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Why study matrix 
groups? 

A matrix group means a group of invertible matrices. This defini-
tion sounds simple enough and purely algebraic. You know from lin:  
ear algebra that invertible matrices represent geometric motions (i.e., 
linear transformations) of vector spaces, so maybe it's not so surpris-
ing that matrix groups are useful within geometry. It turns out that 
matrix groups pop up in virtually any investigation of objects with 
!;yirimetries, such as molecules in chemistry, particles in physics, and 
projective spaces in geometry. Here are some examples of how amaz-
nigly ubiquitous matrix groups have become in mathematics, physics 

id other fields: 

• Four-dimensional topology, particle physics  and Yang-Mills 
connections are inter-related theories based heavily on ma-
trix groups, particularly on a certain double-cover between 
two matrix groups (see Section 8.7). 

• Movie graphics programmers use matrix groups for rotat-
ing and translating three-dimensional objects on a computer 
screen (see Section 3.6). 

• The theory of differential equations  relies on matrix groups, 
particularly on matrix exponentiation (see Chapter 6). 

1 



2 	 Why study matrix groups? 

• The shape of the universe might be a quotient of a certain 
matrix group, Sp(1), as recently proposed by Jeff Weeks; 
(see Section 8.6). Weeks writes, "Matrix groups model pos-
sible shapes for the universe. Conceptually one thinks of the 
universe as a single multi-connected space, but when cosmol-
ogists roll up their sleeves to work on such models they find, 
it far easier to represent them as a simply connected space' 
under the action of a matrix group." 

• Quantum  computing is based on the group of unitary matri-
ces (see Section 3.2). William Wootters writes, "A quantum 
computation, according to one widely used model, is nothing 
but a sequence of unitary transformations. One starts with 
a small repertoire of simple unitary matrices, some 2 x 2 and 
some 4 x 4, and combines them to generate, with arbitrar-
ily high precision, an approximation to any desired unitary 
transformation on a huge vector space." 

• In a linear algebra  course, you may have learned that cer-
tain types of matrices can be diagonalized or put into othe 
nice forms. The theory of matrix groups provides a beauti 
fully uniform way of understanding such normal forms (se 
Chapter 9), which are essential tools in disciplines rangin 
from topology and geometry to discrete math and statistics 

• Riemannian geometry  relies heavily on matrix groups, 
part because the isometry group of any compact Riemannia 
manifold is a matrix group. More generally, since the wo 
of Klein, the word "geometry" itself is often understood 
the study of invariants of the action of a matrix group on 
space. 

Matrix groups are used in algebraic geometry, complex analysi 
group and ring theory, number theory, quantum physics, Einstein' 
special relativity, Heisenberg's uncertainty principle, quark theory 
Fourier series, combinatorics, and many more areas; see Howe's arti-
cle [101. Howe writes that matrix groups "touch a tremendous spe 
trum of mathematical areas.. .the  applications are astonishing in the' 
pervasiveness and sometimes in their unexpectedness." 
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You will discover that matrix groups are simultaneously algebraic 
mid geometric objects. This text will help you build bridges between 

r knowledge of algebra and geometry. In fact, the beautiful rich-
, iie:N of the subject derives from the interplay between the algebraic 

on, I geometric structure of matrix groups. You'll see. 

My goal is to develop rigorously and clearly the basic structures 
ol matrix groups. This text is elementary, requires few prerequisites, 

(I provides substantial geometric motivation. Whenever possible, 
opproach is concrete and driven by examples. Exploring the sym-

, Ilielries of a sphere is a motivating thread woven through the text, 
Ilep,iiming with the cover artwork. You will need only the following 

orequisites: 

• Calculus: topics through multivariable calculus, with a 
brief introduction to complex numbers including Euler's for-
mula 

e 0  -= cos(0) + i sin(8). 

• Linear Algebra: determinant, trace, eigenvalues, eigen-
vectors, vector spaces, linear transformations and their re-
lationship to matrices, change of basis via conjugation. 

• Abstract Algebra: groups, normal subgroups, quotient 
groups, abelian groups, fields. 

• Analysis (optional): topology of Euclidean space (open, 
closed, limit point, compact, connected), sequences and se-
ries, continuous and differentiable functions from IRm to lEr, 
the inverse function theorem. 

I Iii analysis prerequisites are optional. I will develop these analysis 
I..pirs from scratch for readers seeing this material for the first time, 

since this is not an analysis textbook, I will not feel obliged to 
olio le complete proofs of analysis theorems. 

I believe that matrix groups should become a more common staple 
1 he undergraduate curriculum; my hope is that this text will hell) 

filli)w a movement in that direction. 
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Chapter 1 

Matrices 

In this chapter, we define quaternionic numbers and discuss basic al-

gebraic properties of matrices, including the correspondence between 

it and linear transformations. We begin with a visual example 

that motivates the topic of matrix groups. 

I. Rigid motions of the sphere: a motivating 
example 

'I'he simplest interesting matrix group, called S0 (3), can be described 

m the following (admittedly imprecise) way: 

80 (3) = all positions of a globe on a fixed stand. 

' 

 

three elements of S0(3) are pictured in Figure 1. Though the globe 
nlways occupies the same place in space, the three elements differ in 
the directions where various countries face. 

Figure 1. Three elements of SO(3). 

Let's call the first picture "the identity". Every other element of 
SO(3) is achieved, starting with the identity, by physically moving 

5 



1. Matrices 

the globe in some way. S0 (3) becomes a group under composition of 
motions (since different motions might place the globe in the same po-
sition, think about why this group operation is well-defined). Several 
questions come to mind. 

Question 1.1. Is S0 (3) an abelian group? 

The North Pole of the globe faces up in the identity position. 
Rotating the globe around the axis through the North and South Pole 
provides a "circle's worth" of elements of  80 (3) for which the North 
Pole faces up. Similarly, there is a circle's worth of elements of S0 (3) 
for which the North Pole is located as in picture 2, or at any other 
point of the globe. Any element of  80 (3) is achieved, starting with 
the identity, by first moving the North Pole to the correct position and 
then rotating about the axis through its new position. It is therefore 
natural to ask: 

Question 1.2. Is there a natural bijection between 80 (3) and the 
product 82  x S1 := {(P, 0)  I p E  S 2 ,9 E S 1 } ? 

Here S2  denotes the sphere (the surface of the globe) and S 1  
denotes the circle, both special cases of the general definition of an 
n-dimensional  sphere: 

,Sn 	{(xl , xn+i ) E ir+1  I XT + • • • ± 42+1  = 11. 

Graphics programmers, who model objects moving and spinning in 
space, need an efficient way to represent the rotation of such objects. 
A bijection S0 (3) `=-' 92  x ,S 1  would help, allowing any rotation to be 
coded using only three real numbers — two which locate a point of S2  
and one angle which locates a point of 51 •  If no such bijection exists, 
can we nevertheless understand the shape of S0 (3) sufficiently well 
to somehow parameterize its elements via three real numbers? 

One is tempted to refer to elements of  80 (3) as "rotations" of 
the sphere, but perhaps there are motions more complicated than 
rotations. 

Question 1.3. Can every element of  80 (3) be achieved, starting 
with the identity, by rotating through some angle about some single 
axis? 
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If so, then for any element of SO(3), there must be a pair of 
tintipodal points of the globe in their identity position. 

You might borrow your roommate's basketball and use visual in-
tuition to guess the correct answers to Questions 1.1, 1.2 and 1.3. But 
our definition of SO(3) is probably too imprecise to lead to rigorous 
proofs of your answers. We will return to these questions after de-
veloping the algebraic background needed to define SO(3) in a more 
trecise way, as a group of matrices. 

2. Fields and skew-fields 

A tnatrix is an array of numbers, but what type of numbers? Matrices 
of real numbers and matrices of complex numbers are familiar. Are 
here other good choices? We need to add, multiply and invert ma-

I rices, so we must choose a number system with a notion of addition, 
multiplication, and division; in other words, we must choose a field 
tr a skew-field. 

Definition 1.4. A skew-field  is a set, K, together with operations 

culled addition (denoted "+") and multiplication (denoted ".") satis- 

(1) a•(b+c)-=a•b+a-cand(b+c)•a=b-a+c-a. 

(2) K is an abelian group under addition, with identity denoted 

as "0". 

(3) K—{0} is a group under multiplication, with identity denoted 

as “1”. 

I skew-field in which multiplication is commutative (a • b = b • a) is 

called a field.  

The real numbers, R, and the rational numbers, Q, are fields. 
Hie plane R2  is NOT a field under the operations of component-wise 
lit Idition and multiplication: 

(a , b) 	(c, 	:= (a c, b d) 

(a, b) • (c, d) := (ac, bd), 

I ,ccause, for example, the element (5,0) does not have a multiplicative 
mverse (no element times (5,0) equals (1, 1), which is the only possible 
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identity element). A similar argument shows that for n > 1, Rn  is 
not  i. field under component-wise addition and multiplication. 

I f order to make R 2  into a field, we use component-wise addition, 
but n more clever choice of multiplication operation is: 

(a, b) (c, d) := (ac — bd, ad + bc). 

If we denote (a, b) E R2  symbolically as a +bi, then this multiplication 
operation becomes familiar complex multiplication: 

(a + bi) • (c + di) = (ac — bd) + (ad + bc)i. 

It is straightforward to check that R2  is a field under these operations; 
it is usually denoted C and called the complex numbers. 

3. The quaternions 

Is it possible to contrive a multiplication operation which, to-
gether with component-wise addition, makes Rn into a skew-field for 
n> 2? This is an important and difficult question. In 1843 Hamilton 
discovered that the answer is yes for n = 4. 

To describe this multiplication rule, we will denote an element 
(a,  b, c, d) E R4  symbolically as a + bi + cj + dk. We then define a 
multiplication rule for the symbols {1, i,j,k}. The symbol "1" acts 
as expected: 

i • 1= 1. i = k • 1= 1. k =- k. j .1 = 1.j  =j  
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The other three symbols square to —1: 

12 j2 k2 = _1 .  

Finally, the product of two of {id k} equals plus or minus the third: 

	

i • j = k, 	j k = 	k = j, 

	

j • i -= —k, 	k •j = 	i • k = —j. 

This sign convention can be remembered using Figure 2. 

k 	j 

Figure 2. The quaternionic multiplication rule. 

This multiplication rule for {1, i , j, k} extends linearly to a mul-
tiplication on all of R4 . For example, 

(2 + 3k) • (i + 7j) = 2i+  14j +3ki + 21kj 

2i +14j +3j — 21i 

—19i +17j. 

The product of two arbitrary elements has the following formula: 

(1.1) (a + bi + cj + dk) • (x + yi + + wk) 

= (ax — by — cz — dw) (ay bx cw — dz)i 

+ (az + cx + dy — bw)j + (aw + dx + bz — cy)k. 

The set R4 , together with component-wise addition and the above-
described multiplication operation, is denoted as IHI and called the 
quaternions. The quaternions have proven to be fundamental in sev-
eral areas of math and physics. They are almost as important and as 
natural as the real and complex numbers. 

To prove that H is a skew-field, the only difficult step is verifying 
that every non-zero element has a multiplicative inverse. For this, it 
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is useful to define the conjugate  and the norm  of an arbitrary elemenl 
q=  a ± bi +  ci  + dk  E H  as follows: 

= a — bi — cj — dk 

l q l _ Va2 ± b2 ± e2 ± d2 .  

It is straightforward to check that q•q=q•q= lq1 2  and thereforl 
that -9— is a multiplicative inverse of q. lq1 2  

The rule for multiplying two quaternions with no k or j comp 
nents agrees with our multiplication rule in C. We therefore hav 
skew-field inclusions: 

RcCCH. 

Any real number commutes with every element of H. In Exercise 1.18 
you will show that only real numbers have this property. In particular 
every non-real complex numbers fails to commute with some element 
of H. 

Any complex number can be expressed as z = a + bi for som 
a, b E R. Similarly, any quaternion can be expressed as q = z ± w 
for some z, w E C, since: 

a + bi+ cj + dk = (a + bi) + (c + di)j. 

This analogy between R c C and C c MI is often useful. 

In this book, the elements of matrices are always either real, com-
plex, or quaternionic numbers. Other fields, like Q or the finite fields /  
are used in other branches of mathematics but for our purposes would i 
lead to a theory of matrices with insufficient geometric structure.  We  
want groups of matrices to have algebraic and geometric properties, 

i so we restrict to skew-fields that look like Rn for some n. This way 
groups of matrices are subsets of Euclidean spaces and therefore in-
herit geometric notions like distances and tangent vectors. 

But is there a multiplication rule which makes Rn into a skew-
field for values of n other than 1,2  and 4? Do other (substantially 
different) multiplication rules for R 1 , R2  and R4  exist? Can R4  be 
made into a field rather than just a skew-field? The answer to all o 
these questions is NO. More precisely, Frobenius proved in 1877 that 
R, C and H are the only associative real division algebras, up to the 
natural notion of equivalence [4]. 
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Definition 1.5. An associative real division algebra  is a real vec- 
tor space, K, with a multiplication rule, which is a skew-field under 
prctor-addition and multiplication, such that for all a E R and all 

(12 C K: 

a(41 q2) 	(aqi) q2 = ql (aq2)- 

The final hypothesis relates multiplication and scalar multiplica-
ion. It insures that K has a sub-field isomorphic to R, namely, all 

s(.1,1ar multiples of the multiplicative identity 1. 

We will not prove Frobenius' theorem; we require it only for re-
1tssurance that we are not omitting any important number systems 
from our discussion. There is an important multiplication rule for R8 , 
called octonian  multiplication, but it is not associative, so it makes 
le into something weaker than a skew-field. We will not consider the 
)(Ionians. 

In this book, K always denotes one of {R, C, H}, except where 

stated otherwise. 

1. Matrix operations 

In this section, we briefly review basic notation and properties of 
matrices. Let M„,,„(K) denote the set of all m by n matrices with 
1 , 111,ries in K. For example, 

M2,3(C) = i 	
Z12 Z13 

a  e C . 
Z21 Z22 Z23 

Denote the space Mr,,(K) of square matrices as simply  M(K). If 
,1 E then Aa3  denotes the element in row i and column j 
(if A. 

Addition of same-dimension matrices is defined component-wise, 
that 

(A + B),3  = Aii  B.  

The product of A G M,,,,„(K) and B  e  M,1(K) is the element 
.113 E Mm,/(K) defined by the familiar formula: 

( 1.2) 	(AB), = (row i of A) • (column j of B) = E A is  • B 
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Matrix multiplication is not generally commutative. 

Denote a diagonal matrix  as in this example: 

1 0 0 
diag(1, 2, 3) = (0 2 C) . 

0 0 3 

The identity matrix  is: 

I = diag(1, ..., 1). 

The transpose of A G Mni ,,,(K) is the matrix AT G Mr, , m  ob-
tained by interchanging the rows and columns of A, so that: 

For example, 

(A T ), = Ajz . 

1 	2 
(3 4) 	= ( 1  3  5) . 

5 	6 
2 4 6 

It is straightforward to check that 

(1.3) 	 (A 	B) T B T A T 

for any matrices A and B of compatible dimensions to be multiplied 

Matrix multiplication and addition interact as follows: 

Proposition 1.6. For all A, B, C E M(K), 

(1) A • (B • C) = (A • B) C. 

(2) (A + B)•C=A•C+B•C andC•(A+B)=C•A+C• B. 

(3) A•I=I•A=A. 

The trace of a square matrix A E Mn (K) is defined as the sum of 
its diagonal entries: 

trace(A) -= Aii 	• • + Ann • 

When K  E  {Et, C } , we have the familiar property for A,B E M(K): 

(1.4) 	 trace(AB) = trace(BA). 

Since multiplication in  1111 is not commutative, this property is false 
even in M101-10. 
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When K E {R, C } , the determinant function, 

det : 	K, 

is familiar. It can be defined recursively by declaring that the deter-
minant of A E MOP equals its single element, and the determinant 
(II' A E Mn+i(K) is defined in terms of determinants of elements of 
/1/„(K) by the expansion of minors formula: 

n+1 

( 1 .5) 	 det(A) := 	(-1)3+1  • Ali • det(A[1, j]), 
3 =1 

where A[i, j] E M,,,(K) is the matrix obtained by crossing out row i 
mid column j from A. For example, 

(

ad be fc)  [2,11=  (hb  
g h i 

Thus, the determinant of a 3 x 3 matrix is: 

det 

 (

a b c 
d e f 
g h i 

e 
a det 

( 
h 

f ) — b • det (d  
) 

+c • det (d 
 

he) 

a(ei — f h) — b(di —  fg)  + c(dh — eg) 

aei + b f g + cdh — (a f h + bdi + ceg). 

It is clear that det(/) = 1. In a linear algebra course, one proves 
that for all A, B E .M(K), 

(1.6) 	 det(A • B) = det(A) • det(B). 

We postpone defining the determinant of a quaternionic matrix until 
I lie next chapter. Exercise 1.5 at the end of this chapter demonstrates 
why Equation 1.5 is insufficient when K = H. 

Let K G {R,  C, H}. When a E K and A E Mr,,,,,,(K), we define 
A E M,,(K) to be the result of left-multiplying the elements of 

,1 by a: 

(a .A)  
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This operation is called left scalar multiplication. The operations of 
matrix addition and left scalar multiplication make Ma,„,(K) into a 
left vector space over K. 

Definition 1.7. A left vector space over a skew-field K is a set M 

with an addition operation from M x M to M (denoted A, B A+ B ) 

and scalar multiplication operation from K x M to M (denoted a, A 1--> 
a • A) such that M is an abelian group under addition, and for all 
a, b E K and all A, B E M, 

(1) a • (b • A) = (a • b) • A. 

(2) 1 • A = A. 

(3) (a + b) - A=a-A+b• A. 

(4) a • (A + B)=a• A+a• B. 

This exactly matches the familiar definition of a vector space. Fa-
miliar terminology for vector spaces over fields, like subspaces,  bases, 
linear independence,  and dimension,  make sense for left vector spaces 
over skew-fields. For example: 

Definition 1.8. A subset W of a left vector space V over a skew-field 
K is called a K-subspace  (or just a subspace) if for all a,b G K and 

,) 

If we had instead chosen right scalar multiplication in M,,,,m (K), 
defined as (A • a).2,3  := 4,3  a, then (K) would have become a right 

vector space over K. In a right vector space, scalar multiplication is 
denoted a, A A • a. Properties (2) through (4) of Definition 1.7 

must be re-written to reflect this notational change. Property (1) is 
special because the change is more than just notational: 

(1') (A • a) b = A - (a • b). 

Do you see the difference? The net effect of multiplying A by a and 
then by b is to multiply A by ba in a left vector space, or by ab in a 
right vector space. 

When K is a field, the difference between a left and a right vector 
space over K is an irrelevant notational distinction, so one speaks 
simply of "vector spaces". But when K = HE, it makes an essential 
difference that we are henceforth adopting the convention of left scalar 

all A,B E W, a • A +b- B E W. 
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multiplication, and thereby choosing to regard M„,m (H) as a left 
vector space over H. 

5. Matrices as linear transformations 

One cornerstone of a linear algebra course is the discovery that ma-
trices correspond to linear transformations, and vice versa. We now 
review that discovery. Extra care is needed when K = H. 

Definition 1.9. Suppose that V1  and V2 are left vector spaces over 
K. A function f: V1  —> V2 is called K-linear  (or simply linear)  if for 
all a,b E K and all X,Y E V1 , 

f (a • X +b- Y)=a• f (X) + b • f (Y). 

It is natural to identify Kn  = {(qi,...,q n ) I qi E K} with Mi,„(K) 
(horizontal single-row matrices) and thereby regard Kn as a left vector 
space over K. Using this identification, there are two potential ways 
in which matrices might correspond to linear transformations from 
Kn  to Kn: 

Definition 1.10. If A E M(K), define RA : Kn 	Kn and define 
LA: Kn  Kn such that for X E Kn, 

RA(X) : -= X A and L A(X) := (A • X T ) T  

31 42 
For example, if A = ( 
	)

E M 2 (R), then for (x, y) E R2 , 

) 
RA(X,y) = (X 

y  (1 2) 
(X + 3y, 2x + 4y), and 

4) 

2y 
LA (x,  y) = 	

) 	 ( X + ) 
(
1 2 (x)) 

(x + 2y, 3x + 4y). 

	

3 4) y)) 	+ 4y) 

We first prove that right multiplication determines a one-to-one 

correspondence between linear functions from Kn to Kn and matrices. 

Proposition 1.11. 

(1) For any A E M(K), RA :Kn  Kn is K-linear. 

(2) Each K-linear function from Kn to Kn  equals RA for some 
A E M(K). 
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Proof. To prove (1), notice that for all a, b  e K and X,Y G Kn , 

RA(aX + by) =- (aX bY) • A = a(X A) ± b(Y A) 

= a • RA(X)+ b. RA(Y). 

To prove (2), assume that f : Kn —> Kn is K-linear. Let A E M(K) 

denote the  matrix whose ith row is f(e,), where 

e i  =- ( 1 , 0 , •-•, 0),e2 =- (0, 1, 0, ..., 0), ..., en  = (0, ..., 0, 1) 

denotes the standard basis for Kn. It's easy to see that f (ei) = RA(e) 

for all i = 1, n. Since f and RA are both linear maps and they agree 

on a basis, we conclude that f = RA. 

We see from  the proof that the rows of A E Mn (K) are the images 

under RA of t el, en l. Similarly, the columns are the images under 

LA.  

Most linear algebra textbooks use the convention of identifying a 

matrix A E M(K) with the function LA : Kn —> Kn . Unfortunately, 
this function is necessarily K-linear only when K E {R, C}. 

Proposition 1.12. Let K c {R,C}. 

(1) For any A E M(K), LA : Kn —> Kn is K-linear. 

(2) Each K-linear function from Kn. to IV equals LA for some 

A E M(K). 

Proposition 1.12 is an immediate corollary of Proposition 1.11 

plus the folio wing easily verified fact: 

LA -= RAT for all A E M(H) or A E Mn (C). 

Our previous decision to consider Elin  as a left vector space ovei 

H forces us now to use the correspondence A ÷-> RA between matrices 

and linear transformations (rather than A 4--> LA), at least when WE 

wish to indu K = H in our discussion. 

Under either correspondence between matrices and transforma. 

tions, matrix multiplication corresponds to composition of transfor. 

mations, since: 

L A (Lp(X))=- LA.B(X) and RA(RB(X)) = RB.A(X). 
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In a linear algebra course, this is one's first indication that the ini-
tially unmotivated definition of matrix multiplication is in fact quite 
n atural. 

6. The general linear groups 

The set M„(K) is not a group under matrix multiplication because 
some matrices do not have multiplicative inverses. For example, if 
A E M(K) has all entries zero, then A has no multiplicative inverse; 

that is, there is no matrix B for which AB = BA = I. However, 

the elements of Mn (K) which do have inverses form a very important 
group whose subgroups are the main topic of this text. 

Definition 1.13. The general linear group  over K is: 

G Ln (K) := {A E Mn (K)  I ]B E (K) with AB = BA = 

Such a matrix B is the multiplicative inverse of A and is therefore 
denoted A -1 . As its name suggests,  GL(K) is a group under the 
operation of matrix multiplication (why?). The following more visual 
characterization of the general linear group is often useful: 

Proposition 1.14. 

GL(K) = {A E M(K) I RA : 	—> IV is a linear isomorphism}.  

For A E M(K), RA is always linear; it is called an isomorphism if 
it is invertible (or equivalently, surjective, or equivalently, injective). 
Thus, general linear matrices correspond to motions of K" with no 
collapsing. 

Proof. If A E GL,(K) and B is such that BA= I, then 

RA 0 RB = RBA = RI = id (the identity), 

so RA has inverse RB• 

Conversely, let A E Mn (K) be such that RA is invertible. The 

faap (RA) -1  is linear, which can be seen by applying RA to both sides 
of the following equation: 

(RA) -1 (aX bY) a(RA) 1 (X) b(RA) 1  (Y). 
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Since every linear map is represented by a matrix, (RA) -1  = RB fo I 
 some B E M(K). Therefore, RBA = RA o  RB = id, which implie 

BA= I. Similarly, RAB = RB o RA = id, which implies AB = 

The following well-known fact from linear algebra provides yet, 
another useful description of the general linear group, at least when 
K 

Proposition 1.15. If K E {R, C} , then 	, 

GL n (K) = {A E 	det(A) 

In fact, the elements of the inverse of a matrix can be described 
explicitly in terms of the determinant of the matrix and its minors: 

Proposition 1.16 (Cramer's rule). Let K E {1R, C}. Using the no-
tation of Equation 1.5, 

(A -I) = (-1)2  

7. Change of basis via conjugation 

In this section, we review a basic fact from linear algebra: a conjugate 
of a matrix represents the same linear transformation as the matrix, 
but in a different basis. 

Let g denote an n-dimensional (left) vector space over K. Then 
g is isomorphic to K. In fact, there are many isomorphisms from g 
to W. For any ordered basis V = {v 1 , ..., vn }  of g, the following is an 
isomorphism: 

(1.7) 	 (ci vi  + • • • + CnVn) 1—> ( C1, • • •, Cn) • 

Every isomorphism from g to Kn.  has this form for some ordered basis 
of g, so choosing an isomorphism amounts to choosing an ordered 
basis. In practice, there is typically no choice of basis which seems 
more natural than the other choices. To convince yourself of this, 
consider the case where g is an arbitrary subspace of Km for some 
m > n. 

det (A [j, i])  

det(A) 

Now suppose that f : g -> g is a linear transformation. In order 
to identify f with a matrix, we must first choose an ordered basis V 
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)1' g. We use this basis to identify g Kn and thereby to regard f as 
,1 linear transformation from . Kn to Kn, which can be represented as 
1 e A  for some A  E  M(K). A crucial point is that A depends on the 
choice of ordered basis. To emphasize this dependence, we say that 
"A represents f in the basis V (via right-multiplication)." We would 
like to determine which matrix represents f in a different basis. 

To avoid cumbersome notation, we will simplify this problem 
without really losing generality. Suppose that f : IK 77-  Kn is a 
linear transformation. We know that f = RA for some A c M(K). 

Translating this sentence into our new terminology, we say that "A 
represents f in the standard basis of Kn," which is: 

{e l  = (1,0,...,0), e 2  = (0,1,0,...,0),..., 	= (0,...,0,1)1. 

Now let V = {vi , vn }  denote an arbitrary basis of Kn. We 
;wok the matrix which represents f in the basis V. First, we let 
I/c GL,,. (K) denote the matrix whose rows are v1, v2, vn . We call 
fj the change of basis matrix. To understand why, notice that eig = vi 
Inr each i =- 1, ...,n. So, 

(C1, 	en) .9 	(ciel  + " + cnen) g = 	+ • • • + enVn• 

I ty Equation 1.7, the vector civi + • • + cnvn E Kn is represented in 
1 he basis V as the vector (ci , en ). Thus, Rg  : Kn 	Kn translates 
I letween V and the standard basis. For X 	Rg (X) represents in 
; lie standard basis the same vector that X represents in V. Further, 
U„  i  (X) represents in V the same vector that X represents in the 
),1;indard basis. 

Proposition 1.17. gAg -1  represents f in the basis V. 

Proof. Let X =  (ci ,  ...,ca), which represents civi + • + cnvn  in V. 
We must show that R9A9 - 1 (X) represents (civi + • • + cn vn ) • A in 

I'. This follows from: 

Ag - 1 (X) = ( el 	Cn)g Ag-1  = (C1V1 	• • ± CnVn)Ag -1  

= Rg -1 ((C1V1 + • • • + CrIVTL) A). 
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Proposition 1.17 can be summarized in the following way: for  an 
A E Mn (K) and any g E GL,i (K), the matrix gAg -1  represents 1:14 
in the basis {e ig, eng}. 

The basic idea of the proof was simple enough: the transformatiof 
R9A9 - 1 = R9 - 1 o RA o Rg  first translates into the standard basis, the  
performs the transformation associated to A, then translates back. 

This key result requires only slight modification when represent 
ing linear transformations using left matrix multiplication when K I 
R or C: for any A E Mn (K) and any g G GL,i (K), the matrix g -1 A ;  
represents LA in the basis {ge l , ...,gen } (via left multiplication). Th 

 proof idea is the same: L 9-1 A9  =- L9-1 o LA o L 9  first translates inti 
the standard basis, then performs the transformation associated ti 
A, then translates back. 

8. Exercises 

Ex. 1.1. Describe a natural 1-to-1 correspondence between elementi 
of  80 (3) and elements of 

Tisz {(p, v) E R3  X R3 1P i  =  vi  = 1 and p _1 v } , 

which can be thought of as the collection of all unit-length vectors 
tangent to all points p of 82 . Compare to Question 1.2. 

Ex. 1.2. Prove Equation 1.3. 

Ex. 1.3. Prove Equation 1.4. 

Ex. 1.4. Let A,B E M(K). Prove that if AB =- I, then BA= I 

Ex. 1.5. Suppose that the determinant of A E M,-,(111) were defin€ 

as in Equation 1.5. Show for A = (. .) E M2(H) that det(A) 
j 

but RA : 1Pd2  —> H2  is not invertible. 

Ex. 1.6. Find B E M2(R) such that RB : R 2  —> R 2  is a counteri 
clockwise rotation through an angle O. 

