p, 160

A, 104

βk, 93

C, 92

d(·, ·), 28

δij , 39

∂k, 92

dS, 235

ds, 173

En, 146

Γ, 224

GL(n, R), 32

H2, 181

Hk, 93

indp f , 267

indp γ, 152

indp X, 151

Isom, 31

Ix, 45

κ, 180

M, 61

O(3), 39

φγ , 150

PSL(2, R), 184

ρi, 164

R
n, 20

RP 2, 10

S2, 20

SL(2, R), 184

Sn, 67

SO(3), 40

supp, 164

T
2, 44

T , 54

T n, 61

χ, 56

absolute geometry, 198

action, 175

affine map, 35

angle, 171

angular defect, 217, 229

angular excess, 43, 235, 238

area, 171, 181, 229

of a triangle, 41, 217, 223, 238

asymptotic triangle, 220, 222

atlas, 104, 106, 117

compatible, 105

barycentric coordinates, 53, 67

barycentric subdivision, 57

Betti number, 93, 97

interpretation, 98, 100

boundary, 93, 96

boundary operator, 92

for a triangulation, 95

Brouwer’s fixed point theorem, 149,
267
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bump function, 167

chain, 93, 96

chain complex, 92

for a triangulation, 94

chart, 104, 106, 109, 132

projection, 117

Christoffel symbol, 242

circle map, 145

classification, 29, 48, 53, 111

complex tori, 129

finitely generated abelian groups,
93

isometries of H2, 204

matrices, 210

non-orientable surfaces, 91

orientable surfaces, 85

surfaces, 253

coarsening, 57, 60, 70

compact, 30

complete, 30

cone, 2, 22

conformal, 122, 128, 173, 181

conjugacy, 209

conjugate points, 177

connected, 30, 49

covering space, 83, 84

critical point, 14, 131, 150, 169, 259

degenerate, 141, 154

cross cap, see Möbius cap

cross-ratio, 193

crystallographic restriction, 45

curvature, 169, 182, 219, 233, 241

and angular excess, 238

Gaussian, 178, 241

principal, 241

cycle, 93, 96

cylinder, 2, 22

degree, 145, 151, 244, 267

in higher dimensions, 148

diffeomorphism, 51, 111, 249

and holomorphic equivalence,
125

differential equation, 158, 174, 234,
259, 266

dimension, 31, 32, 50

direct product, 47, 85, 160

disc model, 185, 197, 217, 232

ellipsoid, 3, 177
elliptic isometry, 205, 215

elliptic matrix, 210

elliptic plane, see projective plane
equidistant curve, 208, 214, 226,

252

Euler characteristic, 65, 73, 254,
269

and Betti numbers, 98
and continuous maps, 269

and curvature, 228

and Morse functions, 139
and vector fields, 259

combinatorial definition, 56
in higher dimensions, 270

modifying, 76, 82, 140

of covering space, 84
Euler-Lagrange equation, 170, 174,

176

exact sequence, 92

factor space, see quotient space

Fermi geodesic coordinates, 252

flow, 158
fractional linear transformation,

124, 183, 201

preserves cross-ratio, 193
fundamental domain, 10, 224, 227

fundamental group, 101, 256

Fundamental Theorem of Algebra,
246

Gauss-Bonnet Theorem, 229, 235,
239

genus, 99, 254
geodesic, 19, 20, 33, 170, 175, 186,

195, 206, 207, 226, 252, 268

geodesic flip, 45, 178

geodesic polar coordinates, 231,
236, 240

geographic coordinates, 16, 163

geometry, 2, 27, 127, 172, 259

glide reflection, 37
gradient, 152, 155

graph, 13

handle, 4, 74, 89, 250
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inverted, 79, 83
Hessian, 133, 170

holomorphic, 121

homeomorphism, 29, 51, 249

homology, 65, 92, 148

homothety, 108, 129, 182, 216

homotopy, 65, 87, 146, 154, 256
horocycle, 206, 213

hyperbolic isometry, 207, 216, 226

hyperbolic matrix, 210

hyperbolic plane, 181, 217, 225

hyperboloid, 239, 241

hypercircle, see equidistant curve

ideal boundary, 185, 211, 213

index

Morse, 141

of a continuous map, 267
of a curve, 152, 243, 250, 258

of a vector field, 151, 259

inner product, 160

integral curve, 158

isometry, 31, 34

orientation reversing, 199
isometry group, 44, 183, 211, 224,

227

Jordan Curve Theorem, 51, 249,
256

Klein bottle, 7, 24, 72, 264

lattice, 45

length, 170, 175, 181, 234

lift, 145
limit circle, see horocycle

Liouville’s theorem, 125

local coordinates, 13, 109, 155, 163

manifold, 49, 70
complex, 122

Riemannian, 161, 172

smooth, 103, 109, 251

map, 60, 67, 69, 229

homology of, 100

metric, 17
metric space, 28

metrisable, 49

Möbius cap, 80, 82, 91, 250

Möbius strip, 6, 18, 77, 80
Möbius transformation, see

fractional linear
transformation

modular surface, 129

Morse function, 136

Morse lemma, 134

neutral geometry, see absolute
geometry

norm, 170

normal subgroup, 211

orientability, 77, 81, 84, 88, 99, 113,
252

and homology, 100

osculating circle, 241

parabolic isometry, 206, 216
parabolic matrix, 210

parallel, 2, 212, 214

parallel postulate, 187, 198, 213

parametric representation

of curves, 22

of surfaces, 16, 27

partition of unity, 164, 165, 169,
266

patch, 104, 106, 163

Peano curve, 244

pencil, 206

planar model, 8, 69, 71, 73, 80, 224

notation, 72

smooth structure, 120

Poincaré conjecture, 90, 138
Poincaré duality, 270

Poincaré-Hopf Index Formula, 259

polarisation identity, 40

positive definite, 160, 162

pretzel, see surface of genus two

projective plane, 10, 18, 38, 66, 71,
269

pseudosphere, 186, 190

quotient space, 11, 260
smooth structure, 116, 118, 227

refinement, 61

reflection, 36

regular point, 14, 131
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regularisation, 173
Riemann sphere, 123, 195
Riemann surface, 122

orientability, 124

Riemannian metric, 161, 169, 172
rotation, 35, 39, 129, 154, 185, 205,

215

saddle, 134, 140, 153
monkey, 143

scalar product, see inner product

Schoenflies Theorem, 249, 253
simplex, 53
skeleton, 87
skew, 2

sphere, 1, 18, 20, 38, 55, 65, 71,
114, 177, 269

Morse function, 135
stereographic projection, 15, 115,

123, 163

surface of genus two, 4, 118, 225,
227, 254

symmetric space, 46
synthetic geometry, 39, 198

tangent bundle, 155, 160
unit, 182

tangent space, 155, 160, 171
tangent vector, 43
Teichmüller, 130, 228
Theorema Egregium, 242

topology, 2, 27, 28, 259
torus, 4, 56, 66, 69, 112, 116, 177,

264
complex, 126, 129

flat, 9, 26, 45, 47, 123, 224, 228
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