Ex. 1.7. Describe all elements A E GL(R) with the property thai 
AB = BA for all B E GL,,(11k). 
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Ex. 1.8. Let SL2(Z) denote the set of all 2 by 2 matrices with integer 
caries and with determinant 1. Prove that SL2(7Z) is a subgroup of 
(1L2(R). Is  SL(Z) (defined analogously) a subgroup of GL 72 (R)? 

Ex. 1.9. Describe the product of two matrices in M6(K) which both 
Iiiive the form: 

(a b 0 0 0. 0\ 

d 0 0  00 
 0 0 ef g 0 

0 0 hi j 0 
0 0 k 1mO 

\O 0 0 0 0 nj 

I )(iscribe a general rule for the product of two matrices with the same 
block form. 

Ex. 1.10. If G1 C GL,„ (K) and G2 C GLn, (RC) are subgroups, 
(lescribe a subgroup of GLn1+rt2(K) which is isomorphic to G1 X G2 

Ex. 1.11. Show by example that for A E Mri  (H) ,  LA : H' H' is 
ilot necessarily H-linear. 

Ex. 1.12. Define the real and imaginary parts of a quaternion as 
Follows: 

Re(a + bi + cj + dk) = a 

Im(a + bi + cj + dk) = bi + cj + dk. 

I t  qi  = x i i + yij + zi k and q2 = x2i + yzj + z2 k be purely imaginary 
littaternions in H. Prove that —Re(qi q2) is their vector dot product 
ill  iR = span{ i, j, k} and Im(qi • q2) is their vector cross product. 

Ex. 1.13. Prove that non-real elements  qi,  q2  E H commute if and 
fitly if their imaginary parts are parallel; that is, Im(qi) A • Im(q2) 

')T- some A E R. 

Ex. 1.14. Characterize the pairs qi, q2 E H which anti-commute, 
'leaning that g1g2 = —q2qi. 

1.15. If g E H satisfies qi = iq, prove that g E C. 

1.16. Prove that complex multiplication in C R2  does not 
.xtend to a multiplication operation on R3  which makes R3  into a 
( 'al  division algebra. 
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Ex. 1.17. Describe a subgroup of GL, ±i(R) which is isomorphic to 
the group IV under the operation of vector-addition. 

Ex. 1.18. If A e 11-31 commutes with every element of H, prove that 
A E R. 



Chapter 2 

All matrix groups are 
real matrix groups 

This book is about subgroups of the general linear groups. In this 
chapter, we prove that every subgroup of  GL(C) or GL(H) is iso-
morphic to a subgroup of GL,(R) for some m. Thus, this book is 
;11)out subgroups of the real general linear group. The result is an 
iI mediate consequence of: 

'Theorem 2.1. 

(1) GL,,(C) is isomorphic to a subgroup of GL 2,(R). 

(2) GL(H) is isomorphic to a subgroup of GL2„(C). 

It follows that GL  „(111) is isomorphic to a subgroup of GL4,(R). 
We will prove Theorem 2.1 by constructing injective homomorphisms: 

pn, : 

 

CL(C) —> GL2„(1[1) and kiln  : GL(H) --> GL 2,(C). 

Iliese homomorphisms play an important role in the remainder of the 
icxt. 

Many important groups are much more naturally regarded as 
bgroups of  GL(H) or GL,(C) rather than of GL,(118), so the the-
em does not obviate our future need to consider the cases K = C 
ni  K = H. 

23 
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1. Complex matrices as real matrices 

In Exercise 1.6, you showed for the matrix 

B
(cos = 

— sin 0 

sin 9)  
E M2(R) cos 

that RB : IR 2  —> 1[12  is a counterclockwise rotation through angle 0 

In fact, standard trigonometric identities give that for all r, E R: 

RB (r cos 0, r sin 0) = (r cos(0 + 0), r sin(0 + 0)). 

Compare this to the matrix A = (e10 ) E M1  (C).  For this matrix 
RA : C l  --> is also a counterclockwise rotation through angle 0 

since 

RA(re 14') =- rei(°±49)  . 

Thus, A E Mi(C) and B E M2(R) "represent the same motion". 

More generally, we wish to construct a function 

pn : lun(c) 	M2 (N) 

which sends A E Mn (C) to the matrix B E M2 (R) that "represents 
the same motion". More precisely, every A E Mn (C) corresponds 
to a linear transformation  RA : C n  —> C.  This transformation can 
instead be thought of as a transformation from R2n to R2n, since 
R' is naturally identified with Cn via the bijection fn R2n 

defined as: 

frt(al 	bii, a2 + b2i, •••, an + bni) := (al, bi, a2, b2, •••, an, bn)• 

This transformation from len to R" is represented as RB for some 
B E M2n  (lR). 

How do we determine B from A? Asked differently, how do we 
define a function 

: Mn(C) —> M2 (R) 

such that the following diagram commutes for all A E Mn (C): 

(on 	 

(2.1) 
	

RA 	 I Rpn  (A) 

Cn 	R2n 



I. Complex matrices as real matrices 	 25 

((lie diagram is said to commute  if  R n (A) o fn  = fn  o RA; that 
if right-then-down equals down-then-right). When 71 = 1, it is 

Araightforward to check that the function pi  : Mi (C) --> M2 (lR) 

defined as follows makes diagram 2.1 commute: 

(_ ba 

Notice that p i  relates the matrices A and B of the previous discussion, 
tii ice 

( cosû sin  8 \ 
 --= (cos 0 i sin 0) = 

— sin cos B) 
G M2 (R) 

For A E Mn (C) with n>  1, we build  p(A) out of 2-by-2 blocks 
1 ,qual to pi applied to the entries of A. For example, 

a b  cd 
+ bi c+ 	—b a —d C 

P2 
e+ fi h+ ji) =  e f h j 

—
f e —j h 

nod so on. In Exercise 2.1, you will prove that this definition of pn  
makes  diagram 2.1 commute. 

l'roposition 2.2. For all A E R and A, B G Mn  (C), 

(1) pn (A • A) = A • p, (A).  

(2) ion (A + B) = p(A) + pn (B). 

(3) Pn (A • B) = p(A) • Pn(B). 

l'roof. Parts (1) and (2) are immediate from definition. For part 
(3), consider the commutative diagram: 

RAI  

cn 	 R2n 

RB 	 B) 

Cn  f >R2  
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The composition of the two down-arrows on the right is 

Rp,(B) 0 R p (A) = Rp,(A). p n (B)- 

On the other hand, since on the left RBORA = RAB, this compositior4 
on the right also equals Rp,(AB). In summary, 

Rp n (A) p„(B)  

which implies that  p(A) - p n(B) p n (AB). 

It is easy to see that pn  : Mn (C) 	M2 (R) 
surjective. 

is injective but not 

Definition 2.3. Matrices of  M2 (l) in the image of pn  are called 
complex-linear real matrices. 

The terminology is justified by the following proposition, whose 
proof is immediate. 

Proposition 2.4. B E M2 (R) is complex-linear if and only if the 
function fn-1 0  RB o .fn C n 	Cn  is  a C-linear transformation: 

The function F = fr,7 1  o RB  o fr, is always R-linear (which make 

sense because Cn can be regarded as a vector space over R). It i 
C-linear if and only if F(i • X) = i  F(X) for all X E  C.  So th 
complex linear real matrices are the ones that "commute with i" ir 
this sense. There is an important way to re-describe this idea of 4 
real matrix commuting with i. Define J2n  = pn  (1 • 1.), so for example 

0 1 0 
—1 0 0 0 

0  

( 

00 

0) 

1 
0 0 —1 0 
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Notice that ,gn  .= —1 • / and that the following diagram commutes: 

cn 	R2n 

R1.1 = (scalar mult. by i) 

en 	 R2n 

The matrix J2n, is called the standard complex structure on R2n. 
Why? Because, compared to  I2n ,  the space Cn has the additional 
st ructure of scalar-multiplication by i. This extra structure is mim-
icked in R2n by Rj2n . This allows an improved verbalization of 
he above-indicated idea that complex-linear real matrices "commute 

with i": 

Proposition 2.5. B  e  M2 (R) is complex-linear if and only if 

B • J2n  = J2n • B • 

Proof. Suppose that B E M2(R) is complex-linear, so there is a 
matrix A E Mn  (C) for which the following diagram commutes: 

cm 	 R2n 

(scalar mult. by i) 

en  

RAI 

en  

(scalar mult. by i) 

C n 	 R2n 

The composition of the three downward arrows on the left equals 
/?, A, = R—A, so the composition of the three downward arrows on 
I he right must equal Rp (_A) = R_B. Therefore: 

R—B = RJ203.12n. 

	

It follows that — B  = J272 .13 J2n  Since J 	—I, this implies that 

/3 • J2n = J2n • B.  
The other direction is similar and is left to the reader. 
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2. Quaternionic matrices as complex matrices 

The results in this section are analogous to results from the previous 
section, so we discuss them only briefly. The main idea is to think of 
elements of Mn (IHI) as transformations of C' or IFen. 

There is a natural bijection gn  : IBIn —+ C" defined as 

gn( Z 1 	Z2 + W2i, .• . 7 Zn 	Wni) := (Z1, W17 Z2, W21 •••, Zn Wn) • 

Our goal is to define an injective map 

: Mn (131) 	M2(C) 

such that the following diagram commutes for all A c Mn (H): 

9,‘ > c2n 

(2.2) RA t I R•is n (A) 

c2n 

The solution when n = 1 is: 

41 1(z + wj ) := zw  
wz) 

where complex conjugation is denoted as a + bi := a — bi. An altei 
native way to express W 1  is: 

( a + 	c + di 
W i (a + bi + cj + dk) = 

—c + di a — bi 

For  n> 1, define Tn  in terms of W i  exactly the way pn  was define 
in terms of pi. For example, 

an + NO+ enj + diik an + b121+ Cl2i ( 

	

	 + di2k 

an + bni + cnj + dnic a22 + b22i + C22i ± d22k 

an +bill 
- + 

+ 

—C21 + d21i 

ci i + 

all — blli 

C21 ± d2li 

— bni 

a12 + b12i C12 ± d12i 

—C12 ± d12i a12 — b12i 
a22 + b22i c22 + d221 

—C22 -I-  d22i a22 — b22i 

Matrices of M2 (C) in the image of kli n  are called quaternionic-line 
complex matrices. 
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l'roposition 2.6. For all A E R and A, B E WHO, 

(1) Tn (A A) = A • kli n  (A). 

(2) Tn  (A + B) = Tn (A) 

(3) Tn (A • B) = 111 n (A) 

Parther, B E M2(C) is quaternionic-linear if and only if gi..T 1  o Rg o 
: Hn Hn  is an H-linear transformation: 

Ein 	grL 	c2n 

Putting it together, we have injective maps pn  : Mn (C) —> M2n (R) 
iiI klin  : Mn (H) —> M2(C) such that the following commutes for all 

Mn 01-11): 

Hn 	 C2n 	fen  

IRA 	 tRvp,(A) IR0,27,04,0(.4) 

"En 	fn 	C2n  92rt R4n 

Matrices of  M4(R) in the image of (p2n oW n) : Mn (H) —> M4(R) 
lire called quaternionic-linear real matrices. 

Proposition 2.7. The following are equivalent for B E M4n (R). 

(1) B is quaternionic-linear. 

(2) B commutes with both 14n  and ,..74n• 

(3)(AT ]. .gn1 RB 0 g2n  fn) Effn 	Er is H-linear. 

Hn  - C2n 
92n 

R4n  > 

En c2n 

RB 
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Here /47, and J4n are defined as the matrices which make thesd 

diagrams commute: 

(g2, of,- ) 1°frt 	 (g2n o fn  Hn 	> R4n 	 II In 	)>  R4n 

I (scalar mult. i) IRT„., 	 I (scalar mult. j) 

11-iln  
(92 , °f,, )  

Hn 
(g2,,.ofn)

). R4n > 1114n  

"Scalar mult. i" means left scalar multiplication by i, and simi 

larly for j. The analogy with Section 1 is imperfect, since I4r6 and 3.47 

do not equal (p2n. 0 IF n )(iI) and (p2 n  0 Ilin )(j/) (why?). The correc 

choice for 14 and J4 is easily seen to be: 

0100  / 0  0 1 0 

—1 0 0 0 0 0 0 —1 
14=  

( 

= 0001 —1 0 0 0 

0 0 —1 0 0 1 0 0 

The correct choice for /4n  (respectively J4„) has block-form with 
blocks of 14 (respectively J4) along the diagonal. 

3. Restricting to the general linear groups 

Proposition 2.8. The image under pn  or IF n  of an invertible matrix 
is an invertible matrix. 

Proof. Let A E Mn (C). Then, 

A E GL(C) < 	>  RA : Cn  Cn  is bijective 

Rpn ( A ) : 1R 2' 	R2n is bijective 

<=>. 

 

p(A) E GL2 71  (R). 

The argument for Wn  is similar. 

Because of this proposition, we can restrict pr, and  W to maps 
between the general linear groups: 

Pm  : G Ln (C) —> GL2n (R), 

Tn, : GL 7,01-10 	GL2„(C). 
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I iy part (3) of Propositions 2.2 and 2.6, these maps are injective ho-
momorphisms between the general linear groups. Theorem 2.1 is an 
immediate consequence of the existence of these injective homomor-
iillisms. 

Subsequent chapters contain many uses for the homomorphisms 
„ and  W. As a first application, we now use IF, to define the 

determinant  of a quaternionic matrix. It turns out that there is no 
Rood way to define a quaternionic-valued determinant function on 
Ai(H) (compare with Exercise 1.5). We will settle for a complex-
valued determinant, namely, the composition 

det oTn, : Mn (H) —> C. 

For A E WEI) we will write det(A) to mean det(W(A)). It is 
obvious that det(/) = 1 and det(A • B) = det(A) - det(B) for all 
•I,B E Mn (H). Also, Proposition 1.15 extends to the K = H case: 

Proposition 2.9. GL01-10 = {A E Mn (H) det(A) 01. 

l'roof. Let A E Mri (lE1). As in the proof of Proposition 2.8, we have 
A E GL(H) if and only if kli n,(A) E GL2 n (C), which is equivalent to 
ilet(xli n (A)) O. 

So now for all K E {R,C,H}, one can characterize the non-
invertible matrices A E M(K) as those which satisfy det(A) -= 0, 
which is a polynomial equation in the entries of A. 

The determinant of a quaternionic matrix is defined to be a com-
plex number; surprisingly, it is always a real number: 

l'roposition 2.10. For all A E 	det(A) E R. 

The proof would take us too far afield from our topic, so we refer 
he reader to [8]. 
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4. Exercises 

Ex. 2.1. Prove that definition of pn, in the text makes diagram 2.3 

commute. 

Ex. 2.2. Prove Proposition 2.4. 

Ex. 2.3. Prove Proposition 2.6. 

Ex. 2.4. Prove Proposition 2.7. 

Ex. 2.5. Prove that for any A E GL1(E11), det(A) E R. 

Ex. 2.6. Prove that  SL(1I) := {A E GL(1E) det(A) --= 1} is t 
subgroup. Describe a natural bijection between elements of SL I P!' 
and points of the 3-dimensional sphere S3 . 

Ex. 2.7. Consider the following alternative way to define the funq 

tion f„, : Cn 	R2n 

	

fn (al + bii,•••,an + 	(ai, 	an, bi,•••, brt)• 

Using this definition, how must An  be defined so that diagram 2. 
commutes? How must J2,,, be defined so that Proposition 2.5 is tru4 

Ex. 2.8. Is it possible to find a matrix J E M2(C) such that th 
following diagram commutes? 

	

Eirt 	gr, 	c2rt 

(scalar mult. by j) 

	

Ran 	 c2n 

Ex. 2.9. Show that the image pn (Mn (C)) C M2 
	

) is a real vecto, 

subspace. What is its dimension? 

Ex. 2.10. Are the matrices Lin  and ,74,, defined in Proposition 2; 

quaternionic-linear? 

Ex. 2.11. Is part (1) of Proposition 2.6 true when A E C? 



Chapter 3 

The orthogonal groups 

En this chapter, we define and study what are probably the most im-
portant subgroups of the general linear groups. These are denoted 
0(n), SO(n), U(n), SU(n) and Sp(n). In particular, the group 
80 (3), which was previously described as the "positions of a globe," 
now receives a more rigorous definition. We will continue to study 
these groups throughout the remainder of the book. 

1. The standard inner product on Kn 

The conjugate and norm of an element q E K are defined as: 

(1) If q E IR., then := q and  q means the absolute value of q. 

(2) If q a bi E C, then q := a — bi and 	:=-- Va2  b2 . 

(3) If q = a + bi + cj + dk  E ill, then q := a — bi — cj — dk and 
:= .va2 b2 e2  d2. 

In all cases, it is a quick calculation to verify that for q, qi , q2 E K: 

(3.1) 

( 3.2) 

  

ql q2 = q2 ql 
= 1 (212 ,  

' l'hese two equalities together imply that: 

(3.3) 	 q21 =Iql 	1q21. 

33 
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Definition 3.1. The standard inner product on Kn  is the function 

from Kr' X Kn  to K defined by: 

qX1, X2, 	xn), (Y1, Y2, •••, Yn))1K := X1 • 51 + x2 • 52 ± • • • + Xn -9-n• 

It follows from Equation 3.2 that for all X E Kn , (X, X)lic is 

real number that is > 0 and equal to zero only when X = (0, ..., 0). 

This allows us to define: 

Definition 3.2. The standard norm on Kn  is the function from Kn  

to the nonnegative real numbers defined by: 

We will omit the K-subscripts whenever there is no ambiguity. 

Proposition 3.3. For all X,Y,Z E Kn  and A E K, 

(1) (X, Y + Z) = (X ,Y) + (X, Z), 

(2) (X + Y, Z) = (X, Z) + (Y, Z), 

(3) (AX, Y) = A(X, Y) and (X, AY) = (X, Y)A, 

(4) (X, Y) = (Y, X). 

Definition 3.4. 

• Vectors X,Y E Kn are called orthogonal  if  (X, Y) = 0. 

• A basis {X 1 , ...,X} of Kn  is called orthonormal  if (X,,Xj) 

equals 1 when i = j and equals zero when i j (that is, the 

vectors have norm 1 and are mutually orthogonal). 

• The standard orthonormal basis  of Kn is: 

e l  = (1,0,...,0), e2 = (0,1,0, ..., 0), ..., e n  = (0, ..., 0,1). 

When K --= R, the standard inner product is the familiar "dot 

product", described geometrically in terms of the angle 0 between 

X,Y E Rn : 

(3.4) 	 (X, 	= 1X1RIYIR c°S 0 . 

When K = C, the standard inner product is also called th( 
hermitian  inner product. Since the hermitian inner product of tw( 
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vectors X, Y E Cn is a complex number, we should separately in-
Lerpret the geometric meanings of its real and imaginary parts. The 
cleanest such interpretation is in terms of the identification 

f fn  cn R2n 

from the previous chapter. It is easy to verify that for all X, Y E Cn, 

(3.5) 	(X,Y)c = (f (x), f(Y)>a  + i(f (X), f (iY))R, 
(3.6) 	Ix lc = If (x)I 
It X, Y E Cn are orthogonal, then two things are true: 

(f (X), f (Y))R = 0 and ( f (X), f (111)R = O. 

' l'his observation leads to: 

Proposition 3.5. 	Xn } E Cn  is an orthonormal basis if and 
only if {f (X i ), f (iXi),..., f (Xn), f (iXn)} is an orthonormal basis of 
R 2'. 

When K = H, the standard inner product is also called the 
symplectic  inner product. For X, Y E Elln , the 1, i, j and k com-
ponents of (X, Y)E1 are best interpreted geometrically in terms of the 
identification h = f2n O gn Hn  R.  

(X,  Y)E 	(h(X), h(Y))E i(h(X), h(iY))E 

+j(h(X), h(jY))R k(h(X), h(kY))R• 

IX1E 	Ih(X)1R• 

l'roposition 3.6. {X1,...,X7 } E Eln  is an orthonormal basis if and 
only if the following is an orthonormal basis of R471 : 

	

h(X 1 ), h(iXi), h(jX1), h(kX1), 	h(X n ), h(iX n), h(jX h(kXn)}. 

The following inequality follows from Equation 3.4 when K = R: 

I 'roposition 3.7 (Schwarz inequality). For all X, Y E Kn , 

	

1(X,Y)1 	WI •  Y.  
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Proof. Let X, Y G Kn. Let a := (X, Y). Assume that X 	0 
(otherwise the proposition is trivial). For all A G K, we have: 

0 < 1AX + Y1 2  = (AX Y, AX Y) 

A(X,X)A + A(X, Y) + (Y, X)A + (Y, Y) 

lAl 2 1X1 2  + A(X,Y) + A (X'  Y) + 1 17 1 2 
 = 1Al2 1X1 2  + 2Re(Aa) + 1Y1 2 . 

Choosing A = —57/1X1 2  gives: 

0 < la1 2 /1X1 2  — 21a1 2 /IX1 2  ± 111 2 , 

which proves that al 1X1 	as desired. 

2. Several characterizations of the orthogonal 
groups 

Definition 3.8. The orthogonal group over K, 

On(K) {A E GL(K) I (X A,Y A) = (X,Y) for all X,Y E 110}, 

... is denoted 0(n) and called the orthogonal group  for K = 

... is denoted U(n) and called the unitary group  for K = C. 

... is denoted Sp(n) and called the symplectic group  for K = 

It is straightforward to see that On (K) is a subgroup of GLn (K). 
Its elements are called orthogonal,  unitary  or symplectic matrices. To 
describe their form, it is useful to denote the conjugate-transpose  of 

A E M n (K) as A* := (l.)T , where A means the matrix obtained by 
conjugating all of the entries of A. 

Proposition 3.9. For A E GL(K) the following are equivalent. 

(1) A E 0,(K). 

(2) RA preserves orthonormal bases; i.e., if {X 1 ,...,X n } is an 
orthonormal basis of Kn , then so is {RA(X1), •••,RA(Xn)}. 

(3) The rows of A form an orthonormal basis of Kn. 

(4) A • A* = I. 
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Proof. (1) 	>  (2) is obvious. (2) 	(3) because the rows of A 
equal {RA(ei),...,RA(e n )}. To see that (3) < 	> (4), notice that: 

(A •  A*) 	(row i of A) • (column j of A*) 

= (row i of A) • (row j of -11.) T  

-= ((row i of A), (row j of A)). 

Finally, we prove that (3) 	> (1). If the rows of A are orthonormal, 

then for all X = (xi, .••, xz), 	= (Yi, •••, Yn) E 

(RA(X),RA(Y)) 

= 
 K

E (row / of A), E ys (row s of A) 
i=i 	 s=i 

= E x i  ((row 1 of A), (row s of A)) -9 - 
1,s=1 

= 	+ • + xrivn  =  (X, Y).  

D 

Geometrically, 0(n) is the group of matrices A for which the lin-
ear transformation RA : Rn  preserves dot products of vectors, 
and hence also norms of vectors. Such transformations should be vi-
sualized as "rigid motions" of Rn (we will be more precise about this 
in Section 5). The geometric meanings of U(n) and Sp(n) are best 
described in terms 0(n) by considering the homomorphisms from the 
previous chapter. 

Proposition 3.10. 

(1) Pn(U(n)) = 0(2n) n pn (GL n (C)). 

(2) Tn (Sp(n)) = U(2n) n Wn (GLn (1111)). 

(3) (P2n ° Wn)(SP(n)) = 0(4n) n (p2n  o  kii 0 )(GLn (110). 

Since U(n) is isomorphic to its image, pn (U(n)), part (1) says 
that U(n) is isomorphic to the group of complex-linear real orthog-
onal matrices. In other words, U(n) is isomorphic to the group of 
rigid motions of R2n which preserve the standard complex struc-
ture. Similarly, part (3) says that Sp(n) is isomorphic to the group 
of quaternionic-linear real orthogonal matrices. 
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Proof. We prove only (1), since (2) is similar and (3) follows from 
(1) and (2). The most straightforward idea is to use Equation 3.5. A 
quicker approach is to first notice that for all A E Mn (C), 

Pn(A * ) P.(11 ) *  

If A E GL, (C), then  p(A) p n (A)* = p(A) p n (A*) = pn (A • A*), 
which shows that A E U(n) if and only if  p(A) E 0(2n). 	0 

We said that 0(K) is the group of matrices A for which RA 
preserves inner products of vectors, and hence also norms of vectors. 
The next result says that if RA preserves norms, then it automatically 
preserves inner products. 

Proposition 3.11. 

0n (K) = {A E GL(K) IRAPOI = 1X1 for all X e 

Proof. To prove the case K = R, we show that the inner product is 
completely determined by the norm. Solving the equation 

+ 	= (X + Y, X + Y)1R = (X, X)R + (Y, Y)fil + 2(X, rill 

for (X, Y)Ft gives: 

(X,  Y) = 1/2(IX + 	 Ira ) . 
So if RA preserves norms, then it also preserves inner products. 

The above argument doesn't work for K E {C,H} (why not?). 
Instead, we prove the case K = C as a consequence of the real case. 
Suppose A E GL,i (C) is such that RA :  Ci"  --> Cn is norm-preserving. 
Then  R(A) R2  -p 

 R also preserves norms, since for all X E Cn , 

R p,(A)(f Ti(X))1111 = n(R A(X))1R = A(X)1C = 1XIC = f rt(X )1R -

Therefore  p(A) G 0(n), which using Proposition 3.10 implies that 
A E U (n). 

The K =  1111  case is proven from the real case in a similar fashion. 
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3. The special orthogonal groups 

In this section, we define important subgroups of the orthogonal 
groups, beginning with the observation that: 

Proposition 3.12. If A E O(K), then I det(A)I = 1. 

Proof. Since A.  A* = I, 

1 = det(A • A*) = det(A) det(A*) = det(A) det(A) -= I  det(A)1 2 . 

We used the fact that det(A*) = det(A), which should be verified 
first for K E IR, Cl. The quaternionic case follows from the complex 
case because for quaternionic matrices, det(A) means det(Ta (A)), 
and Wn (A*) = W(A)* .  0 

The interpretation of Proposition 3.12 depends on K: 

• If A E 0(n), then det(A) -= +1. 

• If A E U(n), then det(A) = ei° for some 0 E [0,271- ).  

• If A E Sp(n), then Proposition 2.10 implies det(A) = +1. 
We will see later that det(A) = 1. 

The subgroup 

SO(n) : -= {A E 0(n) det(A) = 1} 

is called the special orthogonal group. The subgroup 

SU(n) : -= {A E U(n) det(A) = 1} 

is called the special unitary group. Both are clearly subgroups of the 
general linear group and in fact of the special linear group: 

SL(K) := {A E GL(K) det(A) = 11. 

Notice that SO(n) comprises the orthogonal matrices whose de-
terminants are one of two possibilities, while SU(n) comprises the 
unitary matrices whose determinants are one of a circle's worth of 
possibilities. We will see later that the relationship of SO(n) to 0(n) 
is very different from SU(n) to U(n). 
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4. Low dimensional orthogonal groups 

In this section, we explicitly describe On (K) for small values of n. 
First, 0(1) = {(1), (-1)} and  80 (1) = {(1)} are isomorphic to the 
unique groups with 2 and 1 elements respectively. 

Next, if A G 0(2), then its two rows form an orthonormal basis 
of R2 . Its first row is an arbitrary unit-length vector of R2 , which can 
be written as (cos 0, sin 0) for some O.  The second row is unit-length 
and orthogonal to the first, which leaves two choices: (— sin 0, cos 0) 
or (sin 0 , — cos 0). For the first choice, det(A) = 1, and for the second, 
det(A) = —1. So we learn: 

(3.7) 	S0(2) 
 = {(cosisn0 csin 0) 

os 8) 

0(2) = S0 (2) U 1(coso sin 0 
sin — cos 0) 

S0 (2) is identified with the set of points on a circle; its group op-
eration is addition of angles. 0(2) is a disjoint union of two circles. 
It is interesting that the disjoint union of two circles has a group 
operation. 

Next, SU(1) = {(1)} and U(1) = {(eio) e E [0, 2701, which is 
isomorphic to the circle-group 80 (2). 

Next, Sp(1) = {(a + bi + cj dk)  I  a2  + b2  + c2  + d2  = 1} 
is the group of unit-length quaternions,  which is naturally identified 
with the three-dimensional sphere S3  c R4  H. In fact, it follows 
from Equation 3.3 that the product of two unit-length quaternions 
is a unit-length quaternion. So we might have mentioned several 
pages ago the beautiful fact that quaternionic multiplication provides 

a group operation on the three-dimensional sphere! It turns out that 
80 , Si  and S3  are the only spheres which are also groups. 

We conclude this section by showing that SU(2) is isomorphic to 
Sp(1), and thus in some sense also has the shape of a 3-dimensional 
sphere. 

Proposition 3.13. SU(2) is isomorphic to Sp (l ). 

9 E  

E [0, 27r) . 
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Proof. First notice that 

z w 
li(Sp(1)) = 	 z, w E C such that 1z1 2  + 1w1 2  = 1} 

—w z 

is a subgroup of U(2) by Proposition 3.10, namely, the quaternionic-
linear 2-by-2 unitary matrices. Calculating the determinant of such 
matrices shows that W i (Sp(1)) C SU(2). We wish to prove that 
Ti(Sp(1)) = SU(2), so that W1 determines an isomorphism between 
Sp(1) and SU(2). 

Let A = ( z' ID ' E SU(2). An easily verified formula for the 
W2 Z2 

i  inverse of a 2-by-2 matrix is: A' -= det(A) (_ 
Z2 	—W1
w2 	zi ) . In our 

(Z2  —W1) = A- 1  = A . = (zi w2 case, det(A) -= 1 and 
— w2 	zi 	 7.--Ui 	,-2 ) ' 

which tells us that z2 = .Ti and w2 = —rui. It now follows that 
SU(2) = 1 1 i i (Sp(1)). LI 

5. Orthogonal matrices and isometries 

In this section, we describe 0(n) geometrically as the group of isome-
tries of 111n which fix the origin and discuss the difference between 
S0(3) and 0(3). 

The distance between points X -= (xl,...,xn ) and Y = (y1,..., yn) 

in IV is measured as: 

dist(X, Y) := IX — Y1 = -V(x l  — yi ) 2  + • • + (x  — yn ) 2 . 

A function f Rn 	Rn  is called an isometry  if for all X,Y E RV, 
dist(f (X), f (Y)) = dist (X, Y) . 

Proposition 3.14. 

(1) If A E 0(n) then RA :Rn  Rn  is an isometry. 

(2) If f : lR —4 Rn  is an isometry with f(0) = 0, then =RA 
for some A E 0(n). In particular, f is linear. 
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Proof. For A E 0(n) and X, Y E Rn, 

dist(RA(X),RA(Y)) = IRA(X) — RA(Y)1 = IRA(X —Y)1 

— IT! = dist(X ,Y), 

which proves that RA is an isometry. 

Conversely, suppose that f : 	IV is an isometry for which 
f (0) -= O. For any X E Rn , 

(X)I = dist ( f (X), 0) = dist( f (X), f (0)) = dist (X, 0) = XI, 

which shows that f preserves norms. We showed in the proof of 
Proposition 3.11 that inner products are determined by norms, so f 
also preserves inner products; that is, for all X,  Y E Rn, 

(,f (X), f (11) = (X,Y)- 

Let A be the matrix whose ith row is f (e,), so f (e i ) = RA  (e) for 
all i = 1, n. Notice that A E 0(n), since its rows are orthonormal. 
We will prove that f = RA (and thus that f is linear) by showing that 
g : -= (RA)' of  is the identity function. Notice that g is an isometry 
with g(0) = 0 (so g preserves norms and inner products, as above) 
and g(e i ) = ei  for all i = 1, n. Let X E Rn. Write X = E ai ei 
and g(X) = E Nei . Then, 

= (g(X), ei ) = (g(X), g(e i )) = (X, e) 

which proves g(X) =  X,  so g is the identity function. 

0(n) is the group of isometries of Rn which fix the origin and 
which therefore map the sphere .5' c Rn to itself. For example, 
elements of 0(3) represent functions from the "globe" S2  C IR3  to 
itself. We will see next that elements of S0 (3) represent real physical 
motions of the globe, which justifies our characterization of S0 (3) as 
the group of positions of a globe (Chapter 1, Section 1). 

To understand the difference between 0(3) and S0 (3), we must 
discuss the orientation of N 3 .  An ordered orthonormal basis of R3 , 
like {X1 , X2, X3 } , is called right-handed  if X1  x X2 = X3, where "x" 
denotes the vector cross product in R3 . Visually, this means that if 
the fingers of your right hand are curled from Xi  towards X2, then 
your thumb will point in the direction of X3. 
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Proposition 3.15. Let A E 0(3). Then A E  80(3) if and only if the 
rows of A, {RA(ei),RA(e2),RA(e3)}, form a right-handed orthonor-

mal basis. 

Proof. Let RA(el) = (a,b, c) and RA (e2) = (d, e, f) denote the first 
two rows of A. The third row is unit-length and orthogonal to both, 
which leaves two choices: 

RA(63) = ±(RA(e i ) x RA(e 2 )) = ±(b f — ce, cd — a f , ae — bd). 

A quick calculation shows that the "+" choice gives det(A) > 0, while 
the "-" choice gives det(A) < O. 	 0 

Elements of  80(3) correspond to "physically performable mo-
tions" of a globe. This statement is imprecise, but in Chapter 9 
we give it teeth by proving that every element of  80(3) is a rota-
tion through some angle about some single axis. An element of 0(3) 
with negative determinant turns the globe inside-out. For example, 

Rdiag(-1,-1,-1) maps each point of the globe to its antipode (its neg-
ative). This is not a physically performable motion. 

6. The isometry group of Euclidean space 

It is a straightforward exercise to show that 

Isom(Rn ) := { f : Rn 	f is an isometry} 

is a group under composition of functions. The subgroup of isometries 
which fix the origin is isomorphic to 0(n). An isometry, f,  that does 
not fix the origin is not linear, so cannot equal to RA for any matrix 
A. In this case, let V = f(0), so the function X f (X) — V is 
an isometry which fixes the origin and therefore equals RA for some 
A E 0(n). Therefore, an arbitrary isometry of Rn has the form 

f (X) = RA(X) + V 

for some A E 0(n) and V E Rn. 

There is a clever trick for representing any isometry of Rn as a 
matrix, even ones which do not fix the origin. Graphics programmers 
use this trick to rotate and translate objects on the computer screen 
via matrices. We first describe the n = 3 case. 
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Let A E 0(3) and V = (y 1 , v2, y3) E R3 . We will represent the 
isometry f (X) = RA(X) + V by the matrix: 

F  := (A 0) 
1) 

A11 

A21 

A31 

V1 

Al2 

A22 

A32 

V2 

A13 

A23 

A33 

V3 

0 

0 

1) 

1 

E GL4(R). 

Let X = (xi, x2, x3) E R3 . Denote (X,1) = (xi, x2, x3,1) E R4 . 
Notice that 

(X, 1) • F = (RA(X) V,1) E R4 . 

In this way, F represents f. 

The composition of two isometries, like the ones represented by 

= 	
1 

A1  ) and F2 	(
V2

A2 

 i) ' 

 is the isometry represented by 
VI.  

the product: 

(A1 0) 	g (A2 	( A1 • A2 	0 

VI 1 	V2 1) 	.FIA 2  (Vi) + V2 1) 

Matrix multiplication is quite useful here. It allowed us to see imme-
diately that the isometry X 1 —> RA,(X)± V1 followed by the isometry 
X RA,(X)+ V2 is the isometry X 1 —+ 

The above ideas also work for values of n other than 3. We 
conclude that Isom(Rn) is isomorphic to the following subgroup  ai 
GL 7,+i(R): 

Isom(Rn) { (
A 0

) IA E 0(n) and V E Rn} . 
V 1 

Notice that the following subgroup of Isom(Rn) is isomorphic 
to (Rn, +), which denotes Rn under the group-operation of vector-
addition: 

Trans(Rn) = ( vi  

 

VER'   . 

 

R(A 1 .A 2 )(X)+RA2(V1)± V2. 

This is the group of isometries of Rn which only translate and do no1 
rotate. It is interesting that (Rn, +) is isomorphic to a matrix group 
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7. Symmetry groups 

The symmetry group  of a subset X c Ti n is the group of all isometries 
of Rn which carry X onto itself: 

Definition 3.16. Symm(X):= If E Isom(Rn) I f (X) = Xl. 

The statement "f (X) = X" means that each point of X is sent 
by f to a (possibly different) point of X. 

For example, the symmetry group of the sphere Sn c IR. 92+1  equals 
the group of isometries of Rn+ 1  with no translational component, 
which is isomorphic to the orthogonal group: 

Symm(Sn ) = { (A  °) A E 0(n + 1), V = (0 , 0)} 0(n + 1). 
V 1 

In.an abstract algebra course, you probably met some important 
finite symmetry groups. For example, the symmetry group of a regu-
lar m-gon (triangle, square, pentagon, hexagon, etc.) centered at the 
origin in R2  is called the dihedral group  of order 2m, denoted Dm . 
The elements of Dm  with determinant +1 are called rotations; they 
form a subgroup of index 2 which is isomorphic to the cyclic group 
Z„,,, of order m. The elements of Dm  with determinant —1 are called 
flips. 

The fact that half of the elements of D, are rotations illustrates 
a general principal: 

Definition 3.17. Symm(X) = Symm ±(X)U Symm —  (X), where the 
sets 

Symm +  (X) := (vA 	det (A) = ±1} 

are respectively called the "direct" and 'indirect" symmetries of X. 

Proposition 3.18. For any X clItn, Symm +  (X) C Symm(X) is a 
subgroup with index 1 or 2. 

The proof is left to the reader in Exercise 3.4. An example of 
a set Y c R2  whose direct symmetries have index 1 (meaning all 
symmetries are direct) is illustrated in Figure 1. 

Symmetry groups of subsets of R2  are useful for studying ob-
jects which are essentially 2-dimensional, like snowflakes and certain 
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Figure 1. Symm(X) = D6, while Symm(Y) = Z6. 

crystal structures. Many subsets of R2 , like the wallpaper tilings of 
R2  illustrated in some M.C. Escher prints, have infinite symmetry 
groups. Chapter 28 of [5) describes the classification of such infinite 
"wallpaper groups". Perhaps surprisingly, the only finite symmetry 
groups in dimension 2 are D, and Zrn . The following theorem is 
attributed to Leonardo da Vinci (1452-1519): 

Proposition 3.19. For X c R2 , if Symm(X) is finite, then it is 
isomorphic to Dm  or Z, for some m. 

The proof involves two steps. First, when Symm(X) is finite, its 
elements must share a common fixed point, so it is isomorphic to a 
subgroup of 0(2). Second, Dm  and Zn, are the only finite subgroups 
of 0(2). 

Symmetry groups of subsets of R3  are even more interesting. In 
chemistry, the physical properties of a substance are intimately re-
lated to the symmetry groups of its molecules. In dimension 3, there 
are still very few possible finite symmetry groups: 

Theorem 3.20. For X C R3 , if Symm+ (X) is finite, then it is 
isomorphic to Dm , Zni,, A4, S4 or A5. 

Here, Sm  denotes the group of permutations of a set with m 
elements, and Am  C Sm  denotes the subgroup of even permutations 
(called the alternating group).  Like the n = 2 case, the proof involves 
verifying that all symmetries have a common fixed point and that the 
only finite subgroups of  80 (3) are Dm , Zrn, A4, 84 and A4- 

The regular solids provide examples of sets whose direct sym-
metry groups equal A4, S4 and A5. A regular solid (also called a 
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"platonic solid" or a "regular polyhedra") is a polyhedra whose faces 
are mutually congruent regular polygons, at each of whose vertices 
the same number of edges meet. A famous classification theorem, 
attributed to Plato around 400 B.C., says that there are only five 
regular solids, pictured in Figure 2. The regular solids were once con- 

Figure 2. The five regular solids. 

sidered to be sacred shapes, thought to represent fire, earth, air, the 
universe, and water. The fact that any other shape is "as symmetric" 
as one of these five (or is infinitely symmetric) enhances one's sense 
that the regular solids are of universal importance. 

It turns out that A4 is the direct symmetry group of a tetrahe-
dron, S4 is the direct symmetry group of a cube or an octahedron, 
and A5 is the direct symmetry group of a dodecahedron or an icosa-
hedron. See [6] for a complete calculation of these direct symmetry 
groups and a proof of Theorem 3.20. Since a cube has 6 faces, 12 
edges, and 8 vertices, it may be surprising that its direct symmetry 
group is 84. What does a cube  have 4 of which get permuted by its di-
rect symmetries? It has 4 diagonals (lines connecting antipodal pairs 
of vertices). This observation is the starting point of the calculation 
of its direct symmetry group. 

8. Exercises 

Ex. 3.1. Prove part (4) of Proposition 3.3. 
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Ex. 3.2. Prove equations 3.5 and 3.6. 

Ex. 3.3. Prove Proposition 3.5. 

Ex. 3.4. Prove Proposition 3.18. 

Ex. 3.5. Let A G GL,(K). Prove that A E On,OP if and only if the 
columns of A are an orthonormal basis of  K. 

Ex. 3.6. 

(1) Show that for every A E 0(2) — S 0 (2),  RA : ilre 	TR.2 jc  

a flip about some line through the origin. How is this lin( 
determined by the angle of A (as in Equation 3.7)? 

(2) Let B = 
( cos 	si n 8) 

E S0(2). Assume that is no 
— sin 0 cos 

an integer multiple of 7r. Prove that B does not commut( 
with any A E 0(2)-80(2). Hint: Show that RAB and 1TZB, 
act differently on the line in 1182  about which A is a flip. 

Ex. 3.7. Describe the product of two arbitrary elements of 0(2)  it 
terms of their angles (as in Equation 3.7). 

Ex. 3.8. Let A E 0(n) have determinant —1. Prove that: 

0(n) =- SO(n)U {A .BIBE SO(n)}. 

Ex. 3.9. Define a map f : 0(n) 	S 0 (n) x {+1, —1} as follows: 

f (A) = (det(A) • A, det A). 

(1) If n is odd, prove that f is an isomorphism. 

(2) Assume that n is odd and that X c Rn  is symmetric abou 
the origin, which means that — p E X if and only if p E X, 
Also assume that Symm(X) c 0(n); in other words, X ha 
no translational symmetries. Prove that Symm(X) is iso 
morphic to Symm + (X) x 1+1, —11. 
Comment: Four of the five regular solids are symmetri .  
about the origin. The tetrahedron is not; its direct symmetr 
group is A4 and its full symmetry group is 84 

(3) Prove that 0(2) is not isomorphic to 80 (2) x 1+1, — 1) 
Hint: How many elements of order two are there? 
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Ex. 3.10. Prove that Trans(Rn) is a normal subgroup of Isom(Rn). 

Ex. 3.11. Prove that the Affine group, 

Aff,(K) = (vA °i) A E GL,(K) and V E Kn} 

is a subgroup of GL ±i (K). Any F E Affn (K) can be identified with 
the function f(X) = RA(X) + V from Kn to Kn as in Section 6. 
Prove that f sends lines in Kn to lines in  K. A line in Kn means a 
set of the form { vo E W}, where v o  E Kn, and W c Kn is a 
1-dimensional K-subspace. 

Ex. 3.12. Is Aft (R) abelian? Explain algebraically and visually. 

/0 0 0 1\ 
1000  
0100  

\O 0 1 0- 

(1) Calculate RA(X,y,z,w). 

(2) Describe a subgroup, H, of 0(4) which is isomorphic to 
(84 = the group of permutations of a 4 elements set). 

Describe a subgroup, H, of 0(n) which is isomorphic to S. 
What is H n SO(n)? 

(4) Prove that every finite group is isomorphic to a subgroup 
of 0(n) for some integer n. Hint: Use Cayley's Theorem, 
found in any abstract algebra textbook. 

Ex. 3.14. Let g be a K-subspace of Kr' with dimension d. Let 
B = {X 1 ,...,Xd} be an orthonormal basis of g. Let f : g -4 g be 
1K-linear. Let A E Mn  (K) represent f in the basis B. Prove that the 
following are equivalent: 

(1) A E 0,(K). 

(2) ( f (X), f (Y )) = (X, Y) for all X, Y E g. 

Show by example that this is false when B is not orthonormal. 

Ex. 3.13. Let A = 

84 

(3) 





Chapter 4 

The topology of matrix 
groups 

This text is about the subgroups of GL(11(). So far, we have con-
sidered such a subgroup, G, as a purely algebraic object. Geometric 
intuition has been relevant only because RA is a motion of Kn for 
every A E G. 

We now begin to study G as a geometric object. Since 

{

Rn2  if K = R 

1[12n2  if K = C , 

R4n2  if K = El 

we can think of G as a subset of a Euclidean space, meaning Rm for 
some m. Many familiar subsets of Euclidean spaces, like the sphere 
Sn c Rn+ 1 , or the graphs of functions of several variables, have 
visualizable shapes. It makes sense to ask "what is the shape of 
G?" For example, we previously recognized the shape of Sp(1) as the 
three-dimensional sphere S 3 . 

In this chapter, we learn some topology, which provides an ideal 
vocabulary for discussing the shape of a subset G c  R. Is it com-
pact? path-connected? open? closed? We will define and briefly 
discuss these terms and apply them to subgroups of the general lin-
ear groups. 

51 



52 	 4. The topology of matrix groups 

1. Open and closed sets and limit points 

The natural distance function  on RI' was defined in Section 3.5 as 
dist(X, Y) :--= IX —  Y. Its most important property is: 

Proposition 4.1 (The Triangle Inequality). For all X, Y,  Z E Rm, 

dist(X , Z) < dist(X ,Y) + dist(Y, Z). 

Proof. For all V, W E RI', the Schwarz inequality (Proposition 3.7) 
gives: 

IV + WI 2  = 	+2(V,W) + 

IV 2  + 2 1 17 1 I WI  + IWI 2  = 	+ IWI) 2 . 

Thus, IV + WI < IVI + 'WI. Applying this inequality to the vectors 
pictured in Figure 1 proves the triangle inequality. 

Figure 1. Proof of the triangle inequality. 

0 

Our study of topology begins with precise language for discussing 
whether a subset of Euclidean space contains its boundary points. 
First, for p E R771  and r > 0, we denote the ball about p of radius r  
as: 

B (p, r) := {q E Er I dist(p, q) < r} . 

In other words, B(p, r) contains all points closer than a distance r 
from p. 

Definition 4.2. A point p E Rm is called a boundary point of a subset 
S c Rtm  if for all r > 0, the ball B(p,r) contains at least one point' 
in S and at least one point not in S. The collection of all boundary.  
points of S is called the boundary  of S. 
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Sometimes, but not always, boundary points of S are contained 
in S. For example, consider the "open upper half-plane" 

H := {(x,y) E R2  y > 

and the "closed upper half-plane" 

H := {(x,y) E R2  I y > 0 } . 

The x-axis, {(x, 0) E R 2 }, is the boundary of H and also of H. So 
H contains none of its boundary points, while H contains all of its 
boundary points. This distinction is so central we introduce vocabu-
lary for it: 

Definition 4.3. Let S c I' be a subset. 

(1) S is called open  if it contains none of its boundary points. 

(2) S is called closed  if it contains all of its boundary points. 

In the previous example, H is open, while H is closed. If part 
of the x-axis is adjoined to H (say the positive part), the result is 
neither closed nor open, since it contains some of its boundary points 
but not all of them. 

A set S C Rm  and its complement SC := fp E  m p ■ 1 51 
clearly have the same boundary. If S contains none of these common 
boundary points, then SC must contain all of them, and vice-versa. 
So we learn that: 

Proposition 4.4. A set S C Rni is closed if and only if its comple-

ment, Sc, is open. 

The following provides a useful alternative definition of "open": 

Proposition 4.5. A set S C Rni is open if and only if for all p E S, 
there exists r > 0 such that B(p,r) C S. 

Proof. If S is not open, then it contains at least one of its boundary 
points, and no ball about such a boundary point is contained in S. 
Conversely, suppose that there is a point p E S such that no ball 
about p is contained in S. Then p is a boundary point of S, so S is 
not open. 
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The proposition says that if you live in an open set, then so do 
all of your sufficiently close neighbors. How close is sufficient depends 
on how close you live from the boundary. For example, the set 

S := (0, oo) c IR  

is open because for any x E S, the ball B(x, x/2) = (x/2,  3x/2)  lies 
inside of S. When x is close to 0, the radius of this ball is small. 

0 	x/2 	X 	3x/2 

Figure 2. The set (0, oo) c R is open because it contains a 
ball about each of its points. 

Similarly, for any p E Im  and any r > 0, the ball B := B(p,r) is 
itself open because about any q E B, the ball of radius (r —dist(p,q))/2 
lies in B (by the triangle inequality). 

Figure 3. The set B(p,r) C Rrn is open because it contains 
a ball about each of its points. 

The collection of all open subsets of Rtm  is called the topology  of 
Rm. It is surprising how many important concepts are topological, 
that is, definable purely in terms of the topology of Rm. For example, 
the notion of whether a subset is closed is topological. The distance 
between points of Rrn is not topological. The notion of convergence 
is topological by the second definition below, although it may not 
initially seem so from the first: 
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Definition 4.6. An infinite sequence {p i ,p2 ,...} of points of Rin is 
said to converge to p E Rrn if either of the following equivalent con-
ditions hold: 

(1) lim,, dist(p,pn ) = O. 

(2) For every open set,  U, containing p, there exists an integer 

N such that pr,  e U for all n> N.  

p P 2 p3  
• • 

• P4 

Figure 4. A convergent sequence is eventually inside of any 
open set containing its limit. 

Definition 4.7. A point p E lErl is called a limit point of a subset 

S C Rm if there exists an infinite sequence of points of S which 

converges to p. 

Any point p  e S is a limit point of S, as evidenced by the re-
dundant infinite sequence {p, p , p, .} . Any point of the boundary of 
S is a limit point of S as well (why?). In fact, the collection of limit 
points of S equals the union of S and the boundary of S. Therefore, 
a set S c Rm is closed if and only if it contains all of its limit points, 

since this is the same as requiring it to contain all of its boundary 
points. 

It is possible to show that a sequence converges without knowing 
its limit just by showing that the terms get closer and closer to each 
other; more precisely, 

Definition 4.8. An infinite sequence of points {pi,p2,...} in Rm is 
called a Cauchy sequence  if for every E > 0 there exists an integer N 
such that dist(pi,pi) < E for all i, j >  N.  

It is straightforward to prove that any convergent sequence is 
Cauchy. A fundamental property of Euclidean space is the converse: 
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Proposition 4.9. Any Cauchy sequence in Rn2  converges to some 

point of Rm. 

We end this chapter with an important relative notion of open 
and closed: 

Definition 4.10. Let ScGc Rm be subsets. 

(1) S is called open in G  if for all p E  S,  3r > 0 such that 

{ q E G I dist(p, q) r}  C S. 

(2) S is called closed in G  if {p EGIp çt SI is open in G. 

For example, the interval (0,1) is open in R, while the interval 
[0,1] is closed in R. The interval [0,1) is neither open nor closed in 

, but is open in  [0,2]  and is closed in (-1,1). 

The definition says that if you live in a set that's open in G, then 
so do all of your sufficiently close neighbors in G. An alternative 
definition is: 

Proposition 4.11. Let ScGc lirkm . Then S is open (respectively 
closed) in G if and only if S=UnG for some open (respectively 
closed) subset U of Rm. 

For example, if G =  S 2 = {(x, y, z) E R3  I x2  +y2  + z2 = 1 } , 

 then the "open upper hemisphere" {(x, y, z) EGIz> 0} is open in 
G, because it is the intersection with G of the following open set: 

{(x,y,z) E R3  z> 0}. 

Our previous characterization of closed sets  as those which con-
tain all their limit points generalizes as follows: 

Proposition 4.12. Let ScGc Rm . Then S is closed in G if and 
only if every p E G which is a limit point of S is contained in S 

A set S is called dense  in G if every point of G is a limit point of 
S. For example, the irrational numbers are dense in R. 

Let pEGC Rm. A neighborhood of p in G means a subset of 
G which is open in G and contains p For example, (1 — e,1 + e) 
is a neighborhood of 1 in  (0,2)  for any E E (0,1]. Also, [0, e) is a 
neighborhood of 0 in [0, 1] for any E E (0,1]. 
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The collection of all subsets of G that are open in G is called 
the topology  of G. In the remainder of this chapter, pay attention 
to which properties of a set G are topological, that is, definable in 
terms of only the topology of G. For example, the notion of a se-
quence of points of G converging to p e G is topological. Why? 
Because convergence means that the sequence is eventually inside of 
any neighborhood of p in Rm; this is the same as being eventually 
inside of any neighborhood of p in G, which has only to do with the 
topology of G. The idea is to forget about the ambient Rni and regard 
G as an independent object with a topology and hence a notion of 
convergence. 

2. Continuity 

Let G1 c likm1  and G2 C RM2  . A function f : G1 	G2 is called 
continuous if it maps nearby points to nearby points; more precisely: 

Definition 4.13. A function f : G1 G2 is called continuous if for 
any infinite sequence {pi  ,p2, ...} of points in G 1  which converges to a 
point p E G 1 , the sequence { f (pi), f (p2), ...} converges to f (p). 

For example, the "step function" f : R 	defined as 

if x < 0 
f (x) = {° 

1 if x > 0 

is not continuous. Why? Because the sequence 

{1/2, 1/3, 1/4, ...} 

in the domain of f converges to 0, but the images 

{f(1/2) = 1, f(1/3) = 1, f(1/4) = 1,...} 

converge to 1 rather than to  f(0) = O. 

Notice that f is continuous if and only if it is continuous when 
regarded as a function from G 1  to 1 irkm 2 . It is nevertheless useful to 
Forget about the ambient Euclidean spaces and regard G 1  and G2 

as independent objects. This vantage point leads to the following 
beautiful, although less intuitive, way to define continuity: 
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Proposition 4.14. For f : G1 	G2, the following are equivalent: 

(1) f is continuous. 

(2) For any set U that's open in G2, f -1 (U) is open in G 1 . 

(3) For any set U that's closed in G2, f -1 (U) is closed in G1 . 

Here, f (U) denotes the set -LI) E G1  j  f (p) E Ul. The above 
step function fails this continuity test because 

f -1- ((-1/2,1/2)) =  (-oc,  O],  

which is not open. 

It is now clear that continuity is a topological concept, since this 
alternative definition involved only the topologies of G1  and G2- 

Familiar functions from r to R, like polynomial, rational, trigono-
metric, exponential, and logarithmic functions, are all continuous or 
their domains. It is straightforward to prove that: 

Proposition 4.15. The composition of two continuous functions i: 
continuous. 

We next wish to describe what it means for G1 and G2 to b( 
"topologically the same". There should be a bijection between then 
which pairs open sets with open sets. More precisely, 

Definition 4.16. A function f : G1 	G2 is called a homeomorphisr 
if f is bijective and continuous and f —1  is continuous. If such a fun( 
tion exists, then G1 and G2 are said to be homeomorphic. 

Figure 5. Homeomorphic sets. 
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Homeomorphic sets have the same "essential shape", like the two 
subsets of 1113  pictured in Figure 5. The hypothesis that f -1  be con-
tinuous is necessary. To see this, consider the function f : [0, 27r) 
S1  c R2  defined as f (t) = (cos t, sin t). It is straightforward to check 
that f is continuous and bijective, but f —1  is not continuous (why 
not?). We will see in Section 4 that [0, 27r) is not homeomorphic to 
S1 , since only the latter is compact. 

3. Path-connected sets 

Definition 4.17. A subset G C Rm is called path-connected if for 
every pair p,q E G, there exists a continuous function f : [0, 1] G 
with f (0)  -= p and  f(1) = q. 

The terminology comes from visualizing the image of such an f 
as a "path" in G beginning at p and ending at q. 

For example, the disk A = {(x,y) E IV I X2  + y2  < 1} is path-
connected, since any pair p, q E A can be connected by the straight 
line segment between them, explicitly parameterized as 

At) := p + t(q p). 

But the disjoint union of two discs, 

B = fp E R2  dist(p, (-2, 0)) < 1 or dist(p, (2, 0)) < 11, 

is not path-connected, because no continuous path exists between 
points in different disks (why not?). 

Figure 6. A is path-connected, while B is not. 

In the non-path-connected example, the right disk is clopen (both 
open and closed) in B, and therefore so too is the left disk. In other 
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words, B decomposes into the disjoint union of two subsets which 
are both clopen in B. Such a separation of a path-connected set is 
impossible: 

Proposition 4.18. A path-connected set G c Rm has no clopen 
subsets other than itself and the empty set. 

Proof. We first prove that the interval [0,1] has no clopen subsets 
other than itself and the empty set. Suppose A c [0,1] is another 
one. Let t denote the infimum of A. Since A is closed, t E A. Since A 
is open, there exists r > 0 such that all points of  10, 1] with distance 
< r from t lie in A. This contradicts the fact that t is the infimum 
of A unless t = 0. Therefore, 0 E A. Since the complement A' of 
A is also clopen, the same argument proves that 0 E Ac, which is 
impossible. 

Next, let G c Rrn be any path-connected set. Suppose that 
A C G is a clopen subset. Suppose there exist points p,q E G such 
that p E A and q ,% A. Since G is path-connected, there exists 
a continous function f : [0, 1] G with f (0) = p and  f (1) = q. 
Then f —1 (A) is a clopen subset of [0,1] which contains 0 but not 1, 
contradicting the previous paragraph. 

In practice, to prove that a property is true at all points in a 
path-connected set, it is often convenient to prove that the set of 
points where the property holds is non-empty, open, and closed. 

Since continuity is a topological notion, so is path-connectedness. 
In particular, 

Proposition 4.19. If Gl c IRml. and G2 C RM2  are homeomorphic, 
then either both are path-connected or neither is path-connected. 

4. Compact sets 

The notion of compactness is fundamental to topology. We begin 
with the most intuitive definition. 

Definition 4.20. A subset G C Fr' is called bounded  if G C B(p,r) 
for some p E Ili' and some r > 0. Further, G is called compact  if it 
is closed and bounded. 
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Compact sets are those which contain their limit points and lie 
in a finite chunk of Euclidean space. Unfortunately, this definition is 
not topological, since "bounded" cannot be defined without referring 
to the distance function on R'. In particular, boundedness is not 
preserved by homeomorphisms, since the bounded set (0, 1) is home-
omorphic to the unbounded set R. Nevertheless, compactness is a 
topological notion, as is shown by the following alternative definition: 

Definition 4.21. Let G C Rm. 

(1) An open cover of G is a collection, 0, of sets which are open 

in G, whose union equals G. 

(2) G is called compact if every open cover, 0, of G has a finite 

subcover, meaning a finite sub-collection {U1, ...,Un }  c 
whose union equals G. 

The equivalence of our two definitions of compactness is called 
he  Heine-Borel Theorem.  The easy half of its proof goes like this: 

Suppose that G is not bounded. Then the collection 

{p E G I dist(0,p) < n}, 

for n = 1, 2, 3, ..., is an open cover of G with no finite subcover. 
Next suppose that G is not closed, which means it is missing a limit 
point q E Rm. Then the collection {p E G I dist(p, q) > 1/n}, for 
ii  = 1, 2, 3, ..., is an open cover of G with no finite subcover. 

The other half of the proof is substantially more difficult. We 
content ourselves with a few examples. 

The open interval (0,1) c R is not compact because it is not 
closed or because 

O = {(0,1/2), (0,2/3), (0,3/4), (0, 4/5)...} 

is an open cover of (0, 1) which has no finite subcover. 

The closed interval [0,1] is compact because it is closed and 
I ounded. It is somewhat difficult to prove directly that every open 
cover of [0,1] has a finite subcover; attempting to do so will increase 
your appreciation of the Heine-Borel Theorem. 

Since our second definition of compactness is topological, it is 
straightforward to prove that: 
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Proposition 4.22. If G c Rml and G2 C Rm2  are homeomorphic, 
then either both are compact or neither is compact. 

There is a third useful characterization of compactness, which 
depends on the notion of sub-convergence. 

Definition 4.23. An infinite sequence of points {pi, P2) P3) • • • } in  Rtm  
is said to sub-converge to p E Rm if there is an infinite sub-sequence, 

{Pi,' Pi, , Pi3 , •••} (with i 1  < i2 < i3 < ) which converges to p. 

Proposition 4.24. A subset G c IR'n is compact if and only if every 

infinite sequence of points in G sub-converges to some p E G. 

For example, the sequence {1/2,  2/3,3/4,  ...} in G ----- (0, 1) sub-
converges only to 1 0 G, which gives another proof that (0, 1) is not 
compact. 

The next proposition says that the continuous image of a compact 
set is compact. 

Proposition 4.25. Let G c 1187n 1  . Let f : G —> Rm2  be continuous. 

If G is compact, then the image f (G) is compact. 

Proof. The function f is also continuous when regarded as a function 
from G to f (G). Let  O be an open cover of f (G). Then f -1- (U) is 
open in G for every U E 0, SO f -1 (0) := {r i (U)  I U E 0} is  an 
open cover of G. Since G is compact, there exists a finite subcover 

f -1- (Un )} of f -1 (0). It is straightforward to check that 
{U1, U2, ..., Un } is a finite subcover of O. 	 El] 

Corollary 4.26. IfGcRm is compact and f : G 	R. is continuous, 

then f attains is supremum and infimum. 

The conclusion that f attains is supremum means two things. 
First, the supremum of f (G) is finite (because f (G) is bounded). 
Second, there is a point p E G for which f (p) equals this supremum 
(because f (G) is closed). 

5. Definition and examples of matrix groups 

As mentioned earlier in this chapter, a subgroup G C GL(K) can 
be considered a subset of Euclidean space, so we can ask whether it 
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is open, closed, path-connected, compact, etc. The title of this book 
comes from: 

Definition 4.27. A matrix group is a subgroup G c GL(K) which 
is closed in GL,(K). 

The "closed" hypothesis means that if a sequence of matrices in 
G has a limit in GL,,(K), then that limit must lie in G. In other 
words, G contains all of its non-singular limit points. 

We now verify that several previously introduced subgroups of 
GL,-,(K) are closed and are therefore matrix groups. 

Proposition 4.28. On (K), SLn(K), SO(n) and SU(n) are matrix 
groups. 

Proof. We must prove that each is closed in GL,-,(K). For On (K), 
define f : Mn (K) M n (K) as f (A) := A. A*.  This function f is 
continuous, because for each i, j, the K-valued function 

fij  (A) :=  (A.  

is continuous because it is a polynomial in the entries of A. The 
single-element set {I} c Mn (K) is closed, so On (K) = f -1 ({I}) is 
closed in Mn (K) and is therefore closed in  GL (K). 

For SLn (K), we first prove the function det : Mn (K) R or C is 
continuous. When K E {R,C}, this is because det(A) is an n-degree 
polynomial in the entries of A by Equation 1.5. When K = H, this is 
because det(A) is shorthand for det(.1.,(A)), and the composition of 
two continuous functions is continuous. Since the single-element set 
{ 1} is closed, SL,(IK) = det -1 ({1}) is closed in Mn (K) and therefore 
also in GL.n (K). 

For SO(n) and SU (n), notice that SO(n) = 0(n) n SL(I1) and 
SU(n) = U(n) n sL n (c), and the intersection of two closed sets is 
closed. 

In the remainder of this book, we will emphasize compact matrix 
groups, so the following proposition is crucial: 

Proposition 4.29. Each of the groups 0(n), SO(n), U(n), SU(n) 
(Ind Sp(n) is compact for any n. 
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Proof. In proving above that these groups are closed in  GL (K),  we 
actually proved the stronger fact that they are closed in the Euclidean 
space Mn (K). So it remains to prove that these groups are bounded, 
which follows from the fact that each row of A E On  (K) is unit-length; 
see part (3) of Proposition 3.9. 

In the exercises, you will verify that several other familiar matrix 
groups are non-compact, like G L,,(K) for n > 1 and S L n (K) for 
n > 2. 

Why did we define matrix groups to be closed in G L,„(K)? Be-
cause, as we will see later, non-closed subgroups are not necessarily 
manifolds. Exercises 4.23 and 4.24 exhibit the bad behavior of non-
closed subgroups which underlies this fact. Nevertheless, the hypoth-
esis that matrix groups are closed will not be used until Chapter 7. 
Until then, the facts we prove about matrix groups will also be true 
for non-closed subgroups of G L n (K). 

6. Exercises 

Ex. 4.1. Prove Proposition 4.11. 

Ex. 4.2. Prove Proposition 4.12. 

Ex. 4.3. Prove Proposition 4.14. 

Ex. 4.4. Prove Proposition 4.15. 

Ex. 4.5. Prove Proposition 4.19. 

Ex. 4.6. Prove Proposition 4.22. 

Ex. 4.7. Prove that  GL(K) is open in  M(K). 

Ex. 4.8. Prove that GL„(K) in non-compact when n > 1. Prove 
that  SL(K) is non-compact when n > 2. What about SLi (K)? 

Ex. 4.9. Let G be a matrix group. Prove that a subgroup H c G; 
which is closed in G is itself a matrix group. 

Ex. 4.10. Prove that SO(n) and 

{A E 0(n) I det(A) = —1} 

are both clopen in 0(n). 
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Ex. 4.11. Prove that Affr, (K) C GL,i+i(K) (defined in Exercise 3.11) 
is a matrix group. Show that Affri (K) is NOT closed in Mn+i(K).  Is 
Affri  (K) compact? 

Ex. 4.12. A matrix A E 	(K) is called upper triangular  if all 
entries below the diagonal are zero; i.e., Aza  = 0 for all i < j. Prove 
that the following is a matrix group: 

UT, (K) = {A E GL(K) A is upper triangula* 

Show that  UT(K) is not closed in M(K). Is  UT(K) compact? 

Ex. 4.13. Prove that Isom(Rn) is a matrix group. Is is compact? 

Ex. 4.14. Prove that SO(3) is path-connected. 

Ex. 4.15. Prove that Sp(1) is path-connected. 

Ex. 4.16. Prove that the image under a continuous function of a 
path-connected set is path-connected. 

Ex. 4.17. We will prove later that Sp(n) is path-connected. As-
suming this, and using Propositions 2.10 and 3.12, prove that the 
determinant of any A E Sp(n) equals 1. 

Ex. 4.18. Prove that On  (K) is isomorphic to a subgroup of On±i(K). 

Ex. 4.19. Prove that U(n) is isomorphic to a subgroup of SU(n+1). 

Ex. 4.20. Let G c GL,(R) be a compact subgroup. 

(1) Prove that every element of G has determinant 1 or —1. 

(2) Must it be true that G c 0(n)? 
Hint: Consider conjugates of 0(n). 

Ex. 4.21. There are two natural functions from SU(n) x U(1) to 
U(n). The first is fi (A, (A)) :=  A.  A. The second is h(A, (A)) := the 
result of multiplying each entry of the first row of A times A. 

(1) Prove that fi  is an n-to-1 homomorphism. 

(2) Prove that 12 is a homeomorphism but not a homomor-
phism. 

Later we will prove that U(n) is not isomorphic to SU(n) x U(1), 
even though they are homeomorphic. 
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Ex. 4.22. SO(2) is a subgroup of SL2(R). Another is: 

H = {(a0 ab_ 1 ) E M2 (IR)Ict 0}. 

Prove that the function f : SO(2) x H —> S L2 (R) defined as f (A, B) 
A- B is a homeomorphism, but not a homomorphism. This is a special 
case of the polar decomposition theorem, which states that  SL(R) 
is homeomorphic to SO(n) times a Euclidean space. 

Ex. 4.23. Let A E R be an irrational multiple of 27r. Define 

G 	{(e Ati )It E Z} c U(1) c GLi(C). 

Prove that G is a subgroup of GL i  (C), but not a matrix group. Prove 
that G is dense in U(1). 

Ex. 4.24. Let A E I I  be an irrational multiple of 27. Define 

 

f (e" 	0 	 ii  0 
G  = 1 0 eAti  ) t 

ER} C = G { (e0 esi) t, s E RI C GL2(C). 

(1) Prove that G and G are subgroups of GL2(C). 

(2) Prove that G is dense in G. 
e ti 	0 

(3) Define f : R 	G as follows: f (t) = ( 0  oti 	Show  

that f is an isomorphism (with R considered a group under 
addition), but not a homeomorphism. 

Ex. 4.25. Let G C GL, ( R) denote the set of matrices whose deter-
minants are integer powers of 2. Is G a matrix group? 

Ex. 4.26. Prove or find a counterexample of each statement: 

(1) If X c Rn is compact, then Symm(X) is compact. 

(2) If Symm(X) is compact, then X is compact. 



Chapter 5 

Lie algebras 

A matrix group G c  GL (1K)  is a subset of the Euclidean space 
M(K), so we can discuss its tangent spaces. 

Definition 5.1. Let G c Rtm  be a subset, and let p E G. The 
tangent space  to G at p is: 

TG 	{7' ( 0 ) 	€) 	G is differentiable with -y(0) =  p}.  

In other words, TG  means the set of initial velocity vectors of 
differentiable paths though p in G. The term differentiable means 
that, when we consider -y as a path in Rm, the m components of -y 

are differentiable functions from (—e, e) to R. 

(A) 
	

(B) 	 (C) 

If G c R 3  is the graph of a differentiable function of two variables, 
then TG  is a 2-dimensional subspace of R3 , as in Figure A (subspaces 
always pass though the origin; its translate to p is actually what is 

67 
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drawn). For a general subset G c ll ,  TG  is not necessarily E 

subspace of Rm. In Figure B, the tangent space is two sectors, whil( 
in Figure C, the tangent space is {O. 

Definition 5.2. The Lie algebra  of a matrix group G c GL,(K) 

	

the tangent space to G at I. It is denoted g 	g(G):= 

In this chapter, we prove that g is a subspace of the Euclideai 
space M(K). This is our first evidence that matrix groups are "nice' 
sets (you should picture them like Figure A, not like B or C; we wil 
make this precise when we prove that matrix groups are manifold 
in Chapter 7). We also describe the Lie algebras of many familia 
matrix groups. 

The Lie algebra is an indispensable tool for studying a matri: 
group. It contains a surprising amount of information about th 
group, especially together with the Lie bracket operation, which w 
will discuss in Chapter 8. In much of the remainder of this book, w 
will learn about matrix groups by studying their Lie algebras. 

1. The Lie algebra is a subspace 

Let G c GL(K) c 111,(K) be a matrix group. At the beginnin 
of Chapter 4, we described how 111,(K) can be identified with a Et 
clidean space. For example, M2(C) R8  via the identification: 

(a+bi 
e+ fi g + hi 

This identification allows us to talk about tangent vectors to diffe) 
entiable paths in M(K). For example a differentiable path in M2 (C 
has the form: 

(a(t) + b(t)i c(t) + d(t)i) 
y(t) = 

e(t) + f (t)i g(t) + h(t)i)'  

where a(t) through h(t) are differentiable functions. The derivath 
is: 

/ 	
(a/ (t) 	b'(t)i c'(t) 	d'(tM 

= 7(t)  
eV) + f(t)i g' (t) + h'(t)i) 

Matrix multiplication interacts with differentiation in the followir 
way. 
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Proposition 5.3 (The product rule). If -y„ : (— E,E) 	M(K) are 
differentiable, then so is the product path (7 • O)(t) := -y(t) • OW, and 

' 13Y (t) = 7(0 • iflt) + 'AO • 0(0. 

Proof. When n = 1 and IK = ill, this is the familiar product rule 
from calculus. When n = 1 and IK = C, we denote -y(t) a(t) + b(t)i 
and OW = c(t)+d(t)i. Omitting the t's to shorten notation, we have: 

(-y • fi')' = ((ac — bd) + (ad + bc)i)' 

= (ac' + a' c — bd' — b'd) + (ad' + d + bc' + c)i 

((ac' — bd') + (ad' + bc')i) + ((a' c — d) + (a' d + b'c)i 

= 	0/  + -ri • 0. 

When n = 1 and IK = IHI, an analogous argument works. This com-
pletes the n = 1 case. For the general case, since 

(.7  . 0)(0)„= 	(t)i1  
1=1 

the derivative is: 

((7 • ,3)'  (t))ij 	= 	7(t)i 1  /34 (t) 1j 	0(t)lj 
1=1 

= (-r(t) • 0'(t))u + (-y(t) • 

If  y  : ( — E, e) ---> GL(K) is a differentiable path, so is the inverse 
path t 	y(t) 1  (see Exercise 5.16). The product rule gives: 

dd 
Tit  (-y(t)-y(t) -1 ) -= -y' (t)7(0 -1  + ry(t) --ort  (7(t) -1 ) 

When y(0) = /, the solution is particularly clean: 

(5.1) 
	

L c, (7(, ) —1 ) = 
In other words, the inverse of a path through I goes through / in the 
opposite direction. 

Another consequence of the product rule is the main result of this 
section: 
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Proposition 5.4. The Lie algebra g of a matrix group G C GL, (EC) 
is a real subspace  of 111,(1K). 

Proof. Let  À E R and A e g, which means that A = -y'(0) for some 
differentiable path -y(t) in G with 7(0) = I. The path  a(t) := -y(A • t) 
has initial velocity vector o-'(0) = A, which proves that À  - A E g. 

Next let A, B E g, which means that A = -y'(0) and B =- [31 (0) 
for some differentiable paths -y, in G with -y(0) = [3(0) = I. The 
product path o- (t) -y(t) • NO is differentiable and lies in G. By the 
product rule, o'(0) -= A + B, which shows that A + B E g. 

The fact that Lie algebras are vector spaces over R allows us to 
define an important measurement of the size of a matrix group: 

Definition 5.5. The dimension of a matrix group G means the di-
mension of its Lie algebra. 

Even though Mn (C) Cn 2  is a vector space over C (rather than 
just a vector space over R), the Lie algebra of a complex matrix group 
G C GL,(C) is NOT necessarily a C-subspace of Mn (C). Similarly, 
the Lie algebra of a quaternionic matrix group need not be an H-
subspace of Mn (H). The dimension of a matrix group always means 
the dimension of its Lie algebra regarded as a REAL vector space. 

2. Some examples of Lie algebras 

In this section, we describe the Lie algebras of three familiar matrix 
groups. Lie algebras are denoted in lower case; for example, gl(K) 
denotes the Lie algebra of  GL (K).  

Proposition 5.6. glri (K) = Mn (IK). In particular, 
dim(GLn (R)) = n2 , dim(GLn (C)) = 2n2  and dim(GLn (H)) = 4n4 . 

Proof. Let A e M(K). The path -y(t) := 	t• A in Mn (K) satisfies 
-y(0) = I and -y'(0) = A. Also, -y restricted to a sufficiently small 
interval (—e, e) lies in GLn (K). To justify this, notice det(-y(0)) = 1. 
Since the determinant function is continuous, det(-y(t)) is close to 1 
(and is therefore non-zero) for t close to 0. This demonstrates that 
A E gln (K).  Eli  
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The general linear groups are large; all matrices are tangent to 
paths in them. But matrices in the Lie algebras of other matrix 
groups have special forms. 

Proposition 5.7. The Lie algebra u(1) of U(1) equals span{(i)}, so 
dim(U(1)) = 1. 

Proof. The path -y(t) = (e it ) in U(1) satisfies -y(0) 
-AO) = (i), so (i) E u(1). Therefore span{(i)} c u(1). 
inclusion, let 7(t) = (a(t) + b(t)i) be a differentiable 
with 7(0) = / (1). Since 1-y(t)1 2  = a(t) 2  + b(t) 2  = 
a(0) = 1 must be a local maximum of a(t), so a/ (0) = 
-AO) E span{(i)}. 

= I and has 
For the other 
path in U(1) 
1, the value 

0. Therefore 

A similar argument shows that dim(S0(2)) = 1. We will see later 
that smoothly isomorphic matrix groups have the same dimension. 

Proposition 5.8. The Lie algebra of Sp(1) is 

sp(1) = span{(i),(j),(k)}, 

so dim(Sp(1)) -= 3. 

Proof. The path 71(t) = (cos(t)+sin(t)i) in Sp(1) satisfies 71(0) = I 
and 'y(0) = (i), so i E sp(1). Similarly, 72(t) = (cos(t) + sin(t)j) 
and 73(0 = (cos(t) + sin(t)k) have initial velocities 7(0) 	(j) and 

(k). So span{(i), (j), (k)} c sp(1). 

For the other inclusion, let -y(t) =- (a(t) + b(t)i + c(t)j + d(t)k) be 
a differentiable path in Sp(1) with -y(0) =  I = (1). Since 

= a(t) 2  + b(t) 2  + c(t) 2  + d(t) 2  = 1, 

the value a(1) = 1 must be a local maximum of a(t), so a/ (0) = 0. 
Therefore -AO) E span{(i), (j), (k)}. 	 111 

In Figure 1, the circle group U (1) and its Lie algebra are pictured 
on the left. The right image inaccurately represents Sp(1) as S2  c 1183  
rather than S 3  C 1[14 , but is still a useful picture to keep in mind. 

We end this section by describing the Lie algebras of the special 
linear groups. 
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Figure 1. The Lie algebras of U(1) and Sp(1). 

Theorem 5.9. Let K G {R, C}. The Lie algebra slr,(K) of SL(K) 
is: 

s/n (K) = {A E M(K) I trace(A)= 01. 

In particular, dim(SL(1[8)) = n2  — 1 and dim(SL(C)) -= 2(n 2  — 1). 

The proof relies on the important fact that the trace is the de-
rivative of the determinant; more precisely, 

Lemma 5.10. Let K E {R,C}. If -y : (—E,E) 	Mn (K) is differen- 
tiable and -y(0) = I, then 

d 
dt t=0 

Proof. Using the notation of Equation 1.5, 

d 
t=0 

det(-y(t)) 

=7, 
	d 

t_o E(-
1)i+' • -Y(t)ii • det(-y(t)[1, 

j=i 

E(---1)3±1(7 , (0)13  • detb(0)[1,n) 
j=1  

d 
+ 7(0)1i 	det(-y(t)[1,M)) 

det(7(t)) =-- trace(-)'(0)). 

dt  

= 'y'(0 ) 11 + —cc irt  

  

t=0 
detey(t)[1,1]) 	(since -y(0) =  I). 
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Re-applying the above argument to compute llt=o det(-y(0[1, I]) and 
repeating n times gives: 

—
d 	

detey(0) =1,1 (0) 11  + -/(0)22 + 	+ 7/ (0)nn- 

Proof of Theorem 5.9. If  y  : --e, 6) 	SL,(IK) is differentiable 
with -y(0) = /, the lemma implies that trace(-y'(0)) = O. This proves 
that every matrix in s10 (K) has trace zero. 

On the other hand, suppose A E Mn (K) has trace zero. The path 
-y(t) := I tA satisfies -y(0) = I and -y / (0) -= A, but this path is not 
in  SL (1K).  Define a(t) as the result of multiplying each entry in the 
first row of -y(t) by 1/ det('y(0). Notice that a(t) is a differentiable 
path in  SL(K) with a(0) = I. Further, since trace(A) = 0, it is 
straightforward to show that c/(0) = A (Exercise 5.2). This proves 
that every trace-zero matrix is in s/n (K). An alternative proof is to 
choose a(t) to be a one-parameter group, which will be introduced in 
the next chapter. 0 

3. Lie algebra vectors as vector fields 

A vector field on Rm means a continuous function F : Rm 	R. 
By picturing F(v) as a vector drawn at y E Rm. , we think of a vector 
field as associating a vector to each point of r 

If A E Mr,(11(), then RA : 	IV is a vector field on Kn (= Rn, 
111 2n or  1R4n). The vector fields on R2  associated to the matrices 
A  = 0 

1  1
) and B = 

(1 0 
) 

are shown in Figure 2. 
— 0 	 —1 

Figure 2. Vector fields on IR 2  associated to the matrices A 
and B. 
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Elements of  GL (K) are thought of as linear transformations of 
Kn (by the correspondence A RA); therefore, a differentiable path 

: (—E, e) —> GL(K) should be regarded as a one-parameter family 
of linear transformations of  K. How does this family act on a single 
vector X E Kn? To decide this, let  o(t) := R,r( t)(X), which is a 
differentiable path in  K. If 7(0) = I, then 5(0) = X. By the 
product rule (which holds also for non-square matrices), 

= R7 , (0) (X). 

We can think of Ry ( 0 ) as a vector field on IV whose value at any 
X c Kn tells the direction X is initially moved by the family of 
linear transformations corresponding to the path -y(t). In this way, 
it is often useful to visualize an element 7'(0) of the Lie algebra of a 
matrix group G c  GL (K)  as represented by the vector field  R7  (J) 
on  K. 

(  cos t  sin t) 
in SO(2). For example, consider the path -y(t) = 

— sin t cost 

Its initial tangent vector, A = 7/ (0) = ( 0 1 
) 

lies in the Lie 
0 

algebra so(2) of  80(2). In fact, so(2) = span{A}. The vector field 
RA in Figure 2 illustrates how this family of rotations initially moves 
individual points of 1R 2 . The rotating action of the family 7(t) of 
transformations is clearly manifested in the vector field RA. 

Next look at the graph of RB in Figure 2. Can you see from 
this graph why B is not in the Lie algebra of so(2)? If -y(t) is a 
path in GL2 (R) with -y(0) = I and -y'(0) = B, then for small t, 
R(t) : R2  R2  does not preserve norms. Which X E R2  have 
initially increasing norms, and which are initially shrinking? 

The vector field RA has an important visual property that RB 
lacks: the vector at any point is perpendicular to that point. By the 
above visual reasoning, we expect that for general A E M(R), if thE 
vector field RA lacks this property, then A could not lie in the Lie 
algebra so(n) of SO(n). We could promote this visual reasoning to a 
careful proof without too much work (Exercise 5.11), but instead WE 
use a cleaner, purely algebraic proof in the next section. 
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4. The Lie algebras of the orthogonal groups 

The set an (K) = {A E Mn (K) I A + A* = 0} 

is denoted so(n) and called the skew-symmetric matrices if 
K = R. 

is denoted u(n) and called the skew-hermitian matrices if 
K = C. 

is denoted sp(n) and called the skew-symplectic matrices if 
K =  if  

We wish to prove that on (K) is the Lie algebra of  O(K). The con-
dition A = —A* means that ki ----- —An  for all i, j = 1...n. So, 
the entries below the diagonal are determined by the entries above, 
and the diagonal entries are purely imaginary (which means zero if 
K = R). For example, 

ai 	
b+ ci 

(5.2) u(2) 	 ) a,b,c, 

	

—b + c 	
d E R} 

( i 

	

-= span 	
0 

—1 1°) 

	fi 

 Co OO) 	oi)} 
which is a 4 dimensional R-subspace of M2 (C), but not a C-subspace. 
Also, 

	

+ 	+ cik 	x + yi + + wk) ai, bi, ci, 
E R} , sp(2) {(

—x + yi + zj+ wk a2i±b2j+c2k x,y,z,w 

and 
0 

so(3) = {(—a 
—b 

a 
0 

—c 

b) 

0 

a,b,c ER} . 

If A E so(n), then the vector field RA on Rn has the property 
discussed in the previous section: the vector at any point is perpen-
dicular to that point. This follows from (3) below: 

Lemma 5.11. For A E M(K), the following are equivalent: 

(1) A E an (K). 

(2) (RA (X), Y) = — (X, RA (Y)) for all X,Y E  K. 

(3) (assuming K = 	(RA (X), X) = 0 for all X ERn. 



For example, 

so(3) = spar-4E12 —  E21,  E13 

0 1 0) 
span 	—100 , 

0 0 0 

E31, E23 	E32 

( 0 	0 	1) 
0 	00 	, 

—1 	0 	0 
0 

(0 

0 

0 
0 

—1 

1 0) 

0 

1 

f 
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Proof. To see that (1) 	> (2), notice that for all i, j =- 1...n, 

(RA (e i ), e3 ) = 	= — A" = —(R A (ei ),ei) 	(ei , RA (e3))- 

This verifies (2) for X,Y chosen from the standard orthonormal basis 
of Kn. It is straightforward to extend linearly to arbitrary X,Y E Kn. 

The proof that (2)  > (1) is similar. 

Now assume that K = R. In this case, (2) 	> (3) by letting 

X =  Y.  To see that (3) 	> (2), notice that: 

0 =- (RA (X Y), X + 37 ) 

= (RA (X), X) + (RA (Y), + (RA (X), Y) + (RA (Y), X) 

= 0 + 0 + (RA (X), + (RA (Y), X). 

Theorem 5.12. The Lie algebra of On (K) equals on (K). 

Proof. Suppose -y : (-6, e) —+ O(K) is differentiable with -y(0) =- I. 

Using the product rule to differentiate both sides of 

-y(t) -y(t)* =- I 

gives -y / (0) + -y'(0)* -= 0, so -y'(0) E on (K). This demonstrates that 

g(On(K)) C (K). 

Proving the other inclusion means explicitly constructing a path 
in On  (K) in the direction of any A E on  (K). It is simpler and sufficient 

to do so for all A in a basis of orj (k). 

The natural basis of so(n) = 07,(118) is the set 

{Ei3  —E1  _<i  < j n}, 

where Eij  denotes the matrix with ij-entry 1 and other entries zero. 

The path 

(t) := I  + (sin t)Ei  — sin t)Eii  + (-1 + cos t)(Eii + 
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lies in SO(n), has 	(0) = I and has initial direction 

= 	- . 

(t) : Rn —÷ Rn rotates the subspace span{ e 3 } by an angle t and 
does nothing to the other basis vectors. For example, the path 

cos t 0 sin t 
1, 1 3(t) = 	0 	1 	0 

— sin t 0 cos t 

in  80 (3) satisfies -y 3 (0) = E13 - E31. This proves the theorem for 
1K = R. We leave it to the reader in Exercise 5.1 to describe a natural 
basis of u(n) and sp(n) and construct a path tangent to each element 
of those bases. 

Corollary 5.13. 

(1) dim(S0(n)) = n(n2-1) . 

(2) dim(U(n)) = n2 . 

(3) dim(Sp(n)) = 2n2  + n. 

Proof. The n2  entries of an n by n matrix include d below the diag-
onal, d above the diagonal, and n on the diagonal. So n2  = d + d + n, 
which means d = n22-n . Skew-symmetric matrices have zeros on the 
diagonal, arbitrary real numbers above, and entries below determined 
by those above, so dim(so(n)) = d. Skew-hermitian matrices have 
purely imaginary numbers on the diagonal and arbitrary complex 
numbers above the diagonal, so dim(u(n)) = 2d + n = n 2 . Skew-
symplectic matrices have elements of the form ai + bj + dk along the 
diagonal and arbitrary quaternionic numbers above the diagonal, so 
dim(sp(n)) = 4d + 3n =- 2n 2  + n. 

5. Exercises 

Ex. 5.1. Complete the proof of Theorem 5.12. 

Ex. 5.2. In the proof of Theorem 5.9, verify that a'(0) = A. 

Ex. 5.3. Prove that the product rule holds for non-square matrices. 
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Ex. 5.4. In Figure 2, how can you see visually that A and B both 
lie in s12(R)? Remember that a real 2 x 2 matrix with determinant 1 
preserves the areas of parallelograms. 

Ex. 5.5. Describe the Lie algebra of the affine group (see Exer-
cise 3.11). 

Ex. 5.6. Describe the Lie algebra of Isom(Rn). 

Ex. 5.7. Describe the Lie algebra of  UT(K) (see Exercise 4.12). 

Ex. 5.8. Prove the Lie algebra of pn (GL„(C)) C GL2n (R) is equal 
to pn (gln (C)). 

Ex. 5.9. Prove the Lie algebra of kIin (GLn (H)) C GL2„(C) is 

Wn (gin (EI)). 

Ex. 5.10. Prove that the tangent space to a matrix group G at 
A E G is: 

TA(G) = {BA I B E g(G)} = {AB B E g(G)}. 

Ex. 5.11. Give a geometric proof of the fact at the end of Section 3. 

Ex. 5.12. Give an example of a 2-dimensional matrix group. 

Ex. 5.13. Is Lemma 5.10 true for K = H? 

Ex. 5.14. Describe the Lie algebra of SL n (H). 

Ex. 5.15. Is part 3 of Lemma 5.11 valid when K E IC, EV 

Ex. 5.16. Let 0,  : (—E, E) --> GL(K) be a differentiable path. Prove 
that the inverse path t1-4 'y(t) 1  is differentiable. 
Hint: For K E {R, C}, use Cramer's rule. 



Chapter 6 

Matrix exponentiation 

To prove Theorem 5.12, which said g(0(K)) = on (K), we con-
structed a differentiable path through the identity in 07,(K) in the 
direction of any A in a basis of on (K). Our paths were defined with 
sines and cosines and seemed natural because they corresponded to 
families of rotations in certain planes. On the other hand, the paths 
we constructed to prove Theorem 5.9 (verifying the Lie algebra of 
SL(K)) seemed less natural. In general, is there a "best" path in 
the direction of any A G  g1 (1K),  and is this best path guaranteed 
to be contained in any matrix group G C  CL (K)  to which A is a 
tangent vector? In this chapter, we construct optimal paths, which 
are called one-parameter groups and are defined in terms of matrix 
exponentiation. We begin the chapter with preliminary facts about 
series, which are necessary to understand matrix exponentiation. 

1. Series in K 

We say that a series 

E al = ao +  a1  + az + • • • 

of elements al E K converges if the corresponding sequence of partial 
sums 

fao,a0 + ad, ao + 	+ az, ••.} 

79 
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converges to some a E K. Here we are regarding K as R, R2  or R4 , 
and "convergence" means in the sense of Definition 4.6. In this case, 
we write E ai = a. The series E ai is said to converge  absolutely  if 

E lad converges. 

Proposition 6.1. If E al converges absolutely, then it converges. 

Proof. By the triangle inequality, 

12 

5- E 
i=i, 

The right side of this inequality is the distance between the /2-th and 
the / 1 -th partial sums of E jail. The left side equals the distance 
between the  12-th and the /1-th partial sums of E al- If E ai l con-
verges, then its sequence of partial sums is Cauchy, so the inequality 
implies that the sequence of partial sums of E ai is also Cauchy and 
therefore convergent by Proposition 4.9. 

One expects that the product of two series can be calculated 
by "infinitely distributing" and organizing terms by the sum of the 
indices, as in: 

(ao + ai + a2 + • • • )(bo + bi + b2 + • • • ) 

= (ao bo ) + (aobi + aibo) + (a0b2 + aibi + a2bo) + • • • • 

This manipulation is justified by the following fact, which is proven 
in most analysis textbooks: 

Proposition 6.2. Suppose that E ai and E bl both converge, at least 

one absolutely. Let ci := 	akbi_k. Then E c1  = (E ai)(E bi). 

A power series means a "formal infinite-degree polynomial", that 
is, an expression of the form: 

f (X) = Co CiX C2X2  C3X 3  + • • 

with coefficients E K. When the variable x is assigned a value in 
K, the result is a series which may or may not converge. The domain 
of f means the set of all x E K for which the series f (x) converges. 
The next proposition says that the domain of any power series is a 
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ball about the origin (possibly including some of its boundary and 
possibly with a radius of zero or infinity). 

Proposition 6.3. For any power series there exists an R E [0, cx)] 

(called its radius of convergence)  such that f (x) converges absolutely 
if lx1 <R  and diverges if lx1 > R. 

When R = 0, the series converges only at x = O. When R = co, 
the series converges for all x E K. 

Proof. The root test  says that a series E an  converges absolutely if 

a := limsup(lanD lin  
n•—■ oo 

is less than one, and diverges if a is greater than one. Even when 
IK E {C,114, this is essentially a statement about series of positive 
real numbers, so the K = R proof found in any calculus textbook 
needs no alteration. In the series obtained by substituting x E K into 
the power series f (x) E cnxn, 

a = Ix' limsupacnp l/n , 
n—oc) 

so the proposition holds with 

—1 
R := (limsupacal /n) • 

n—,00 

The interpretations of the extreme cases are: if lim sup(1c n 1) 1 /n 
equals zero, then R =  oc,  and if it equals  oc,  then R equals zero. 0 

In future applications, we will often restrict a power series to the 
real numbers in its domain. Such a restriction can be differentiated 
term-by-term as follows: 

Proposition 6.4. Let f (x) =- co + cix + c2x2  + • • be a power series 

with radius of convergence R. The restriction  off to the real numbers 
in its domain, f : (—R, R) K, is a differentiable path in K with 
derivative f' (x) = c1  + 2c2x + 3c3 x 2  +...   . 

Proof. The case K = R is familiar from calculus, and the general 
case follows immediately from the real case. 	 0 
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2. Series in 111,(K) 

We will also study series of matrices. We say that a series 

E A, = Ao + Ai + A2 + • • 

of elements A1 G Mn (K) converges (absolutely) if for each i, j the 
series (A0),3  + (A1)ij  + (A2),,j  + • • • converges (absolutely) to some 

K. In this case, we write E A1 = A. 

Proposition 6.2 generalizes to series of matrices. 

Proposition 6.5. Suppose that E A1 and E B1 both converge, at 

least one absolutely. Let CI :--=Eki =0 AkBi_k. Then, 

>C1  = (E Al)(E .131) 

The proof of Proposition 6.5 is left for Exercise 6.1. The idea is 
to use Proposition 6.2 to prove that for all i, j, 

= 	(E ) 
A power series f (x) = co + cix + c2x2  + • • • with coefficients  c G K 

can be evaluated on a matrix A E M(K). The result is a series in 

Mn (K): 
f (A) = 	+ ci A + c2A2  + • • • . 

Proposition 6.6. Let f (x) = co+ cix+ c2x2  + • • • be a power series 
with coefficients c i  E K with radius of convergence R. If A E Mn (IK) 
satisfies AI < R, then f (A) =  Cul + ci A + c2 A 2  + • • • converges 
absolutely. 

Several other texts use an alternative norm on Mn (K), defined as 

IIAII :=-- sup{IXAI I X G Kn with IXI =- 1 } . 

Using this norm has the advantage that Proposition 6.6 becomes 
sharper: if I I AI I < R,  then f (A) converges absolutely, and if IJAM  > R, 
then f (A) diverges. We will not use this "sup norm" in our text. 

Remember that I AI denotes the Euclidean norm on Mn (K) re-
garded as Rn2  R2n2  or R4n2 . For example, 

(a + bi c+ di) 
Va2  + b2  + e2  + d2  + e2  + f 2  + g2  + h2 . 

e + fi g + hi 
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The proof of Proposition 6.6 will require an important lemma: 

Lemma 6.7. For all X,Y E M(K), 1XY1 1X1' IYI  

Proof. The proof depends on Proposition 3.7, the Schwarz inequal-
ity. For all indices i, j, 

2 

1(XY)2,71 2  = 	Xx/Y/j 	1 ((row i of X), (column j of Y) T )1 2  

l (row  i of X)1 2  (column j ofY) T 1 2  

1 Xid 2) (E 1 17/i 2  ) •• 

/=1 	 1=1 

Summing over all indices i,j gives: 

lxr2 = E
2 	 n 

 E ((Eixiii2) • ( n  lYiji 2)) 
i,j=1 	 7,,j=1 	1=1 	 1=1 

	

ixiii 2) • (E 	= 
(i, j=1 	 i, j-=1 

0 

Proof of Proposition 6.6. For any indices i, j, we must prove that 

1(c0431 + 1(ciA)%31 + 1(c2A 2 )151 + • • • 

converges. The /th term of this series satisfies: 

1(c/A1)za < c1A = 1c/1 • 1A 1 1 	1c/1 • 1A1 1 . 

Since jAl is less than the radius of convergence of f, the result follows. 
0 

When the power series of the function f(x) = ex is applied to a 
matrix A E  M  OK), the result is called matrix exponentiation: 

eA  = I + A + (1/2!)A 2  + (1/3!)A 3  + (1/4!)A4  + • • . 

The radius of convergence of this power series is oo, so by Proposi-
tion 6.6, eA  converges absolutely for all A E Mn (K). As you might 
guess from its appearance as the chapter title, matrix exponentiation 
is a central idea in the study of matrix groups. 
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3. The best path in a matrix group 

In this section, we use matrix exponentiation to construct canonical 
"best paths" in each given direction of a matrix group. Let's begin 
with a simple example. Figure 1 illustrates the vector field associated 
to 

A := 01  10) E so(2). 

What is the most natural differentiable path -y(t) in  80(2) with 
-y(0) = I and -y'(0) = A? The choice -y(t) := I + tA seems natu-
ral, but is not in S0(2). Every path in  80(2) through A has the 
form: 

(

cos f (t) sin f (t) 
— sin f (t) cos f (t) ) 

where f(t) is a differentiable function with 1(0) = 0 and f' (0) = 1. 
The choice f(t) = t is clearly the most natural choice; what visual 
property does this path -y(t) have that no other candidate shares? 
The answer is that for every X E R2 , the path a(t) := R7 (t)(X) 
is an integral curve of the vector field RA. This means that the 
vector field RA tells the direction that X is moved by the family of 
linear transformations associated to -y(t) for all time rather than just 
initially at t = 0; more precisely, 

Definition 6.8. A path a :  ( — e, e) 	Rni is called an integral curve 
of a vector field F :Rrn 	IV' if a'(t) --= F(a(t)) for all t E (—E, E). 

Figure 1. An integral curve of RA. 
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For the matrix A above, the integral curves of RA are (segments 

of) circles centered at the origin, parameterized counterclockwise with 
speed one radian per unit time. 

More generally, if A E gln (K), we would like to find the "most 

natural" path 'y(t) in  GL(K) with -y(0) =- I and -y'(0) = A. We will 

attempt to choose -y(t) such that for all X E Kn, the path 

t R(X) 

is an integral curve of RA. You might find it surprising that a single 

path -y(t) will work for all choices of X. 

The trick is to find a power series expression for the integral curve 

a(t) of RA beginning at a(0) = X. We contrive coefficients  c E Kn 

 such that the path a : Kn defined by the power series 

Q (t) = co  + ci t + c2 t2  + c3t3  + • • 

is an integral curve of RA with a(0) = co  = X. Being an integral 

curve means that cé(t) (which is ci +2c2t+3c3t 2 +• • • ) equals RA(a(t)) 

(which is coA + ci tA + c2t2A + c3t3 A + • • ). So we want: 

(ci  + 2c2t + 3c3t 2  + -= (coA + citA + c2t2 24 + e3t3A + • 

Equating coefficients of corresponding powers of t gives the recursive 
formula /ci = Together with the initial condition co = X, this 

gives the explicit formula ci= *XA 1 , so the integral curve is: 

X 	X 
a(t) = X + XtA+ 7 (tA)

2 
 + -37(tA)

3 
 + - • 

= X em  = RetA 2(X). 

In summary, the path -y(t) = etA  has the desired property that for all 

X E Kn , a(t) = ity ( t)(X) is an integral curve of RA. This could also 
have been proven quickly from scratch using: 

Proposition 6.9. Let A E gl(K). The path -y : 	Mn (K) defined 

a.  -y(t) := etA  is differentiable, and 71 (t) = A • -y(t) = -y(t) • A. 
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Proof. Each of the n2  entries of 

y(t) = etA  = / + tA + (1 / 2)t 2  A 2  + (116)t3  A 3  + • • • 

is a power series in t, which by Proposition 6.4 can be termwise dif-
ferentiated, giving: 

2/(t) = 0 + A + tA 2  + (112)t2  A 3  + • • . 

This equals -y(t) A or A • -y(t) depending on whether you factor an A 
out on the left or right. 

There are two interesting interpretations of Proposition 6.9, the 
first which we've already discussed: 

Proposition 6.10. Let A E M(K) and let -y(t) etA, 

(1) For all X E  K,  a(t) = R-y (t)(X) is an integral curve of RA. 
Also, ce(t) = L y ( t )(X) is an integral curve of LA ,  

(2) -y(t) is itself an integral curve of the vector field on Mn (K) 
whose value at g is A • g (and is also an integral curve of the 
vector field whose value at g is g • A). 

Both (1) and (2) follow immediately from Proposition 6.4. The 
two parts have different pictures and different uses. It is interesting 
that the left and right versions of part (2) can simultaneously be true, 
since the two vector fields on /1//, (K) do not agree. Evidently, they 
must agree along the image of 7. 

4. Properties of the exponential map 

The exponential map exp : 	M(K), which sends A eA 
is a powerful tool for studying matrix groups. We have already seen 
that exp restricted to a real line is a "best path". In this section, we 
derive important algebraic properties of the exponential map, which 
further justify our use of the term "exponential". 

Proposition 6.11. If AB = BA, then eA±B  = 

Proof. By Proposition 6.5, 
eAeB 	 A+ (112)A 2  + • • •)(I + B + (112)B2  + • • •) 

= I + (A + B)+ ((112)A2  + AB + (112)B 2 ) +.... 



(to 7A1) (to .711 ) cÉD 	Ak BI-k 

k!(1 — k)! 
eA eB  = 

1=0 	1=0 	1=0 k=0 
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On the other hand, 

= 	± (A + B)+ (1/2)(A + B) 2  + • • • 

= + (A + B) + (112)(A 2  + AB + BA + B 2 ) + • . 

Since AB = BA, the first terms of e A e B  equal the first terms of eA+B  

To verify that the pattern continues: 

cx.--,°  
k) A  

1=0 k=0 	

k 	
(A+ B)  

1!  

The last equality uses the fact that A and B commute. 

Since most pairs of matrices do not commute, you might not 
expect Proposition 6.11 to have much use, except in the n = 1 case. 
Surprisingly, the proposition has many strong consequences, including 
every proposition in the remainder of this section. 

Proposition 6.12. For any A E M(K), eA  E GLn (K). Therefore, 
matrix exponentiation is a map exp : gln (K) GL(K). 

=_ Proof. Since A and —A commute, eA • e —A e A—A e0 =  I , so e A  
has inverse e —A . 	 1=1 

We will see later that the image of exp contains a neighborhood 
of I in Mn  (K), so it may seem counterintuitive that this image misses 
all of the singular matrices. 

Proposition 6.13. If A E O(K), then eA  E O(K). 

Proof. Since A E on (K), A* = —A. Therefore, 

eA (eA)* eA eA* = eAe —A = eA—A e0 = I.  

So eA  G On (K) by part (4) of Proposition 3.9. Exercise 6.2 asks 
you to verify that (eA)* = eA* , which was used in the first equality 
above. 	 0 
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This proposition allows a cleaner proof of Theorem 5.12, which 
says that o, (K) is the Lie algebra of  O,-  (K). How? If A E On  (K), then 
-y(t) = etA  is a differentiable path in On (K) with 1/(0) = A. This 
proves that on  (K) c g(0 (K)), which was the more difficult inclusion 
to verify. 

Since SU (n) = U (n)n S L n (C), one expects the Lie algebra su(n) 
of SU (n) to equal the set of trace-zero skew-hermitian matrices: 

Proposition 6.14. su(n) = u(n) n sin (c). 

The inclusion su(n) c u(n) n sin (c) is trivial. For the other 
inclusion, we must construct a path in SU (n) tangent to any A E 
u(n)n sin  (C). The path -y(t) = e tA  is contained in U (n), but we have 
yet to verify that it is contained in SL,(C), which follows from: 

Lemma 6.15. Let K E {R,C}. For any A E M(K), 

det (eA  ) = etrace(A). 

Proof. Let f (t) = det(em ). Its derivative is: 

f (t) = lim (1/h)(det(e(t+h)A, _ ) 	det(etA )) 
h-.0 

iiM (11 h) (det(etAehA, _ ) 	det(e tA )) 
h-,0 

= lim (1/h)(det(e tA ))(det(e hA )  —1) 
h--, 0 

(det(e tA )) ili rn i 0 (1/h)(det(e hA ) — 1) 

d f(t) 
dt t=o 

f (t) • trace(A). 

The last equality follows from Lemma 5 10 Since f (0) = 1 and 

(t) = f (t) • trace(A), 

the unique solution for f is f (t) = et•trace(A). In particular, 

f(1) = det (eA) = etrace(A). 

For A G gl„(K), we have verified that the path -y(t) 	etA has  

several geometric and analytic properties. It also has an important 
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algebraic property; namely, its image is a subgroup of GL n (K). To 
elaborate this comment, we make the following definition, in which 
(R, -I-) denotes the group of real numbers under the operation of ad-
dition. 

Definition 6.16. A one  parameter  group  in, a matrix group G is a 
differentiable group-homomorphism : (R, +) 	G. 

"Homomorphism" means that 7(t1 t2) -= -y(ti)-y(t2). A one-
parameter group is both an algebraic object (a homomorphism) and 
a geometric object (a differentiable path). The interplay between al-
gebra and geometry is what makes matrix groups so rich in structure. 

Proposition 6.17. 

(1) For every A C gln,(K), -y(t) := e tA  is a one parameter group. 

(2) Every one parameter group in GL,-,(K) has the description 
-y(t) = etA  for some A c gl(K). 

Proof. Part (1) follows from Proposition 6.11, since: 

	

tiA±t2A 	tlA t2 	/4. \ /J. \ 
'T(ti t2) =e 	= e e A 

= 7tbirYtt2)• 

Notice in particular that 7(t) • 7(- t) = I, which shows that 

-y(t) 1  = -y(-t). 

For part (2), suppose -y(t) is a one-parameter group in GLn (K). 
Let A := 1/(0). Notice that for all t E R, 

71 (0 = Um -
1

e7 (t + h)  - (t))  = 7(0 Ern -
1

(-y(h) - I) = 7(t)A. 

Since -At) = -y(t)A, we suspect (by comparing to Proposition 6.9) 
that -y(t) = e m . This is verified by applying the product rule: 

d e—t 	d 

	

y/ (t 	A 
) 

,y(t)Ae -tA ,y (t) Ae -tA 

So -y(t)e-tA =1, which implies that -y(t) = e tA 
	

0 
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Finally, we describe how conjugation and exponentiation relate: 

Proposition 6.18. For all A, B E Mn (K) with A invertible, 

eABA -1  = AeB A-1 .  

Proof. 

Ae B A -1 A(I + B + (112)B 2  + (116)B3  + • -)A-1  

I + ABA -1  + (112)AB 2  A -1  + (116)AB 3  A -1  + • • • 

I + ABA -1  + (112)(ABA -1 ) 2  + (116)(ABA -1 ) 3  + • • • 
= eABA -1  

5. Exercises 

Ex. 6.1. Prove Proposition 6.5. 

Ex. 6.2. Prove that (e A )* = eA*  for all A E M(K). 

Ex. 6.3. 

(1) Let A = diag(ai, a2, ..., an ) c M(R). Calculate e A . Using 
this, give a simple proof that det(eA) _= et(A) when A is 
diagonal. 

(2) Give a simple proof that det (eA) =  etrace(A) when A is con-
jugate to a diagonal matrix. 

Ex. 6.4. Let A = 
0 1)

. Calculate e A . 
—1 0 

Ex. 6.5. Can a one parameter group ever cross itself? 

Ex. 6.6. Describe all one parameter groups in GLi (C). Draw several 
in the xy-plane. 

Ex. 6.7. Let G = {(x0  Yi) e GL2(R) x > 0}. Describe the one 

parameter groups in G, and draw several in the xy-plane. 

Ex. 6.8. Visually describe the path -y(t) = e ti in Sp(1) S3. 
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Ex. 6.9. Let A = (
—b 
a b 

E g 1 2(R). Calculate eA (Hint: Write 
 a 

A as the sum of two commuting matrices). Draw the vector field RA 
when a = 1 and b ----- 2, and sketch some integral curves. 

Ex. 6.10. Repeat the previous problem with A -= 
(ab ab) .  

Ex. 6.11. When A is in the Lie algebra of UT(K), prove that 
e A  E UT, (K) (see Exercise 4.12). 

Ex. 6.12. When A is in the Lie algebra of Isom(R'), prove that 
e A  G Isom(Rn ). 

Ex. 6.13. Describe the one-parameter groups is Trans(Rn). 

Ex. 6.14. The multiplicative group of positive real numbers can be 
identified with the subgroup: G ----- {(a) E GLi (TR) I a>  01. Given A 
in the Lie algebra of G, describe the vector field on G associated to 
A, as part (2) of Proposition 6.10. Solve for the integral curve of this 
vector field beginning at (1). 





Chapter 7 

Matrix groups are 
manifolds 

In this chapter we prove two crucial facts about how the exponential 
map restricts to a Lie algebra. For r > 0, denote 

Br  := {W E Mn (K)  I  IWI  <r}.  

Theorem 7.1. Let G C GL„,(K) be a matrix group, with Lie algebra 

g C 

(1) For all X E g, ex  E G. 

(2) For sufficiently small r > 0, V := exp(B, n g) is a neigh-
borhood of I in G, and the restriction exp : Br  n g —> V is 
a homeomorphism. 

Part (1) says that if a one parameter group in  GL(K) begins 
tangent to a matrix group G, then it lies entirely in G. In the previous 
chapter, we verified (1) when G E {GL, i (K), 0,(K), SL ri (TR), 
SU (n)} . However, the proofs were different in each case, and new 
ideas are needed in this chapter to generalize to arbitrary matrix 
groups. 

Part (2) has not yet been verified for any familiar matrix groups. 
We will actually prove the stronger statement that exp : Brno v is 
a diffeomorphism (which will be defined in this chapter, but roughly 
means a differentiable homeomorphism). 

93 
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A beautiful corollary of Theorem 7.1 is that every matrix group 
is a manifold, which we will carefully define in this chapter. Roughly, 
a manifold is a nice subset of Euclidean space; at every point p its 
tangent space is a subspace, and a neighborhood of p is diffeomorphic 

to a neighborhood of 0 in the tangent space. Manifolds are central 
to modern mathematics. Their investigation is the starting point of 
several branches of geometry. 

1. Analysis background 

In this section, we review some concepts from analysis which are nec- 
essary to prove Theorem 7.1, including the inverse function theorem. 

Let U c Rm be an open set. Any function f : U Rn can be 
thought of as n separate functions; we write f =  (fi,  fa),  where 
each fi  : u R. For example, the function f : R 2  R3  defined as 

f (x, y) = (sin(x y ) , exy, x2 y3) 

splits as fi (x, y) = sin(x + y), f2 (x , y) = exY and f3 (x, y) = x2  — y 3 . 

Let p E U and let y E Rm. The directional derivative  of f in the 
direction y at p is defined as: 

f(p+ tv) - f (P-)  dfp (y) 
t—op 

if this limit exists. 

The directional derivative can be interpreted visually by consid-
ering the straight line y(t) = p+tv in Rm. If the initial velocity vector 
of the image path (f 0-y)(t) = f (p + ty) in Rn exists, it is called dfp (y). 
In other words, dfp (y) approximates where f sends points near p in 
the direction of y; see Figure 1. 

The directional derivatives of the component functions 
in the directions of the standard orthonormal basis vectors  {e l , ..., 

of Rrn are called partial derivatives  of f and are denoted as: 

a f, 
(1))  ax 3  

They measure the rates at which the component functions change 
in the coordinate directions. For fixed {i, j}, if 2f= (p) exists at each ax 
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R'1  dfp(v)  

f(P) 	(f°19 01 

Figure 1. dfp (v) is the initial velocity vector of the image 
under f of the straight line ry(t) in the direction of v. 

p E U,  then p:97P- (p) is another function from U to R; its partial 

derivatives (if they exist) are called second order partial derivatives 
of  f,  and so on. 

The function f is called CI' on U  if all rth  order partial derivatives 
exist and are continuous on U, and f is called smooth on U  if f is Cr 
on U for all positive integers r. The following is proven in any real 
;Inalysis textbook: 

Proposition 7.2. If f is 	on  U, then for all p E  U, 

(1) v dfp (v) is a linear function from Rm to Rn . 

(2) f (q) f (p)+ dfp (q — p) is a good approximation of f near p 
in the following sense: for any infinite sequence fqi ,q2 ,...} 

of points in RI' converging to p, 

f 	- f (P) - dfp(qt P)  lim 	 0. 
igi — Pi 

Proposition 7.2 says that if f is 	on U, then the directional 
lerivatives of f are well-behaved at any p E U. It is useful to turn 
his conclusion into a definition. 

Definition 7.3. f : Rm 	Rn is called differentiable at p E R77.1  if 
,11;,(v) exists for every y G Rm, and properties (1) and (2) of Propo-
ilion 7.2 hold. In this case, the linear function dfp  is called the 

derivative  of f at p. 
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Notice that it is not enough for all directional derivatives to exist 
at p; we require the function y 1— dfp (y) to be linear and to approxi-
mate f well near p before we are willing to call f differentiable at p 
or to refer to the function dfp  as its derivative. 

If f is C' on a neighborhood of p, then dfp  = LA = RAT, where 
A E itin ,m, ( R) is the matrix of all first order partial derivatives of f: 

( P  k (P) • • • EL  (P) 

gf;--; (p) ••• g--,:,(p) 

When n --= 1, this is familiar from multivariable calculus: directional 
derivatives are computed by dotting with the gradient. The n > 1 
case follows by applying this fact to each component function L. 

The derivative of a composition of two functions turns out to be 
the composition of their derivatives: 

Proposition 7.4 (Chain rule). Suppose 7 : 	Rm is differentiable 
at z E R I  and f : R771 	Rn is differentiable at 7(x). Then their 
composition is differentiable at x, and 

d(f  o '7)x =-- df-y (x )  o  d'y. 

The chain rule is an important tool, and some comments about 
it are in order. First, 7 need not be defined on all of lie, but only 
on a neighborhood of x for the chain rule to be valid. Similarly, it is 
enough that f be defined on a neighborhood of 7(x). 

Second, the case l --= 1 has an important visual interpretation. In 
this case, 7 is a path in lien and f o 7 is the image path in IV. Set 
x = 0 and p = -y(0). The chain rule says that for all y E R, 

d(f o -y) 0 (v) = dfp (d-yo (v)). 

Choosing y as the unit-vector y  -= e l  E RI-  gives: 

(f 	= d.fp('Y' ( 0 )). 

This provides an important interpretation of the derivative of a func-
tion f : Rm  --> Rn  at p E Rm: 

A = 
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Proposition 7.5. dfp (v) is the initial velocity vector of the image 
under f of any differentiable path -y(t) in Rm with 1/(0) = p and 
y'(0) = v. 

This proposition says Figure 1 remains valid when the straight 
line -y(t) is replaced by any (possibly curved) path  -y(t) with -y(0) = p 
and -AO) = v. This proposition is so useful, we will take it as our 
definition of dfp (v) in the remainder of the book. 

Another important consequence of the chain rule is that the de-
rivative of an invertible function is an element of the general linear 
group. More precisely, suppose that U c IV is open and  f: U 118n 
is an invertible function from U to its image f (U). Suppose that f is 
differentiable at x E U and f -1  is differentiable at f (x). The chain 
rule says: 

d(f -1  o f)x = d(f -1 )f(x) 0  dfx• 

On the other hand, f-1  o f is the identify function, whose derivative 
at any point is the identify map. So d(f -1 ) f (x ) o dfx  is the identity 
linear map, which means that dfx  is an invertible linear map (the 
corresponding matrix is an element of  GL, -, (R)). 

A crucial result from analysis is the following converse: 

Theorem 7.6 (Inverse function theorem). If f : 	JR' is Cr on 
a neighborhood of x ERtm  (r > 1) and dfx  is an invertible linear map, 
then there exists a (possibly smaller) neighborhood U of x such that 
V := f (U) is a neighborhood of f (x), and f : U —> V is invertible 
with Cr inverse. 

The inverse function theorem is quite remarkable. It reduces the 
seemingly difficult problem of deciding whether f is locally invertible 
near x to the computationally simple task of checking whether the 
determinant of the linear map dfx  is non-zero! The proof is non-
trivial, but the theorem is believable, since f (y) f (x) + df x (y - x) 
is a first-order approximation of f near x. The theorem says that if 
this first-order approximation is bijective, then f is bijective near x. 



98 	 7. Matrix groups are manifolds 

2. Proof of part (1) of Theorem 7.1 

Let G C GL(1K) be a matrix group with Lie algebra g. Part (1) 
of Theorem 7.1 says that for all X E g, ex  E G. We verified this 
for several groups. Another reason to expect the theorem to be true 
comes from the following idea. The tangent space to G at I is g, and 
the tangent space at a  E G is 

TaG = a • g:= {a•YIY- Eg} 

(by Exercise 5.10). Fix a vector X E g. Consider the vector field V 

on  M(K) whose value at a c Mn (K) is V(a) := a • X. At points 
of G, this vector field is tangent to G. The path -y(t) = etx  is an 
integral curve of V, because -At) = -y(t) X (see Proposition 6.10). 
Since -y(0) = I E G, we expect -y(t) to remain in G. 

It would be nice to know that G is a manifold, since an integral 
curve of a smooth vector field on Euclidean space which at points 
of a manifold M is tangent to M must remain on M if it begins 
on M. But we're getting ahead of ourselves, since we haven't defined 
manifold, and we will need Theorem 7.1 in order to prove that matrix 
groups are manifolds. To avoid circular reasoning, we must abandon 
the argument, although the following proof (from 0.1]) does reflect 
some of its essence. 

Proof of part (1) of Theorem 7.1. Let {X1 , ..., Xk} be a basis of 
g. For each i = 1, ..., k choose a differentiable path cr,, :  (—E, E)  —> G 
with ai (0) = I and ce (0) =  X. Define 

Fg  : (neighborhood of 0 in g) G 

as follows: 

Fg  (ci 	+ • • • + ck Xk ) = ai(ci) • a2(c2) • • ak(ck)• 

Notice that Fg  (0) = I, and d(F0 )0 is the identify function: 

d(F8 ) 0 (X) = X for all X E g, 

as is easily verified on basis elements. 

Choose a subspace p c M(K) which is complementary to g, 
which means completing the set {X1, ..., Xk } to a basis of all of Mn(IK) 
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and defining p as the span of the added basis elements. So Mn (K) -= 
O x  p. 

Choose a function Fp  : p 	M(K) with Fp  (0) = I and with 
d(F)0 (V) = V for all V e p. For example,  F(V) := I + V works. 
Next define the function 

F:  (neighborhood of 0 in g x p = M(K)) Mr, (K) 

by the rule F(X±Y) = Fg  (X) -Fp (Y) for all X E g and Y  E p. Notice 
that F(0) =  land dF0 is the identity function: dF0(X+ Y) = X ± Y. 

By the inverse function theorem, F has an inverse function de-
fined on a neighborhood of / in Mn (K). Express the inverse as follows 
for matrices a in this neighborhood: 

F-1  (a) = u(a) v(a) G g x p. 

By definition, u(F(X + Y)) = X and v(F(X + Y)) = Y for all 
X E g and Y E p near O. The important thing is that v tests whether 
an element a E M(K) near / lies in G: 

v(a) -= 0 	> a E G. 

Let X E g and define a(t) = etx . We wish to prove that a(t) E G 
for small t by showing that v(a(t)) =- O. Since v(a(0)) = 0, it will 
suffice to prove that cffit  v ( a ( t )) = 0 for small t. Since 

v(a(t)) = dva(t)(a'(t)) = dva(t)(X • a(t)), dt 

the result will follow from the following lemma: 

Lemma 7.7. For all a E 	(K) near I and all X E g, dva (X •a) =- O. 

Proof. Express a as: 

a = F(Z + Y) = Fo (Z) • 

where Z E g and Y E p. For all W E g, and for sufficiently small t, 

v(Fg (Z + tW) • Fp  (Y)) = Y, 
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which means that y is not changing at a in these directions: 

d 
0 = 	t=oy(Fg (Z + tW) • F(Y)) 

dva ((d(Fg )z(W)) • Fp (Y)) 

dva ((d(Fg )z(W))- F g (Z) 1  • a) 

dva (X • a), 

where X :=- (d(Fg )z(W))•Fg (Z)'. It remains to prove that X is an 
arbitrary element of g. First, X E g because it is the initial tangent 
vector of the following path in G: 

t Fg (Z + tW) - Fg (Z) -1 . 

Second, X is arbitrary because the linear map from g —> g which 
sends 

W (d(Fg )z(W))  

is the identity map when Z = 0, and so by continuity has determinant 
close to 1, and is therefore an isomorphism, when Z is close to 0. In 
other words, W can be chosen so that X is any element of g. 

The lemma completes our proof that if X E g, then etx  E G for 
small t, say for t E (—E, c). The result can be extended by observing 
that for all t E ( — E, e) and all positive integers N, 

e
NtX etX±tX+•• ±tX etX etX 	etX E  G.  

This verifies that e tx  E G for all t E R, which completes the proof! 
0 

3. Proof of part (2) of Theorem 7.1 

It can be shown that any power series gives a smooth function on 
the set of matrices with norm less than its radius of convergence. In 
particular: 

Proposition 7.8. exp : M7.2 (K) 	Mn (K) is smooth. 

This fact allows us to verify part (2) of Theorem 7.1 in the special 
case G = CL„(K). Remember that Br  := {W E M(K) IW < r}. 
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Lemma 7 9. For sufficiently small r > 0, V := exp(Br ) is a neigh-
borhood of I in GL n (K), and exp : Br  —) V is a homeomorphism 
(which is smooth and has smooth inverse). 

Proof. For all X E M ii (K) , d(exp) 0 (X) is the initial tangent vector 
to the path t 1—> ex , namely X. In other words, d(exp) 0  is the iden-
tity map. The result now follows from the inverse function theorem, 
together with the observation that a sufficiently small neighborhood 
of / in /1/7,(K) must lie in GL(K). 

The inverse of exp is denoted "log"; it is a smooth function defined 
on a neighborhood of I in  CL (K).  Although we will not require this 
fact, it is not hard to prove that log(A) equals the familiar power 
series for log evaluated on A: 

log(A) = (A—I) — (1/2)(A— /) 2 + (1/3)(A — /) 3  — (1/4)(A— /) 4 + • • • . 

Now let G C GL,(K) be a matrix group with Lie algebra g. 

Part 2 of Proposition 7.1 says that for sufficiently small r > 0, 
exp(B, n g) is a neighborhood of / in G. Lemma 7.9 handled the 
case where G is all of  CL (K).  Generalizing to arbitrary G is not as 
obvious as it might at first seem. In fact, the proposition can be false 
for a subgroup G C  CL, -, (K)  which is not closed, as the next example 
illustrates. 

Example 7.10. Let  À E IR be an irrational multiple of 2r, and define 

G := {gt  = ( ti  ° 
e 

oti) t E RI C GL2(C). 

i 	0
i), 

The Lie algebra of G is the span of W = ( 
A 	

and etw = gt  for 
0  

all t E R. For 0  <r  < oo, notice that 

exp({tW  I  t (—r,r)}) = {g t  t E (—r, r)} 

is not a neighborhood of I in G. Any neighborhood of I in G contains 
points of the form 9 2„,, for arbitrarily large integers n; compare with 
Exercise 4.24. 

We require the following important lemma: 
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Lemma 7.11. Let G c GL(K) be a matrix group with Lie algebra 

g. In Lemma 7.9, r > 0 can be chosen such that additionally: 

exp(B, n g) = exp(Br ) n G. 

For any r, exp(B, n g) C exp(Br ) n G, so the real content of this 
lemma is that the other inclusion holds for sufficiently small r. The 
lemma is false for certain non-closed subgroups of  GL (K),  including 
the one in Example 7.10. The essential problem is this: there are 
elements of G (namely g2„, for certain large n) which are arbitrarily 
close to I, so they are exponential images of arbitrarily short vectors 
in Mn (K), but they are exponential images only of very long vectors 
in g. 

Proof of Lemma 7.11. Choose a subspace p c M(K) which is 
complementary to g, as in the proof of part (1) of Theorem 7.1, so 
M(K) =gxp. Define the function :gxp—> Ain (K) so that 
.1)(X + Y) = eX  e Y  for all X E g and Y- c p. Notice that agrees 
with exp on g. The functions and exp are also similar in that 
the derivative of each at 0 is the identity. In particular, 1. is locally 
invertible by the inverse function theorem. 

Assume the lemma is false. Then there must be a sequence of non-
zero vectors {1, A2, ...} in M,-,(K) with lA i  I —> 0 such that Ai V 9 
and F(A)  E G for all i. Write Ai = X, + Y„, where X E g and 

0 Y, E p. For all i, let g, := = ee E G. Notice that 
eY, = (eXi )gi E  G.  

By compactness of the sphere of unit-length vectors in p, the 
sequence { ..•} must sub-converge to some unit-length vec-

tor Y E p (by Proposition 4.24). For notational convenience, re-
choose the Ai 's above so that the sequence converges rather than 
sub-converges to Y. 

Let t E R. Since 	I 	0, it is possible to choose a sequence of 
positive integers n„, such that n iY, tY. Since = (eY;)"‘ G G, 
and since G is closed in GL,„(K), it follows that e tY  E G. In summary, 
etY  E G for all t E R, which is impossible since Y g. 

Proof of part (2) of Theorem 7.1. Pick r > 0 as in Lemma 7.11. 
Then V --- exp(B, n g) is a neighborhood of I in G because it equals 
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the set exp(Br ) n G, and exp(Br ) is open in Mn (K) by Lemma 7.9. 
The restriction exp : Br  n g —> V is continuous. Its inverse function 
log : V —> Br  n g is continuous because it is a restriction of the 
continuous function log : exp(Br ) —4  Br . El 

In the previous proof, exp : Br ng—>V is not only continuous, it 
is smooth. Its inverse log : V Br  n g is also better than continuous; 
it is the restriction to V of the smooth function log. 

4. Manifolds 

In this section, we define manifolds and prove that matrix groups are 
manifolds. 

Let X c Rm be any subset, and let f : X 	Rn be a function. 
If X is open, it makes sense to ask whether f is smooth. If X is not 
open, then the partial derivatives of f at p E X might not make sense, 
because f need not be defined near p in all coordinate directions. We 
will call f smooth if it locally extends to a smooth function on Rm: 

Definition 7.12. If X c Rin, then f : X —> Rn is called smooth  if 
for all p  E X, there exists a neighborhood U of p in Rm and a smooth 
function f : U Rn which agrees with f on X n U. 

This extended notion of smoothness allows us to define an impor-
tant type of equivalence for subsets of Euclidean space: 

Definition 7.13. X c Rm. ' and Y C Wn2  are called diffeomorphic 
if there exists a smooth bijective function f : X Y whose inverse 
is also smooth. In this case, f is called a diffeomorphism. 

From the discussion after its proof, it is clear that the word 
"homeomorphism" can be replaced by the word "diffeomorphism" 
in part (2) of Theorem 7.1. 

A diffeomorphism is a homeomorphism which is smooth and has 
a smooth inverse. Figure 2 shows two sets which are homeomorphic 
but are not diffeomorphic, because no homeomorphism between them 
could be smooth at the cone point. 

A manifold is a set which is locally diffeomorphic to Euclidean 
space: 
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Figure 2. Homeomorphic but not diffeomorphic. 

Definition 7.14. A subset X C lk is called a manifold  of dimension 
n if for all p E X there exists a neighborhood V of p in X which is 
diffeomorphic to an open set U c 

In Figure 2, the round sphere is a 2-dimensional manifold in R3 . 
A sufficiently small and nearsighted bug living on this sphere would 
think it lived on R2 . But the pointed sphere is not a manifold, since 
a bug living at the cone-point, no matter how nearsighted, could 
distinguish its home from R2 . 

Bugs are fine, but to rigorously prove that a set X is a manifold, 
you must construct a parametrization at every p E  X,  meaning a 
diffeomorphism (if) from an open set U c r to a neighborhood V of 
p in X, as in Figure 3. 

Figure 3. A parametrization of X at p. 

For practice, we will prove S 2  =-- {(x, y , x) E R3 x2 ± y2 ± z2 1} 

is a 2-dimensional manifold. 
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Proposition 7.15. 8 2  c R3  is a 2-dimensional manifold. 

Proof. The upper hemisphere 

V = {(x,y,z) E S 2  I z >  0} 

is a neighborhood of (0, 0, 1) in  82 . Define 

U  {(x,  y) E R2 I x2  +y2  < 1 } ,  

and define (,o : U -4 Vas (p(x,y) = (x, X2 	) Then (,o 
is smooth and bijective. The inverse ça -1  : V -4 U has the formula 
crl  (x, y , z) = (x, y). By Definition 7.12, ço' is smooth because it 
extends to the smooth function with this same formula defined on the 
open set {(x,y , z) E R3  I z>  0}, or even on all of R3 . 

For arbitrary p E S2 , the function (RA) o  : U 	RA(V) is a 
parametrization at p, assuming A E  80 (3) is any matrix for which 
RA(0,0,1) = p. 

Before proving that all matrix groups are manifolds, we give a 
simple example: 

Claim 7.16. The matrix group 

T -= {diag(e w 	I 0, E [0,27)1 C GL2(C) 

is a 2-dimensional manifold in M2(C)'"=" C4  R8 .  

Proof. Making the identification M2 (C) L' R 8  explicit, we write: 

T -= {(cos 9 , sin 0, 0, 0, 0, 0, cos cb, 	(b) I O,q  E (0, 2701 c R8 . 

The identity element of T is p = (1, 0, 0, 0, 0, 0,1, 0). To describe a 
parametrization of T at p, let U =  {(O,  çb) E R 2  I -7/2 <O, ç < 7/2} 
and define cp : U T as (0 , q5) (cos  8 ,  sin  8 ,  0, 0, 0, 0, cos 0, sin 0). 
This parametrization is clearly smooth and is bijective onto its image 
V = cp(U). The inverse c,o -1  : V -+ U is also smooth because it 
extends to the smooth function from an open set in R8  to U defined 
as follows: 

(x i , 12 ,13 ,14 , x5 ,18 ,  17, x8) 	(arctan(x2/x i  ), arctan(x8/x7)). 

A parametrization at an arbitrary point of T is defined similarly. 0 
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In the previous claim, notice T is diffeomorphic to the manifold 
in R4  obtained by removing the four irrelevant components of R8 . In 
fact, T is diffeomorphic to a manifold in R3 , the torus of revolution 
obtained by revolving about the z-axis a circle in the yz-plane. Each 
point on this torus of revolution is described by a pair of angles: 0 
describes a point on the circle in the yz-plane, and 0 describes how 
far that point rotates about the z-axis. 

Figure 4. A torus of revolution in R3 . 

Theorem 7.17. Any matrix group of dimension n is a manifold of 

dimension n. 

Proof. Let  G C G.Ln (K) be a matrix group of dimension n with Lie 
algebra g. Choose r > 0 as in Theorem 7.1. Then V = exp(B, n g) 
is a neighborhood of / in G, and the restriction exp : Br ng --> V is 
a parametrization at I. Here we are implicitly identifying g with IV 
by choosing a basis. 

Next let g E G be arbitrary. Define Eg Mn(K) Mn (K) as 

Lg(A) 

 

=9  • A. 

Notice that L9  restricts to a diffeomorphism from G to G. So Eg(17) 

is a neighborhood of g in G, and (rg  o exp) : Br  n Eg (V) is a 
parametrization at g. 

5. More about manifolds 

In this section, we prove that each tangent space to a manifold is 
a subspace, and we define the "derivative" of a smooth function 
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f :  X 1  -4  X2 between manifolds. The derivative of f at p E X1 

will be denoted dfp  and is a linear map from TpX1  to Tf (p)X2. In 
future sections, our primary applications will be when f is a smooth 
homomorphism between matrix groups, in which case city is a linear 
map between their Lie algebras. 

Remember that in Definition 5.1, the tangent space to a subset 
X c Ern at p E X was defined as: 

TX := {7/ (0) I y:  (—e, 6) —> X is differentiable with -y(0) = pl. 

Proposition 7.18. If X c 18" 1  is an n-dimensional manifold, then 

for all p E  X, TX is an n-dimensional subspace of Rm. 

Proof. To prove the proposition, we will present a more technical 
definition of  TX  and then prove that the two definitions are equiv-
alent. Let : U c —> V c X be a parametrization at p. Assume 
for simplicity that 0 E U and yo(0) = p. Define 

TX := 40 (R"). 

This makes sense if c,o is regarded as a function from U C R" to 
Rm. Clearly TX  is a subspace, since it's the image of a linear map. 
The two definitions of  TX  agree because differentiable paths through 
p in X are exactly the images under ço of differentiable paths in U 

through 0. In particular, this agreement shows that the technical 
definition of  TX  is well-defined; it does not depend on the choice of 
parametrization, yo.  fl 

Next we define the derivative of a function between manifolds. 
The definition is analogous to Proposition 7.5 and is pictured in Fig-
ure 5. 

Definition 7.19. Let f :  X 1  —4 X2 be a smooth function between 

manifolds, and let p E X1 , If y E TpXi, then df p (v) E Tf(p)X 2 
 denotes the initial velocity vector (f o -y)' (0) of the image under f of 

any differentiable path -y(t) in X 1  with -y(0) = p and 7' (0) =  y. 

Proposition 7.20. Under the hypotheses of Definition 7.19, the map 
y 	dfp (v) is a well-defined linear function from T pXi to Tf(p)X2. 

Here "well-defined" means independent of the choice of -y. 
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Figure 5. dfp  (y) means the initial velocity vector of the image 
under f of a path -y in the direction of v. 

Proof. To prove this proposition, we present a more technical defi-
nition of dfp  and then prove that the two definitions are equivalent. 

Let (pi :  U1 C  I1 	—>  V1  C X1 be a parametrization at p with 

(Pi (0) = p. Let (p2 : U2 C Rn2 -4  V2 C X2 be a parametrization at 
f (p) with (p 2 (0) = f (p). The fact that f is smooth implies that 

:= (P2-1  f (pi :U1 	U2 

is smooth (one may have to shrink U1  to a smaller neighborhood of 
0 in 118n 1  in order for 0 to be defined on U1). See Figure 6. 

We define: 

	

dfp  := d((p2)0 o  dOci  o  (d(S0].)o) 1  TpX1 	Tf(p) ,(2 . 

It is clear from this definition that dfp  is linear, since it is the composi-
tion of three linear maps. For a fixed choice of the parameterizations 
(p i  and c,o 2 , notice that this technical definition of dfp  agrees with 
Definition 7.19. In particular, this shows that Definition 7.19 is well-
defined (independent of choice of -y), which in turn shows that the 
technical definition is well-defined (independent of choices of param-
eterizations). 0 

The two most important facts about derivatives of functions be-
tween Euclidean spaces generalize to functions between manifolds: 

Proposition 7.21 (Chain rule for manifolds). Suppose f :  X 1  —> X2 
and g : X2 —> X3 are smooth functions between manifolds. Then so 
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Figure 6. The technical definition of derivative. 

is their composition, and for all p E X1, 

d(g  o f) p  = dg f() o dfp . 

Theorem 7.22 (Inverse function theorem for manifolds). Suppose 
f :  X1  —4 X2 is a smooth function between manifolds, and p E X 1 . If 
dfp  is an invertible linear map, then there exists a neighborhood U of 
p in X1 such that V := f (U) is a neighborhood of f (p) in  X2,  and 
the restriction f : U —> V is a diffeomorphism. In particular, X1 and 
X2 must have the same dimension. 

We will consider matrix groups G1 and G2 equivalent if there ex-
ists a group-isomorphism f:  G1 —> G2 which is also a diffeomorphism 
(so they simultaneously look the same as groups and as manifolds). 
In this case G1 and G2 will be called smoothly isomorphic.  Dimen-
sion is a useful invariant of smooth isomorphism, which means that 
smoothly isomorphic matrix groups have the same dimension. 

There is a non-trivial theorem which states that any continuous 
homomorphism between matrix groups is smooth. Therefore, "con-
tinuously isomorphic" is the same as "smoothly isomorphic" ; see [12] 
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or [13] for a proof. On the other hand, it is possible for a homomor-
phism between matrix groups to be discontinuous. For example, the 
additive group (R, +) can be considered a matrix group, because it 
is isomorphic to Trans(R 1 ). There are many discontinuous isomor-
phisms f : (R, +) (R, +). In fact, any bijection of a basis for R 
(regarded as a vector space over Q) extends linearly to an isomor-
phism. 

6. Exercises 

Ex. 7.1. Prove that Sn  c Rri+ 1  is an n-dimensional manifold. 

Ex. 7.2. Prove that the cone f(x, y, Z) E R3  I z = NbC2  ± y2 1 C R3  
is not a manifold. 

Ex. 7.3. If X1  E Rml and X2 G R'n2  are manifolds whose dimensions 
are d1  and d2 , prove that 

X 1  x X2 = {(PI.,P2) c Rtm' X Rrn2 	R771 1+ 77/2 I 

	

I 	E 	P2 E X2} 

is a ch + d2 dimensional manifold. 

Ex. 7.4. Is the group G in Example 7.10 a manifold? 

Ex. 7.5. Let f : Rm —> Rn be a linear function. For any p E Rm, 
show that dfp  =  f.  In other words, the derivative of a linear function 
is itself. 

Ex. 7.6. Let G be a (not necessarily path-connected) matrix group, 
Define the identity component,  Go, of G as: 

fg EGID continuous -y : [0, 1] 	G with -y(0) = / and -y(1) = g}. 

Prove that G°  is a matrix group (don't forget to prove G°  is closed): 
Prove that G° is a normal subgroup of G. 

Ex. 7.7. Prove that there exists a neighborhood of I in GL(11C) 
which does not contain any subgroup of  CL(K) other than {/}. 

Ex. 7.8. Prove the chain rule for manifolds. 

Ex. 7.9. Prove the inverse function theorem for manifolds. 
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Ex. 7.10. Let X be a manifold. If X contains no clopen subsets 
other than itself and the empty set, prove that X is path-connected 
(this is a converse of Proposition 4.18 for manifolds). 

Ex. 7.11. Let X c R.' be a manifold. Define the tangent bundle  of 
K as:  

TX  := {(p,y) E lEkm x 1[87--'R2971 1pEXandyETpX}. 

Prove that TX  is a manifold of dimension twice the dimension of  X.  

Ex. 7.12. If X c Rm is a manifold, define the unit tangent bundle 
of X as: 

TlX {(p, y) E 
	

xRm R2'n  lpEX and y E TpX and Iv' = 1}. 

l'rove that T l X is a manifold of dimension one less than the dimen-
sion of  TX. 

Ex. 7.13. Describe a diffeomorphism between 80(3) and T 1 S2  
(compare to Exercise 1.1). 

Ex. 7.14. Let f : Rn 	Rn (n > 2) be a diffeomorphism which 
sends lines to lines, in the sense of Exercise 3.11. Prove that f has 
he  formula f (X) = RA(X) ± V for some A E GL(R) and some 

E Rn; in other words f is represented by an element of Affn (R). 
hint: First prove that the matrix dfp  is independent of the choice of 

E  R.  

Ex. 7.15. Let G 1  and G2 be matrix groups with Lie algebras 131 
mid g2. Let f : Gl —> G2 be a C 1  homomorphism. Notice that 

91 —> 92- Prove that for all y E gi, 
f (eV = e dfr (V) 

In other words, a C 1  homomorphism is completely determined by its 
lerivative at the identity, at least in a neighborhood of the identity. 
Hint: Use Proposition 6.17. Conclude that any C 1  homomorphism is 
dnooth, at least in a neighborhood of the identity. 

Ex. 7.16. Let X c Rm be a manifold. Let f : X R. be a smooth 
'unction. Define the graph  of f as: 

A := {(p, t) E ptmx  R Rm+ 1  17/EX and  f(p) = tf. 

'rove that A is a manifold. 





Chapter 8 

The Lie bracket 

Since dimension is the only invariant of vector spaces, any two matrix 
groups of the same dimension have Lie algebras which are isomorphic 
as vector spaces. So how can we justify our previous assertion that 
the Lie algebra g encodes a surprising amount of information about 
the matrix group G? In this chapter, we define the "Lie bracket" op-
eration on g. For vectors A, B E g, the Lie bracket [A, B] e g encodes 
information about the products of elements of G in the directions of 
A and B. Together with its Lie bracket operation, g encodes informa-
Lion about what G looks like near the identity, not just as a manifold, 
but also as a group. We define Lie brackets in terms of the adjoint 
action. We also use the adjoint action in this chapter to construct a 
fundamental 2-to-1 smooth homomorphism from Sp(1) to 80(3). 

I.  The Lie bracket 

I,et G be a matrix group with Lie algebra g. For all g E G, the 
etaijugation map C9  : G --> G, defined as 

Cg (a) := gag-1 , 

1:t a smooth isomorphism. The derivative d(Cg ) /  : g 	g is a vector 
1 Nice isomorphism, which we denote as Ad  9 : 

Adg  := d(Cg )/. 

113 
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To derive a simple formula for Ad g (B), notice that any B E g 
can be represented as B =1/(0), where b(t) is a differentiable path in 
G with b(0) = I. The product rule gives: 

Adg (B) = d(Cg )/(B) = —
d 	

gb(t)g -1  = gBg-1 . 
dt t=0 

So we learn that: 

Ad g (B)= gBg -1 . 

If all elements of G commute with g, then Adg  is the identity 
map on g. So in general, Adg  measures the failure of g to commute 
with elements of G near I. More specifically, Ad g (B) measures the 
failure of g to commute with elements of G near / in the direction of 
B. Investigating this phenomena when g is itself close to / leads one 
to define: 

Definition 8.1. The Lie bracket  of two vectors A and B in g is: 

B] = —
d 	

Ada( t)B, 
dt  t=o 

where a(t) is any differentiable path in G with a(0) = I and a'(0) = A. 

Notice [A, B] E g, since it is the initial velocity vector of a path 
in g. It measures the failure of elements of G near I in the direction 
of A to commute with elements of G near / in the direction of B. 
The following alternative definition is easier to calculate and verifies 
that Definition 8.1 is independent of the choice of path a(t). 

Proposition 8.2. For all A, B G g, [A, B] = AB - BA. 

Proof. Let a(t) and b(t) be differentiable paths in G with a(0) 
b(0) =  I,  al (0) = A and b' (0) -=-  B.  Using the product rule and 
Equation 5.1: 

[A, B] = —
d 
dt 

  

t=0 
a(t)Ba(t) -1  = AB - BA. 

 

Notice [A, B] = 0 if and only if A and B commute. The commu-
tativity of A and B reflects the commutativity of elements of G in 
the directions of A and B. One precise way to formulate this is: 
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Proposition 8.3. Let A, B E g. 

(1) If [A, B] = 0, then e tA  commutes with esB for all t,s E R. 

(2) If em and esB commute for t, s c (—c, e), then [A, B] -=- O. 

Proof. For (1), if A and B commute, then 

e tA e 
 sB = e tAd-sB 

= e
sB±tA = es B etA . 

For (2), fix t E ( — e, e), and notice 

= etA Be —tA _= Ad( etA ) B
d  
ds 

that 

etA ess e—tA 
8=o 

d 
ds 

esB = B,  
8=o 

which implies that [A, B] -= O. 

The following properties of the Lie bracket follow immediately 
from Proposition 8.2: 

Proposition 8.4. For all A, Ai, A2, B, 	B2, C E g and Al, A2 E R, 

(1) [ÀiAi + A2A2,B] = 	B] + A2 [,42 , 

(2) [A, AiBi + A2B2] = ).. 1 [A, B 1 ] + A2 [A, B2]. 

(3) [A, B] = —[B, A]. 

(4) (Jacobi identity) [[A, B], C] + [[B , C], A] 	[[C , A], B] = O. 

The group operation in G determines the Lie bracket operation 
in g. One therefore expects smoothly isomorphic groups to have iso-
morphic Lie algebras. Before proving this, we need to precisely define 
"isomorphic Lie algebras". 

Definition 8.5. Let g l  and 92 be two Lie algebras. A linear function 

f 131 --> 92 is called a Lie algebra homomorphism  if for all A, B E 91, 

f ([A, 	= (A), f (B)]. 

If f is also bijective, then f is called a Lie algebra isomorphism. 

The most important Lie algebra homomorphisms are the ones 
determined by smooth group homomorphisms. 

Proposition 8.6. Let Gi,G2 be matrix groups with Lie algebras 

91,92. Let f : Gl 	G2 be a smooth homomorphism. Then the 
derivative dfr : gi 	g2 is a Lie algebra homomorphism,. 
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Proof. Let A, B E gl. Let a(t) and b(t) be differentiable paths with 
a(0) = b(0) d(0) =- A and 1/(0) =  B.  For all a E G1, we will 
first show: 

(8.1) 	 df (Ad a (B)) = Ad f(a)(df. r(B))- 

Since a(t) = ab(t)a' satisfies ce(0) = / and ai (0) = Ada (B), Equa-
tion 8.1 can be justified as follows: 

df (Ad a(B)) =—
d 

dt 

   

t=o (f  ° a)(t)  dt  t=0 
f (ab(t)a– ') 

 

t_o f (a) f (b(t)) f (a) – '= Ad f ( a)(df r(B)). 

Finally, apply Equation 8.1 to a = a(t) as follows: 

d 	 d 
df ([A, 	= df (—

dt 
t=oAda(t)B) =—

dt t=o
dh (Ada(t)B) 

=_- cl =oAd f(a(t))(dh(B)) -= [df I (A), dh (B)]• 
dt t 

The second equality above implicitly uses that, since dfr gi --> g2 is 
linear, its derivative at any point of gi is itself (see Exercise 7.5). So, 
since v(t) := Ad a(t)B is a path in g i , this second equality is justified 
by: 

d 
df (v i  (0)) = d(dh),(0(vi  (0 )) 

Corollary 8.7. Smoothly isomorphic matrix groups have isomorphic 
Lie algebras. 

Proof. Suppose that f : Gl --> G2 is a smooth isomorphism be-
tween two matrix groups. Then dfr : gi g2 is a Lie algebra homo-
morphism. Further, dfr is bijective, as is justified by the discussion 
preceding Theorem 7.6. Thus, dfi is a Lie algebra isomorphism. 0 

d 
dt 

t=o 
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Several familiar 3-dimensional matrix groups have isomorphic Lie 
algebras: 

(8.2) 

0 
so(3) = span { (0 

0 

0 
 0 

1 

0\ 
—1 	, 
0 

0 
0 

—1 

0 
0 
0 

1 
0) 
0 

0 
, (1 

0 

—1 
0 
0 

0 
0) 
0 

su(2) -= span f 	
( 0 1) 1/i 	1 (0 

01 ) 1 2 0) -2-  0 	—i) 

1 1 	1 
sp(1) =-- span { -2- (i) , 	(j) , 	(k) . 

In all three, for the given basis {A1, A2, A3}, it is straightforward to 
check: 

[Ai, A2] = A3, [A2, A3] = A1, [A3, Ai] = A2. 

So all three Lie algebras have the same Lie bracket structure, or more 
precisely, the linear map between two of them which sends basis ele-
ments to corresponding basis elements is a Lie algebra isomorphism. 
If these bases are used to identify the Lie algebras with R3 , notice 
that the Lie bracket operation becomes the familiar cross product 
from vector calculus. 

The fact that su(2) 	sp(1) is not surprising, since SU(2) and 
Sp(1) are smoothly isomorphic (by Proposition 3.13). We will later 
learn that SO(3) is neither isomorphic nor homeomorphic to Sp(1), 
in spite of the fact that their Lie algebras look identical. Another 
such example is the pair SO(n) and 0(n), which have identical Lie 
algebras but are not isomorphic. It turns out that path-connected, 
simply connected matrix groups are smoothly isomorphic if and only 
if their Lie algebras are isomorphic. It is beyond the scope of this 
text to precisely define "simply connected" or prove this fact. 

2. The adjoint action 

Let G C CL(K) be a matrix group of dimension d, with Lie algebra 
g. For every g E G, Adg  : g g is a vector space isomorphism. Once 
we choose a basis B of g, this isomorphism can be represented as LA 
for some A G GLd(R), as in Section 1.7. In other words, after fixing 

. 
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a basis of g, we can regard the map g Adg  as a function from G to 
GLd(R). 

Lemma 8.8. Ad: G -> GLd(R) is a smooth homomorphism. 

Proof. For all  gi, g2 E G and all X E 9, 

Ad9192  (X)  = (g1g2)X  (gl g2) -1  = 91.92X92-1 917 1  = Adgi  (Adg, (X)). 

This shows that Ad9192  = Adg, o Ad92 . Since the composition of two 
linear maps corresponds to the product of the matrices representing 
them, this verifies that Ad : G -> GLd(R) is a homomorphism. We 
leave to the reader (in Exercise 8.11) the straightforward verification 
that Ad is smooth. 

This homomorphism is called the adjoint action of G on g. In 
general, an action of a matrix group G on a Euclidean space Rin means 
a homomorphism from G to GL,,(R). It associates each element of 
G with a linear transformation of Rm, and hence determines how 
elements of G "act on" vectors in  R.  For example, we have studied 
all along how SO(n) acts on Rn; it is interesting that SO(n) also acts 
naturally on so(n) Rn(n-1)/2.  

The image of Ad in GLd(R) contains only Lie algebra isomor-

phims, since: 

Lemma 8.9. For all g E G and all X,Y E g, 

[Adg (X), Ad g (Y)] = Ad 9 0X,YD. 

Proof. This follows from Proposition 8.6, since Adg  = d(C9 )1. An 
alternative proof is the following explicit verification: 

[Adg  (X), Adg  (Y)] = [gX 	gYg -1 ] 
gxg -igyg -1. gyg -igxg -i 

g(XY - YX)g -1  

Adg  ( [X, Y ]) . 

The fact that Ad:  G -> GLd(R) is a smooth homomorphism has 
a very strong consequence; namely, Ad sends one-parameter groups in 
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G to one-parameter groups in GLd(R). To elaborate on this comment, 
for any X E g, we denote by 

adx —> 

the linear map which sends Y to [X, Y]. That is, adx(Y) := [X, 

Proposition 8.10. For all X E g, Adex = eadx  

Before proving this proposition, we explain it. On the right side, 
exponentiation of the linear map adx : g g is defined as follows. In 
our fixed basis, B, of g, adx  is represented by a matrix. This matrix 
can be exponentiated, and the linear transformation g —> g associated 
to the result is denoted ead x . The result is independent of the choice 
of B by Proposition 6.18. In fact, eadx  can be computed by formally 
substituting adx into the exponential power series. That is, for all 
YE  g, 

(eadx)(y) 	H-- (adx) 	(1/2)(adx) 2 	( 1 /6)(adX) 3 	• • ) Y.  

= Y + [X, Y] + (1/2)[X, [X, Y]] + (1/6)[X, [X, [X, Y]]] +. 

So the theorem says that the transformation Ad g  : g 	g (when 
g = ex) can be calculated purely in terms of repeated Lie brackets 
with X. 

Proof. The key is that for X E g, d(Ad)j (X)  E gld(R) is the matrix 
representing adx. We abbreviate this as: 

(8.3) 	 d(Ad)1(X) -= adx. 

Equation 8.3 follows immediately from Definition 8.1, or more explic-
itly by observing that for all Y E g: 
(8.4) 

d 	 , 	d 
—
dt t=o

Acl etx(Y ) = —
dt t=o\  

(etxye—tx)= XY — Y X = adx (Y). 

Now, Ad : G GLd(R) is a smooth homomorphism. By Ex-
ercise 7.15, a smooth homomorphism between matrix groups sends 
one-parameter groups to one-parameter groups and is therefore com-
pletely determined by its derivative at I. More precisely, for all X G g, 

Ad  ex — 5d(Ad)j(X) =  eadx. 

El  
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3. Example: the adjoint action for SO(3) 

In this section, we explicitly compute the adjoint action for S0(3). 
For this purpose, a convenient choice of basis of so(3) is: 

{ 	
0 0 0 0 0 1 	0 —1 0 

El  = 0 0 -1 ,E2= 0 0 0 ,E3= 1 0 0 	. 
0 1 0  J 	-1 0 0 	0 0 0 

As mentioned in Equation 8.2, the Lie bracket structure is: 

[Ei , E2} =  E3,  [E2 , E3] =  E1,  [E3 	E2 

This basis determines a vector space isomorphism f : 1183 	so(3), 
namely, 

0 —c 
(a, b, c) 	c 	o 	—a) . 

—b a 0 

	

For every g E  80(3), Adg  : so(3) 	so(3) can be regarded (via 
f) as a linear map R3  —> R3 , which equals left-multiplication by some 
matrix. We carefully chose the basis above such that this matrix will 
turn out to be g. In other words, conjugating an element of so(3) by 
g gives the same answer as left-multiplying the corresponding vector 
in R3  by g: 

(8.5) 	 g(f (a, b, c))g -1  =- f (g (a, b, c)). 

Equation 8.5 is equivalent to the following proposition: 

Proposition 8.11. In the above basis, Ad: 80(3) 	GL 3 (Ilk) is just 
the inclusion map, which sends every matrix to itself. 

Proof. We first show that the derivative d(Ad) 1  so(3) —> g13(R) 
sends every matrix to itself. Let -y(t) be a path in  80(3) with 7(0) = / 
and -AO) = El . Let y E so(3). Then t 	Ad- y (t)(v) is a path in so(3) 
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whose derivative equals (as in Equation 8.4): 

d 
T-u l t=0Ad- y (t)(1)) = —

d 	
"Y(t)v-Y(t)-1 dt t=o 

0 if y = El 

= Ei v - vEi = [El, v] = E3 if y = E2 { 

-E2 if y = E3 

= f (El f -1  (v)). 

Thus, the linear transformation 

d 

dt 
t=0  Ad(t) (y) 

is represented in this basis as left multiplication by the matrix El. 
This shows that d(Ad)1(E1) -= El. A similar argument gives that 
d(Ad)1(E2) = E2 and d(Ad)1(E3 ) =  E3. Thus, d(Ad) /  sends every 
matrix in so(3) to itself. 

Since d(Ad)/ sends every matrix to itself, Ad :  80 (3) 	GL3(R) 
sends every one-parameter group in S0 (3) to itself. We will prove 
in the next chapter that exp : so(3) -4 S0 (3) is surjective, so every 
element of S0 (3) is contained in a one-parameter-group. To conclude 
the proof without using this fact, one can verify that the set of all 
g E  80 (3) sent to themselves by Ad is clopen, and hence is all of 
SO(3). 

4. The adjoint action for compact matrix groups 

We saw that the image of Ad in GLd(R) contains only Lie algebra 
isomorphisms. A second important restriction on the image of Ad in 
GL(R) applies only when G is a subgroup of 0(n), U (n) or Sp(n): 

Proposition 8.12. If G is a subgroup of 07,(K), then for all g E G 
and all X E g, lAd9 (X)1= 

Remember that j  •j denotes the restriction to g of the Euclidean 
norm on Mn (K) regarded as Rn2  R2n2  or R4n2 . For example, in u(2), 

-= Va2  + 2b2  + 2c2  + d2. 
( ai 	b+ ci  

ci 	di ) 
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Proof. For X,Y E Mn (K) Kn2  a convenient alternative descrip-
tion of their inner product, (X,Y)K, is: 

	

(8.6) 	 (X, Y)  = trace(X • Y*). 

Equation 8.6 is justified as follows: 

n n 

trace(X • Y*) = 	(X • Y*) ii  = E E xi  • (y.)ii  

j=1 	 j=1 j=1 

(X,Y)K• 
i,j=1 

We will use this alternative description to prove that for all g E On  (K) 
and all X E M(K), 

	

(8.7) 
	

lxg1 = Igx I = Ixl. 
To justify Equation 8.7, we use the fact that g • g* = I: 

1X91 2  = trace((Xg)(Xg)*) = trace(Xgg*X*) = trace(XX*) = 1X1 2 . 

For the other half: 

1gX1 2  = 1(gX)*1 2  = trace((gX)*(gX)) = trace(X*g*gX) 

= trace(X*X) = IX*1 2  = 1X- 1 2 . 

The proposition follows immediately, since IgXg -1 1 = 19Xi = IXI.  

Since g is only an R-subspace of Mn (K)  1Kn2  (not necessarily 
a K-subspace), we will consider only the real part of the  1K-inner 

product (•, •)K on g C M(K). This is the same as regarding Mn (K) 
as R712 , R272  or R4n2  , and restricting the  1l-inner product (-, -)a to g. 

For example, in u(2), 

	

( 	

al i 	bi  + cii 
—bi + cii 	

) 	a2i 	b2 + c2i 
) 	— b2 + c2i 	d2 i 

)) 

= aia2 + 2b1b2 + 2c1c2 + d1d2. 

Assume that G is a subgroup of 07,(K). Equation 8.6 provides 
an important description of the R-inner product of vectors X,Y E g: 

(8.8) (X,Y)R = Real(trace(X • Y*)). 
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Proposition 8.12 can be restated as follows: 

Corollary 8.13. If the fixed basis 13 of g is orthonormal with respect 
to (.,.)11, then Adg  E 0(d) for all g c G. Thus, Ad:  G 0(d) is a 
homomorphism into the orthogonal group. 

Proof. For all g e G, Adg  : g 	g preserves norms and therefore 
also inner products. That is, (Ad(X), Ad(Y))Ek = (X, Y)Ek for all 
X, Y E g. The result now follows from Exercise 3.14. 	 CI 

An important consequence is that Lie brackets interact with the 
R-inner product in the following way: 

Proposition 8.14. If G  is  a subgroup of O(K), then for all vectors 
X ,Y, Z E g, 

= — ([X, Z], Y)R. 

Proof. Let a(t) be a path in G with a(0) = I and a'(0) = X. Since 
(., -)5k is Ad-invariant: 

o 	 d 
= (Ad a( t )Y, Ad,(t) Z )R 

- K

- 	

2.-ad  t=oAd(t) Y, Z) + \ I 7 Tit t_o Ad a( t )Z) 
111 

I d 

= ([X,Y], Z) R  + (Y, [X , Z])R 

The second equality uses the rule (A, B)' =  (A',  B) + (A, B'), which 
is a basic differentiation rule for the dot product found in any multi- 
variable calculus textbook. 	 El 

We end this section by looking more carefully at Equation 8.7, 
which said that for all g E On (K) and all X E M(K), 

iXg1=19)Ci =1X1. 

We learned back in Chapter 3 that left or right multiplication by 
g determined an isometry of Kn "=" I, R2  or R42 . Now we learn 
that left or right multiplication by g also determines an isometry of 

Mn(K) Rn2  R2n2  or R4n2 . 

This observation is crucial in Riemannian geometry. Whenever 
G c On (K) C Mn (K) is a subgroup, and g E G, then the function 
from Mn (K) to Mn (K) sending x gx (or x xg) is an isometry 
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which restricts to a function G -4  G. This restriction is called an 

isometry  G, because the distance between a pair of points of G is the 
same as the distance between their images. This remains true when 
the "distance" between a pair of points in G is re-defined to mean the 
length of the shortest path in G between them. It is interesting that 
subgroups of On (K) have so many isometries; they are highly sym-
metric manifolds, more so than typical non-compact matrix groups. 

5. Global conclusions 

By definition, the Lie bracket provides information about the group 
operation among elements near I. What about elements far from I? 
In this section, we demonstrate some global conclusion about a group 
which can be derived from information about its Lie algebra. 

Let G be a matrix group with Lie algebra g. A subspace I) C g is 
called a sub-algebra  if it is closed under the Lie bracket operation; 
that is, [A, B] E  r) for all A, B E I). Further, I) is called an ideal  if 

[A, B] G F) for all A E 4 and B E g. Notice that the Lie algebra of 
any subgroup of G is a subalgebra of g. We will prove: 

Theorem 8.15. Let G be a path-connected matrix group, and let 
H c G be a path-connected subgroup. Denote their Lie algebras as 

C  g. Then H is a normal subgroup of G if and only if ly is an ideal 
of g. 

Proof. First assume that H is a normal subgroup of G. Let A E Ij  

and B E g. Let a(t) be a path in H with a(0) = I and a1 (0) = A. 
Let b(t) be a path in G with b(0) = I and b/ (0) = B. 

d 
[A, B] -= —[B , A] = — 

 

Ad b (t)A 
t=o 

 

d 	( d 

dt t=o 	s—o
b(t)a(s)b(t) -1 ) . 

Since H is normal in G,  b(t)a(s)b(t) 1  E H, which implies [A, B] E 

Next assume that 4 is an ideal of g. For every B E g and every 
A G f), 

Ade s A E 1)) 
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because it is the limit of a series of elements of 0 by Theorem 8.10: 

AdeB A = eadB (A) 

A+  [B , A] + (1  1 2)[B ,[B , A]] + (1/6) [B ,  [B,  [B , A]]] + ••• . 

Now let a E H and b E G. Assume that a and b lie in a small 
neighborhood, U,  of I in G, so that a = e A  for some A G 0 and b = en  
for some B E g. Then 

bab-1  =- beAr =_ ebAb -1  eAdb(A) c  H.  

We leave the reader (in Exercise 8.3) to show that bab-1  E H for all 
a E H and b E G (not necessarily close to I). 	 0 

The previous proof demonstrates that it is possible to derive a 
global conclusion about a matrix group (H is normal in G) from a 
hypothesis about its Lie algebras (1) is an ideal of g). The Lie algebra, 
with its Lie bracket operation, seems to encode a lot of information 
about the matrix group. It turns out that the Lie bracket operation 
in g completely determines the group operation in G, at least in a 
neighborhood of the identity! An explicit verification of this surpris-
ing claim is provided by the Campbell-Baker-Hausdorff series.  For 

X ,Y, Z E g with sufficiently small norm, the equation eX  eY  = eZ  has 
a power series solution for Z in terms of repeated Lie brackets of X 
and Y. The beginning of the series is: 

Z = X + Y + (1/2)[X, Y] + (1/12)[X, [X, Y]] + (1/12) [Y, [Y, X]] + • • - 

The existence of such a series means that the group operation is com-
pletely determined by the Lie bracket operation; the product of ex 
and e lf  can be expressed purely in term of repeated Lie brackets of 
X and Y. 

One important consequence of the Campbell-Baker-Hausdorff se-
ries is the following correspondence between Lie algebras and matrix 
groups. 

Theorem 8.16 (The Lie Correspondence Theorem). There is a nat-
ural one-to-one correspondence between sub-algebras of gln (R) and 
path-connected ,subgroups of GLn(R). 
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Under this correspondence, the path-connected subgroup H C 

GL(R) is mapped to its Lie algebra, g(H) c In the other 
direction, a sub-algebra 13 c glri (R) is mapped to the group F(4) 
generated by the set { exp(A) I A E which means the group of all 
finite products of elements from this set and their inverses. 

Why is this a bijective correspondence? For any path-connected 

subgroup H C GL,(R), the fact that r(g(H)) = H follows from 
Theorem 7.1 and Exercise 8.3, at least in the case when H is closed. 
The case where H is not closed requires no new arguments. 

For any sub-algebra 13 C gl, (R), the fact that g(r(I))) = f) is much 
more difficult. See [11] for a complete proof. 

We conclude this section with a caution: the Lie algebra, g, of a 
matrix group, G, contains information only about the identity com-
ponent Go  of G (defined in Exercise 7.6). For example, G = SL,i (Z) 
(defined in Exercise 1.8) has identity component G o  = {I} and Lie al-
gebra g = {0}. This matrix group is comprised of discrete points; the 
Lie algebra tells you nothing about the interesting group operation 
on these discrete points. 

6. The double cover Sp(1) --> SO(3) 

In this section, we study the adjoint action of Sp(1): 

Ad:  Sp(1) ---> 0(3). 

Since Sp(1) is path-connected (by Exercise 4.15), so is its image under 
Ad (by Exercise 4.16), so we in fact have a smooth homomorphism: 

Ad:  Sp(1) 	80(3). 

Our goal is to prove that Ad : Sp(1) —> S 0(3) is a surjective, 2-to-1 
local diffeomorphism. The term "local diffeomorphism" means that 

there exists a neighborhood of any point of the domain, restricted to 
which the function is a diffeomorphism onto its image. A surjective 2- 
to-1 local diffeomorphism between compact manifolds is often called a 
double cover. This double cover provides an extremely useful tool for 
better understanding both Sp(1) and S0(3). For g E Sp(1) (regarded 
as a unit-length quaternion) and for y E sp(1) = span{ i, j, k}, we have 



/0 if y ,-- i 

ettve —it  ,--- iv — vi --- 2k if v . j 

—2j if y =- k 

Ac1 7 ( t)(v) = 
t=o 	dt 

d 
dt t=0 
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that 

Ad g (v) = gvg -1  E sp(1). 

Notice that conjugation by g determines an isometry H H, which 
fixes span{l} and thus also fixes sp(1) = spanfi,j,kl. So the adjoint 
action of Sp(1) can be regarded as conjugation restricted to the purely 
imaginary quaternions. 

Ad is a 2-to-1 map, because its kernel has two elements: 

Lemma 8.17. Ker(Ad) = {1, —1 } . 

Proof. If g E Ker(Ad), then gyg-1  = y for all y  e  sp(1). In other 
words, g commutes with all purely imaginary quaternions, and hence 
with all quaternions. So g E R by Exercise 1.18, which means that 
g = ±1. 

Lemma 8.18. Ad is a local diffeomorphism at I. In other words, 
Ad restricted to a sufficiently small neighborhood of I in Sp(1) is a 
diffeomorphism onto its image. 

Proof. By the Inverse Function Theorem 7.22, it will suffice to prove 
that  d(Ad)1 : sp(1) so(3) sends the natural basis {i, j, lc} of sp(1) 
to a basis of so(3). 

The path -y(t) = eit  = cos(t) + isin(t) in Sp(1) satisfies -y(0) = 
and 7'(0) = i. For all y G sp(1) = span-0.j, 

This shows that 
) 0 0 0 

d(Ad)/(i) = (0 0 —2 . 
0 2 0 

Now repeat this argument with j and k to verify that 

{d(Ad)i(i), d(Ad)y (j), d(Ad)/(k)} 

is a basis of so(3). D 
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It follows from Exercise 8.2 at the end of this chapter that Ad is 
a local diffeomorphism at every g E Sp(1) (not just at the identity). 

We prove next that every element of S0 (3) is in the image of 
Ad. This might be surprising, since elements in the image are all 
Lie algebra isomorphisms of sp(1). But this restriction is redundant, 
since matrices in S0 (3) preserve the vector cross-product in R3 , which 
is the same as the Lie bracket operation in sp(1), and are therefore 
automatically Lie algebra isomorphisms. 

Lemma 8.19. Ad: Sp(1) 	S0 (3) is surjective. 

Proof. Since Sp(1) is compact (by Exercise 4.15), its image under Ad 
is compact (by Proposition 4.25) and therefore closed. On the other 
hand, this image is open by the local diffeomorphism property. Thus, 
the image is a non-empty clopen subset of S0 (3). Since S0 (3) is 
path-connected (by Exercise 4.14), its only non-empty clopen subset 
is all of  80 (3) (see Proposition 4.18). 

This double cover Sp(1) 	S0 (3) has many implications. It 
explains why Sp(1) and S0 (3) have isomorphic Lie algebras. Its 
algebraic import can be summarized as follows: 

S0 (3) is isomorphic to  Sp(1)/{I, 

which makes sense because {I, —1 - } is a normal subgroup of Sp(1). 

Its geometric import has to do with the shape of S0(3). We will 
show that 80 (3) is diffeomorphic to an important manifold called 
RP3 . 

Definition 8.20. The set of all lines through the origin in Rn+' is 
called n-dimensional real projective space and is denoted as RPn 

Since every line through the origin in R7H1  intersects the sphere 
Sn in a pair of antipodal points, one often identifies  RIPE  with the set 
of antipodal pairs on  S.  The identification  80(3) Sp(1)/{I, 
associates each point of S0 (3) with a pair of antipodal points on the 
sphere S3  Sp(1), and therefore provides a bijection between 80 (3) 
and RP3 . This natural bijection helps us understand the shape of 
SO(3). 
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It may seem inappropriate that we referred to RP' as a manifold, 
since it is not a subset of any Euclidean space. There is a more general 
definition of "manifold" under which 118Pn can be proven to be one. 
For our purposes, it suffices to regard RP3  as a manifold by identifying 
it with S0 (3), which we know is a manifold. 

We learned in Exercise 7.13 that SO(3) is diffeomorphic to T 1 S2 , 
which is another way to visualize the shape of  80 (3). In topology, one 
uses an invariant called "fundamental groups" to prove the following: 

Proposition 8.21. No pair of the following three 3-dimensional man-
ifolds is homeomorphic: 

(1) T 1 S 2  =  80 (3) -= RP3 , 

(2) S3  = Sp(1) = SU(2), 

(3) S2  X S 1  . 

In particular, S0 (3) is not homeomorphic to 8 2  x S 1 , which im-
plies a negative answer to Question 1.2 from Chapter 1. Airline engi-
neers have an intuitive appreciation for the fact that T 1 82  is different 
from 82  x 8 1 . Because of this difference, it is impossible to construct 
a continuously changing basis for all of the tangent spaces of  82 . For 
example, the "east and north" basis does not extend continuously 
over the north and south poles of a globe. This phenomenon under-
lies the subtlety of describing travel on the surface of the Earth. It 
also underlies the complexity of the shape of  80 (3). 

The double cover Ad : Sp(1) —>  80 (3) can be used to construct 
important finite groups. If H C S 0 (3) is a finite subgroup (these are 
classified in Section 3.7), then 

Ad-1 (H) := {q E Sp(1) I Adq  E H} 

is a finite subgroup of Sp(1) with twice the order of H. For example 
let H C  80 (3) denote the direct symmetry group of the icosahedron, 
which is isomorphic to A5 (see Section 3.7). Let H* := Ad -1 (H) c 
Sp(1). H has order 60 and is called the icosahedral group. H* has 
order 120 and is called the binary icosahedral group. The set of cosets 
Sp(1)IH* is a three-dimensional manifold called the Poincaré do-
decahedral space. This manifold is very recently of great interest to 
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cosmologists because it has been proposed as a good candidate for 
the shape of the universe [14]. 

7. Other double covers 

It turns out that for every n > 2, there is a matrix group which 
double-covers SO(n). The first few are: 

Sp(1) —> S0 (3) 

Sp(1) x Sp(1) —> S 0 (4) 

Sp(2) —> 80 (5) 

SU(4) —> S 0 (6) 

In general, the double cover of SO(n) is denoted Spin(n) and is called 
the spin  group, not to be confused with the syrnplectic group, Sp(n). 
For 3  <n < 6, Spin(n) is as above. For  n> 6, Spin(n) is not isomor-
phic to any thus far familiar matrix groups. See [3] for a construction 
of the spin groups. 

Since these double covers are group homomorphisms, the Lie al-
gebra of Spin(n) is isomorphic to the Lie algebra of SO(n). Thus, 

sp(1)'=-' so(3) 

sp(1) x sp(1) so(4) 

sp(2) 	so(5) 

su(4) 	so(6) 

We will describe only the second double cover above, denoted 

F:  Sp(1) x Sp(1) —> 80 (4). 

Remember that Sp(1) x Sp(1) is a matrix group by Exercise 1.10. 
The double cover is defined such that for (91, 92) E Sp(1) x Sp(1) and 

E R4 2f-- H, 

F(gi, g2)(v) = g1vg2 . 

By arguments completely analogous to the previous section, the image 
of F is 80 (4), and F is a smooth 2-to-1 homomorphism and a local 
diffeomorphism at every point. The kernel of F is {(I, I), (—I, —1)1, 
which means that: 

80(4) (Sp(1) x Sp(1))I {(I, I), (—I, —I)} 
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The derivative dF(/ , /)  : sp(1) x sp(1) —> so(4) is the following Lie 
algebra isomorphism: 

7 	0 —a — x —b — y 

dF( r, /)(ai+bj+ck, xi+yj+zk) = 
a + x 0 —c + z 

—c — z) 
b — y 

b+ y c— z 0 —a + x 
\c+z —b+y a—x 0 

This is straightforward to verify on basis elements. For example, 

d 
cit  

 

d 
F(eit ' 1)(v)  = Tt 

  

I if v = 1 

—1 if v = i 

k if v = j 

—j if v = k 

t= 
e t 

t=o 
iv = 

 

which shows that 

dF(r,i) (1, 0) = 

	

0 	—1 

	

(

1 	0 

	

0 	0 

	

0 	0 

0 
0 
0 
1 

0 
0 

—1) . 
0 

The vectors (j, 0), (k, 0), (0, i), (0,j)  and (0,k) are handled similarly. 

The fact that so(4) is isomorphic to sp(1) x sp(1) has many im-
portant consequences. It is the essential starting point on which the 
inter-related theories of 4-dimensional manifolds, Yang-Mills connec-
tions, and particle physics are built. 

8. Exercises 

Ex. 8.1. Question 1.1 in Chapter 1 asked whether 80 (3) is an 
abelian group. Prove that it is not in two ways: first by finding two 
elements of so(3) which do not commute, and second by finding two 
elements of S0 (3) which do not commute. Which is easier? Prove 
that SO(n) is not abelian for any n> 2. 

Ex. 8.2. Let G1, G2 be matrix groups with Lie algebras 91, g2. Sup- 
pose that f : G1 —> G2 is a smooth homomorphism. If dfr : gl —> g2 is 
bijective, prove that dfg  :Tg Gi —> Tf( g ) G2 is bijective for all g E Gl. 
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Ex. 8.3. 

(1) Let G be a path-connected matrix group, and let U be a 
neighborhood of I in G. Prove that U generates G, which 
means that every element of G is equal to a finite product 
91 92 • .9k, where for each i, gi  or 9,7 1  lies in U. 

(2) In the proof of Theorem 8.15, remove the restriction that a 
and b are close to the identity. 

Ex. 8.4.  Define d:  Sp(1) 	Sp(1) x Sp(1) as a 	(a, a). Explicitly 
describe the function t : S0(3) --> S0 (4) for which the following 
diagram commutes: 

Sp(1) 	
d > Sp(1) x Sp(1) 

Adi 	 IF 
S0 (3) 	> 	S0 (4) 

Ex. 8.5. Express so(4) as the direct sum of two 3-dimensional sub-
spaces, each of which is an ideal of so(4). Show there is a unique way 
to do so. 

Ex. 8.6. Prove that Sp(1) x S 0 (3) is not smoothly isomorphic to 
80 (4). Hint: A smooth isomorphism would be determined by its 

derivative at (I, I), which would send ideals to ideals. 

Ex. 8.7. Construct an explicit diffeomorphism between 80 (4) and 
Sp(1) x S 0 (3). 

Ex. 8.8. Does there exist a basis for u(2) such that the function 
Ad : U(2) 0(4) is the familiar injective map, denoted as p2  in 
Chapter 2? 

Ex. 8.9. Let G be a path-connected matrix group, and let H C G 
be a path-connected subgroup. Denote their Lie algebras as ij C g. 
H is called central  if gh = hg for all g E G and h E H. Prove that H 
is central if and only if  [X, Y]  0 for all X e g and Y E  r. 

Ex. 8.10. Do  80 (3) and Isom(1112 ) have isomorphic Lie algebras? 

Ex. 8.11. For a matrix group G of dimension d, prove that the 
function Ad:  G —> GLd(R) is smooth. 
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Ex. 8.12. Let G be a matrix group with Lie algebra g and A1, A2 E g. 

(1) Prove that the path 
,y (t ) = etfi letA2 e — m1 e — tA2 

satisfies -y(0) = I, -y'(t) = 0 and -y"(0) = 2[A 1 , A2]. This is 
another precise sense in which [A1, A2] measures the failure 
of eml and etA2  to commute for small t. 

(2) Explicitly verify this when {A i , A2 } is a natural basis for 
the Lie algebra of Affi (R). Explain visually in terms of 
translations and scalings of R. 

(3) Use a computer algebra system to explicitly verify this when 
G = S0(3), and A1, A2 are the first two elements of the 
basis of so(3) in Equation 8.2. In this example, is ,y(t) a one-
parameter group? Explain this result in terms of rotations 
of a globe. 

Ex. 8.13. Let G be a closed subgroup of 0(n), U(n) or Sp(n). Let 
g be the Lie algebra of G. Let 1) c g be a subalgebra, and denote 

{A G g I (X, A) =0  for all X E 1)}. 

(1) If X E f) and A G 	prove that [X, A] E 1) 1 . 

(2) If 1) is an ideal, prove that 1) -1  is also an ideal. 

Ex. 8.14. In contrast to the fact that T 1 S2  S2  x S1 , prove that 
T1 S3  is diffeomorphic to S3  x S2 , and more generally that T 1 G is 
diffeomorphic to G x Sd-1  for any matrix group G of dimension d. 





Chapter 9 

Maximal tori 

In Chapter 1, we regarded S0 (3) as the group of positions of a globe. 
We asked whether every element of S0 (3) can be achieved, starting 
at the identity position, by rotating through some angle about some 
single axis. In other words, is every element of  80 (3) just a rotation? 
In this chapter, we provide an affirmative answer. Much more gener-
ally, we characterize elements of SO(n), SU (n), U(n) and Sp(n). An 
elements of any of these groups is just a simultaneous rotation in a 
collection of orthogonal planes. 

To explain and prove this characterization, we must understand 
maximal tori, a fundamental tool for studying compact matrix groups. 
We use maximal tori in this chapter to prove several important the-
orems about familiar compact matrix groups, including: 

Theorem 9.1. Let G E {S 0(n), U (n), SU (n), Sp(n)} 

(1) Every element of G equals ex for some X in the Lie algebra 
of G. 

(2) G is path-connected. 

Notice that part (2) follows from part (1), since every element of 
G is connected to the identity by a one-parameter group. It turns out 
that part (1) is true when G is any compact path-connected matrix 
group, but is false for several path-connected non-compact matrix 
groups, like SL2(R) and SL2(C). 

135 
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To understand the group operation in a matrix group, G, you 
must understand which elements commute with which elements. If 
G is compact and path-connected, maximal tori provide a clean way 
to explicitly describe, for each x E G, the set of elements of G which 
commute with x. They also help us determine the center,  Z(G), 
defined as: 

Z(G) := {g E  G  ga = ag for all a E G } . 

For example, we will prove that SO(3) and SU(2) are not isomorphic 
by showing that their centers are not isomorphic. The size of Z(G) 
measures how much commuting there is in G. We will see that the 
size (dimension) of a maximal torus of G also measures the amount 
of commuting in G. 

1. Several characterizations of a torus 

In this section, we define a torus and prove that tori are the only 
path-connected compact abelian matrix groups. 

Remember that U(1) = {(ei°)  I  6 E [0,27)1 is the circle-group 
whose group operation is addition of angles. U(1) is abelian, path-
connected, and isomorphic to SO(2). 

Definition 9.2. The n-dimensional torus  Tn is the group 

Tn := U(1) x U(1) x • • • x U(1) (n copies). 

In general, the product of two or more matrix groups is isomor-
phic to a matrix group by Exercise 1.10. In this case, 

Tn fdiag(ei°', 	eien) Oi E [0,270} c GLn (C). 

There is a useful alternative description of  T. Remember (Rn , +) 
denotes the group of vectors in Euclidean space under the operation 
of vector addition. (Rn , -1-) is isomorphic to a matrix group, namely 
Trans(Rn), as explained in Section 6 of Chapter 3. 

In group theory, if al, ..., ak are elements of a group, G, one often 
denotes the subgroup of G which they generate as (ai,...,ak) c G. 
This means the group of all finite products of the a's and their in-
verses. For example, if {vi, vk} C  (Ra ,  +), then 

= {nivi + • • • + nkvk I ni G Z}I 
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where Z = {..., —2, —1, 0,1,2, ...} denotes the integers. Since (Rn,+) 

is an abelian group, any subgroup N C (Rn , ±) is normal, so the 
coset space (Rn , +)IN is a group. 

Proposition 9.3. If  {Vi,  ...,un} C Rn is a basis, then the quotient 
group (R n ,+)1 (vi, —,vn) is isomorphic to Tn  . 

Proof. We first prove the proposition for the standard basis of Rn , 

{el = (1, 0, 	, 0), e2 = (0, 1, 0, ..., 0), ..., en  = (0, ..., 0, 1)}. 

The homomorphism  f:  (Rn , ±) Tn  defined as 

e2Trit„ f (t i , ...,tn ) 	diag( 

is surjective. The kernel of f equals (e1,..., en ). Therefore, Tn is 
isomorphic to (Rn , ±)/ (el, •-•,  en ).  

Next let {v i ,...,vn } be any basis of Rn . Let A E GL n (R) have 
rows equal to v 1 , 	vn , so that  RA  (e) = v, for all i = 1,...,n. The 
function RA : (Rn, ±) (Rn , +) is an isomorphism, which sends the 
subgroup generated by the e's to the subgroup generated by the v's. 

It follows that 

(Rn , +)/ (V11 	Vn) 	(kV, +)/(ei,•••,en) 	Tn  

Corollary 9.4. If  {vi,  , uk} C IV is a linearly independent set, 
then (Rn , +)/(vi, ..., Vic ) is isomorphic to T k  X (Rn-k , ±). 

Proof. Choosing vectors vk+i, vn  so that the v's form a basis of 
Rn  

(Rn ,+)/(vi,...,vk) 

((sPan{vi,•••,vk},+)/(vi,•••,vk)) x (sPan{vk+1,•••,vn } ,+) 

T k  x (Rn-k ,+). 

The term "torus" is justified by an important way to visualize 
T2 . Figure 1 shows the subgroup (vi, v2) C R2  generated by a basis 
{v1, v2} of R2 . The coset of R2 /(vi , v2) containing a typical vector 
W E R2  is pictured as a collection of grey circles. For most choices 
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of w E lik2 , this coset will intersect a fundamental domain (like the 

pictured parallelogram) in exactly one point. However, there are some 
exceptions. If w E (2)1, y2), then the coset intersects the fundamental 
domain in its four corners. If w = nvi  + tv2 for some n  E Z and some 
t E Z), then the coset intersects the fundamental domain in 
two points, one on its top and one on its bottom edge. Similarly, if 

w = tvi + nv2, then the coset intersects the left and right edge of the 
fundamental domain. 

Figure 1. A coset of Ryt, V2). 

So Tn can be identified with the fundamental domain, with the 

understanding that a point w on its left edge is considered the same 
as the point w + v2  on its right edge, and a point w on its bottom edge 
is considered the same as a point w + v1  on its top edge. If you cut 
a parallelogram out of paper and glue its left edge to its right edge, 

you obtain a cylinder. If you then glue the top edge to the bottom 
edge, you obtain the donut-shaped object commonly referred to as a 

torus; see the torus of revolution illustration in Section 7.4. 

It is easy to see that Tn is compact, abelian and path-connected. 

We end this section by proving that these properties characterize tori. 

Theorem 9.5. Any compact, abelian path-connected matrix group, 
G, is isomorphic to a torus. 

Proof. Let g denote the Lie algebra of G. Since G is abelian, we 
have AB  =  BA, and therefore eA eB = e 4+13  for all A, B E g. This 
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equality means that the exponential map exp : g 	G is a group ho- 

momorphism, when g is considered as a group under vector addition. 

Let K c g denote the kernel of exp. K is a discrete subgroup 
of g, which means that there exists a neighborhood, U, of the origin 
(=-- the identity) in g whose intersection with K contains only the 
origin, namely, any neighborhood on which exp is a diffeomorph_ism. 

It follows that any vector y E K has a neighborhood in g separating 

it from all other elements of K; namely,v+U:= 

Since K is discrete, we claim that K = (vi , vk) for some linearly 
independent set {y1, ..., vk }  C g, with k < dim(g). For clarity, we 
will only indicate the argument when dim(g) = 2, although the idea 
generalizes to any dimension. 

Let y1 E K denote a non-zero vector of minimal norm. Such a 

vector exists because K is discrete. If (vi) = K, then the claim is true 
with k = 1. Otherwise, let v2 denote a vector of minimal norm among 
candidates in K but not in (vi). Since K is a subgroup, (v1, y2) c K. 
We claim that (vi, y2) = K. Suppose to the contrary that some 
vector w E K is not contained in (vi, y2). Then the four grey vectors 
pictured in Figure 2 are contained in K. It is straightforward to check 

that at least one of the four is too short, meaning it contradicts the 
minimal-norm property of v1 or v2. 

	

0 	0 	0 	
a%14 ,ie°9  

0 0 	 0/1w  

	

0 0 	 0 o 
V2  

0 0 0 o 0 

0 0 o  ô o 

Figure 2. Proof that (v2, 02) — K 
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Next we claim that exp : g 	G is surjective. The image, 
exp(g) c G, contains a neighborhood, V, of the identity in G. Since 
exp(g) is a subgroup of G, it contains the set (V) consisting of all 
products of finitely many elements of V and their inverses. We prove 
now that (V) -= G (which amounts to proving part (1) of Exercise 8.3). 
Since G is path-connected, it will suffice by Proposition 4.18 to prove 
that (V) is clopen in G. First, (V) is open in G because for any 
g E (V), the set g • V := I a E V} is a neighborhood of g in G 
which is contained in (V). Second, to prove that (V) is closed in G, 
let g G G be a limit point of (V). The neighborhood g • V of g in 
G must contain some b E (V); that is, ga = b for some a,b E (V). 
SO g = ba-1  is a product of two elements of (V), which shows that 
g E (V). 

In summary, exp : g 	G is a surjective homomorphism whose 
kernel equals (vi, 	vk). So, 

G 21 (vi,•..,vk) 	Tk  x (Ill", +), 

where d = dim(g). Since G is compact, we must have d = k. 

The above proof actually verifies the following more general the-
orem: 

Theorem 9.6. Any abelian path-connected matrix group is isomor-
phic to Tk x (Rm, +) for some integers k,  ni  > 0. 

2. The standard maximal torus and center of 
SO(n), SU(n), U(n) and Sp(n) 

Definition 9.7. Let G be a matrix group. A torus in G  means a 
subgroup of G which is isomorphic to a torus. A maximal torus in G 
means a torus in G which is not contained in a higher dimensional 
torus in G. 

Every matrix group G contains at least one maximal torus, which 
is justified as follows. The subgroup {/} c G is a 0-dimensional 
torus in G. If it is not contained in a 1-dimensional torus, then it 
is maximal. Otherwise, choose a 1-dimensional torus T' in G. If 
T 1  is not contained in a 2-dimensional torus, then it is maximal. 
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Otherwise, choose a 2-dimensional torus T2  in G containing 7' 1 , etc. 
This process must stop, since G clearly can not contain a torus with 
dimension higher than its own. 

Maximal tori are really useful only for studying path-cormected 
compact matrix groups. So, in this section, we will determine  maxi-
mal tori of our familiar compact matrix groups: S 0(n), U (n), SU (n) 
and Sp(n). 

We will use "diag" as a shorthand for block-diagonal matrices as 
well as diagonal matrices. For example, 

diag ( (3
1 
	58 9 

H 12 
170 
13 

, 14 := 

	

/1 	2 	0 
340 
005  

	

0 	0 	8 

	

0 	0 	11 

	

\O 	0 	0 

0 
 0 

6 
9 
12 
0 

0 
0 
7 
10 
13 
0 

0 \ 
0 
0 
0 
0 
14) 

Notice that the product of similarly shaped block-diagonal niatrices 
is calculated blockwise. For example, when A1,  B1  E  M 1  (K) and 
when A2 B2 E Mn  (K), we have: 

diag(Ai , A2) • diag(Bi , B2) = diag(Ai • B i  , A2 B2) E Mni +712  (IIC). 

Therefore, if G1 C GL,-, 1 (K) and G2 C GL, (K) are both matrix 
groups, then their product G1 x G2 is isomorphic to the following 
matrix group: 

G1 X G2 '=" { diag(A i , A2) A1 E Gi , A2 E G2 }  C GLni -Enz (K). 

Also notice that the determinant of a block-diagonal matrix is the 
product of the determinants of its blocks. 

We also introduce notation for the familiar 2-by-2 rotation ma- 
trix: 

( cos 0 sin 0 
:= 

— sin 0 cos 0) 
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Theorem 9.8. Each of the following is a maximal torus. 

T = fdiag(R,e,, •••,Ro) Oi E [0, 27)1 C S0(2m). 

E [0, 2701 C S0(2m +1). 

• fcliag(ei° ' , 	I Oi E [0, 27)1 C U(n). 

• {diag(e ie l , 	eie")  I Oi E [0,2701 C Sp(n). 

• fcliag(e ie i 	,e —i(8 '+'- ±9- - ' ) ) I9 E [0,2701 C SU(n). 

In each case, the given torus T is called the standard maximal 
torus  of the matrix group. It is not the only maximal torus, as we 
will see, but it is the simplest to describe. Notice that the standard 
maximal torus of SU(n) is the intersection with SU(n) of the standard 
maximal torus of U(n). 

Proof. In each case, it is easy to see that T is a torus. The challenge 
is to prove that T is not contained in a higher-dimensional torus of the 
group G. In each case, we will justify this by proving that any element 
g E G which commutes with all elements of T must lie in T. Since 
any element of an alleged higher-dimensional torus would commute 
with all elements of T, this shows that no such higher-dimensional 
torus could exist. 

CASE 1: SO(n).  For clarity, we will prove that 

T = fdiag(Re„Re2 , 1 )  91, 92  E [0, 27)1 

is a maximal torus of  80(5). Our arguments will generalize in an 
obvious way to SO(n) for all even or odd n. 

Suppose that g E  80(5) commutes with every element of T. Let 
0 be an angle which is not an integer multiple of 7. We will use that 
g commutes with A := diag(Re , 'Re , 1) E  T.  Notice that multiples 
of e5  =- (0, 0, 0, 0, 1) are the only vectors in R5  that are fixed by RA. 
Since e5gA = e5 Ag = e5 g, we learn that RA fixes e5g, which means 
e5g = ±e5 . That is, the 5th  row of g looks like (0, 0, 0, 0, ±1). 

Next, use that g commutes with A 	diag(7,0, 1, 1, 1) E T. The 
only vectors in R5  fixed by RA are in span{ e3, e4, e5 } . For each of 
i E {3, 4 } , we have that eigA = eiAg = eig, so RA fixes eig, which 
means that eig E span{e3 , e4, e5}. In fact, eig E span{ e3, e4 } , since 
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otherwise (eig,e5g) 0. So the 3r d  and 4th  row of g each has the form 
(0, 0, a, b, 0). Repeating this argument with A := diag(1, 1, Re, 1) 
gives that the first and second row of g each has the form (a, b, 0, 0, 0). 

In summary, g has the form g = diag(gi , g2, ±1) for some elements 

gi,g2 E M2(R). Since g E S0 (5), we have  91,92  c 0(2). It remains 
to prove that g i , 92  c S0 (2), which forces the last argument to be 
+1 rather than -1 because det(g) = 1. Suppose to the contrary that 
91 E 0(2) - S0 (2). Then g does not commute with diag(Re, 1, 1, 1). 
This is because gi does not commute with 7Z9 by Exercise 3.6, which 
states that flips of R2  never commute with rotations of R2 . Therefore 

gi E S0 (2), and similarly 92  c S0 (2). Therefore, g  E T. 

CASE 2: U(n).  We will prove that 

T := fdiag(e l°1 , 	ei°") I 0, E [0, 27r)} 

is a maximal torus of U(n). Suppose that g E U(n) commutes with 
every element of T. Let  9 be an angle which is not an integer multiple 
of Ir. We use that g commutes with A := diag(e ie , e ie , ei9  ,1) E T. 
Notice that complex multiples of en  -= (0, ..., 0, 1) are the only vectors 
in Cn fixed by RA. Since engA = enAg =  e,-,g,  we learn that RA fixes 
eng, which means eng = Aen  for some A E C. That is, the nth  row of 
g looks like (0, ..., 0, A). Repeating this argument with the "1" entry 
of A moved to other positions gives that g is diagonal. It follows that 

g E T. 

CASE 3: Sp(n).  Suppose g E Sp(n) commutes with every ele- 

ment of T 	fdiag(ewl, eie-) 1 9, E [0, 2r)}. The argument in case 
2 gives that g is diagonal; that is, g = diag(gi , 	qn ) for some gi E H. 
Since g commutes with diag(i, 1, ..., 1) E T, we know that gii = igi. 
By Exercise 1.15, this implies that q i  E C. Similarly, q  C C for 
i = 1, n. It follows that g E T. 

CASE 4: SU(n). For clarity, we will prove that 

T = {diag(e ie l , e192 , e -i(e1±e2) ) 91, 92 E [0, 27)1 

is a maximal torus of SU(3). Suppose that g E SU(3) commutes with 

every element of T. Since g commutes with A = diag(1, e 19 , e -19 ) E T, 
the first row of g must be a multiple of e l . Permuting the three 
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diagonal entries of A gives that the second row of g is a multiple of 
e2 and the third of e3 . So g is diagonal, which implies that g E T. 

This argument generalizes to SU(n) for all n > 3. It remains to 
prove that T := Idiag(eie, e —i° ) I E [0, 27)1 is a maximal torus of 
SU(2). The isomorphism from Sp(1) to SU(2) (Section 4 of Chap-
ter 3) sends the standard maximal torus of Sp(1) to T, so this follows 
from case 3.  El 

In each case of the previous proof, we verified the maximality of 
the standard torus by proving something slightly stronger: 

Proposition 9.9. Let G E {SO(n),U(n),SU(n),Sp(n)}, and let T 
be the standard maximal torus of G. Then any element of G which 
commutes with every element of T must lie in T. In particular, T is 
maximal abelian,  which means that T is not contained in any larger 
abelian subgroup of G. 

As an application, we will calculate the centers of SO(n), U (n), 
Sp(n) and SU(n). Remember that the center of a group G is defined 
as 

Z(G) := {g E G I ga = ag for all a E G } . 

Theorem 9.10. 

(1) Z(S0(2m)) = {1,-1} (the group of order 2). 

(2) Z(S0(2m +1)) =  {I} (the trivial group). 

(3) Z(U(n)) = {e i° • II  O E [0,270} (isomorphic to U(1)). 

(4) Z(Sp(n)) -= {I, --/}. 

(5) Z(SU(n)) = {w - I I wn =1} (the cyclic group of order n). 

Notice that Z (SU (n)) = Z(U(n)) n SU (n). 

Proof. By Proposition 9.9, the center of each of these groups is a 
subset of its standard maximal torus. From this starting point, the 
arguments are straightforward, so we will leave to the reader all but 
the case G = U(n). 

Suppose that g E Z (U(n)). Since g lies in the standard maximal 
torus, it must be diagonal: g -= diag(Ai, ..., ) n ). We will use that g 
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commutes with A := diag 
1.) 	1) E u(n) ,  

diag (
(o■2  A01 ) A3' An) = gA  

( 
= Ag — diag 

— • 	

0 
A1 A

02) , A3, 	An) 5  

which implies that A 1  = A2. By a similar argument, any other pair 
of A's must be equal. So g has the form diag(A, ..., A) = A • / for some 
A E C with unit norm. D 

Corollary 9.11. 

(1) SU(2) is not isomorphic to S0 (3). 

(2) SU(n) x U(1) is not isomorphic to U(n). 

Proof. Their centers are not isomorphic. 

Remember that SU(2) and S0 (3) have isomorphic Lie algebras. 
There exists 2-to-1 homomorphism from SU(2) to S0 (3) which is 
a local diffeomorphism. Corollary 9.11 (or the fact that they are 
not homeomorphic by Proposition 8.21) says that "2-to-1" cannot be 
improved to "1-to-1". 

The pair SU (n) x  U(1)  and U(n) are diffeomorphic, but the nat-
ural diffeomorphism between them does not preserve the group struc-
ture. They have isomorphic Lie algebras because there is an n-to-1 
homomorphism from SU (n) x U(1) to U(n) which is a local diffeo-
morphism. These statements are all justified in Exercise 4.21. The 
corollary implies that "n-to-1" cannot be improved to "1-to-1". 

3. Conjugates of a maximal torus 

The standard maximal tori are not the only maximal tori of 80(n), 
U (n), Sp(n) and SU (n). Other ones are obtained by conjugating the 
standard ones. 

Proposition 9.12. If T is a maximal torus of a matrix group G, 
then for any g E G, gTg':-= {gag' I a E T}  is also a maximal 

torus of G. 
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Proof. The conjugation map C9  : G G, which sends a 
is an isomorphism. So the image of T under Cg , namely gTg -1 , is 
isomorphic to T and is therefore a torus. If T C G were a higher 
dimensional torus containing gTg -1 , then C 9-1  (f) would be a higher 
dimensional torus containing T. This is not possible, so gTg -1  must 

be maximal. 	 111 

Since the standard maximal torus is not a normal subgroup, it 
differs from some of its conjugates. The main result of this section is 
that there are enough different conjugates to cover the whole group. 

Theorem 9.13. Let G E {SO(n),U(n),SU(n),Sp(n)}, and let T 

be the standard maximal torus of G. Then every element of G is 

contained in gTg -1  for some g  E G. 

A more general fact is true, which we will not prove: the con-
jugates of any maximal torus of any path-connected compact matrix 
group cover the group. 

Theorem 9.13 says that: 

(9.1) For each x E G, there exists g E G such that x E gTg -1 . 

This is equivalent to: 

(9.2) For each x E G, there exists g E G such that gxg -1  E T. 

In other words, every x G G can be conjugated into the diagonal 
or block-diagonal form that characterizes elements of the standard 
maximal torus. 

In Equation 9.2, think of g as a change of basis matrix, as ex-
plained in Section 7 of Chapter 1. The linear transformation Rx  is 
represented with respect to the orthonormal basis {cis, eng} by 
the matrix gxg -1  E T. 

The example G = SO(3) helps clarify this idea. Let x E SO(3). 
The theorem insures that there exists g E SO(3) such that 

(
cos 6 sin 0 0 

gxg - 	- 1  = 	sin° cos6 0 
0 	0 	1 
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for some 0 E [0, 27r). This is the matrix representing Rx  in the basis 

{e ig , e2g , e3g} , which means that Rx  is a rotation through angle 0 
about the line spanned by e3g. To verify this explicitly, notice: 

(9.3) 	 e3(gxg -1 )= e3 	(e3g)x = e3g, 

e i (gxg')= (cos 0)ei + (sin 0)e2 	(eig)x = (cos 0)eig + (sin 0)e2g, 

e2(gxg -1 ) = (cos 0)e2 — (sin 0)e i 	(e2g)x = (cos 0)e2g — (sin e)e g 

We conclude that every element of  80 (3) represents a rotation! 

Analogous interpretations hold for SO(n). Take S0 (5) for ex-
ample. An element, y, of the standard maximal torus of S0(5) is 
particularly simple: Ry  represents a rotation by some angle 0 1  in the 
plane span{e i , e2 } and a simultaneous rotation by a second angle 02 
in the plane span{e3, 54 }. The theorem says that every x E S0 (5) is 
equally simple. There exist g E  80 (5) such that fix  represents a si-
multaneous rotation in the planes span{eig, e2} and span{e3g, 640. 
Notice that these two planes are orthogonal because g E S0 (5). Sim-
ilarly, every element of 80(n) represents a simultaneous rotation in 
a collection of orthogonal planes. 

Before proving Theorem 9.13, we review some linear algebra ter-
minology. Let K E {H, C }, and let f :110 -> IV be a linear transfor-
mation. Recall that A G K is called an eigenvalue of f if f (v) = A • y 
for some non-zero  y E K. Notice that for any A E K, 

V(A) := {t) E Kn  I  f (v) = A v} 

is a subspace of Kn (this is false for K = H). Notice that A is an 
eigenvalue of f exactly when V(A) has dimension > 1. The non-zero 
vectors in V(A) are called eigenvectors associated to A. For a matrix 
A E M(K), a basic fact from linear algebra is: A E K is an eigenvalue 
of RA if and only if det(A - A - /) = O. 

Lemma 9.14. Any linear transformation f :Cn Cn has an eigen-

calve. 

Proof. f = RA for some A E Mn (C). The fundamental theorem of 
algebra says that every polynomial of degree > 1 with coefficients in 
C has a root in C. In particular, 

g(A) 	det(A - A • /) 
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equals zero for some A E C, which is an eigenvalue of f. 

Proposition 9.15. For every A E U(n), RA has an orthonormal 
basis of eigenvectors. 

Proof. Let A E U(n). By Lemma 9.14, there exists an eigenvalue A 1  

of RA. Let y1 G Cn be an associated eigenvector, which can be chosen 
to have norm 1, since any multiple of an eigenvector is an eigenvector. 

Notice that A 1  0 0, since RA is invertible. 

To find a second eigenvector, we use that A is unitary. The key 
observation is: if W E Cn  is orthogonal to yi (in the hermitian inner 
product), then RA(w) is also orthogonal to v1. To justify this, notice 
that: 

(9.4) (wA,y0 = (w, viA-1 ) = Kw, —
1 

y1) = OD, y0(1/34) =  O. 
Al 

This means that RA : Cn -> Cn restricts to a linear transformation, 

	

RA : span{vi } i 	span{vi} i , 

where 

span{vi } l  := {w E C fl  W is orthogonal to y 1 } , 

which is an (n - 1) dimensional C-subspace of  C. By applying 
Lemma 9.14 a second time, the restricted RA has a unit-length eigen-

vector v2  E span{v i }l, and RA restricts further to a linear transfor-
mation 

	

RA : span[vi , v2} -1- 	spari{yi , v2} ± . 

Repeating this argument a total of n times proves the lemma. 

As a corollary of Proposition 9.15, we prove that Theorem 9.13 

is true when G = U(n). 

Corollary 9.16. For any A E U(n), there exists g E U(n) such that 
gAg -1  is diagonal and hence lies in the standard maximal torus of 

U (n). 

Proof. Let  {vi ,  yn } be an orthonormal basis of eigenvectors of RA 

with eigenvalues {A 1 , ..., A}. Let g denote the matrix whose i th  row 
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equals vi, so that eig = v , for each i -= 1, n. Notice that g E U(n). 
We claim that 

gAg -1 	diag(Ai, •••, An) • 

This is simply because gAg -1  represents the linear transformation RA 

in the basis {vi, vn }. To understand this more concretely, notice 
that for each  i= 1, n, 

ei(gAg-1 ) = vi Ag-1 	= Az ei . 

Next we verify Theorem 9.13 when G = SU(n). 

Corollary 9.17. For any A E SU(n), there exists g c SU(n) such 
that gAg -1  is diagonal and hence lies in the standard maximal torus 
of SU(n). 

Proof. Let A G SU(n). By the previous corollary, there exists some 
g E U(n) such that gAg -1  is diagonal. Notice that for any 0 e [0, 27), 

(ei°g)A(e ie  g) -1  = gAg-1 . 

Further, 0 can easily be chosen such that eie g c SU(n). 	 0 

The U(n) case also helps us prove the Sp(n) case: 

Corollary 9.18. For any A E Sp(n), there exists g E Sp(n) such 
that gAg -1  is diagonal with all entries in C and hence lies in the 
standard maximal torus of Sp(n). 

Proof. Let A E Sp(n). Recall from Chapter 2 that the injective ho-
momorphism  W  : Sp(n) U (2n) is defined such that the following 
diagram commutes: 

min 	c2n 

RAI t RW, (A) 

IHI  4  c2n 

Since every unitary matrix has a unit-length eigenvector, there exists 
uCE C2n  such that R ip (A)(U 1) = Ai ui  for some A i  E C with lAi  I = 1. 
Let v1  := gn-1 (ui) E Ir. We claim that RA(vi) = Aivi. This is 
because: 

gn(Aivi) = Aign(vi) = À 1 u 1 = RT,(A ) (ui) = gn(RA(vi))- 



150 	 9. Maximal tori 

Next notice that if w E H" is orthogonal to vi (with respect to 
the symplectic inner product), then so is  RA(W).  The-verification is 
identical to Equation 9.4. So RA : IHI" —> H restricts to an RE-linear 
function from the following (n - 1)-dimensional H-subspace of IHI" to 
itself: 

span{vi }i  = {w E 	w is orthogonal to vi }. 

Therefore, R9,,(A) c2n  ---+ C2n  restricts to a linear function from 
gn (span{vi} ± ) to itself. Let u2 E C 2' be a unit-length eigenvector of 
this restriction of RT„(A), with eigenvalue A2, and let v2  := gn-1 (u2)• 
As before, RA(V2) = A2v2. Repeating this argument a total of n times 
produces an orthonormal basis {v1 , ..., vn } of IHIn  and unit-length com-
plex numbers {A1, ..., An } such that RA(V i ) = Ai v, for each i. 

Finally, if g E Sp(n) is the matrix whose rows are v 1 , vn , then 

gAg -1  = diag(Ai , ..., An ), 

exactly as in the proof of Corollary 9.16. 	 0 

Finally, we prove Theorem 9.13 in the case G = SO(n). 

Proposition 9.19. For any A E SO(n), there exists g E SO(n) such 

that gAg -1  lies in the standard maximal torus of SO(n). 

Proof. Let A E SO(n). We can regard A as an n by n complex 
matrix whose entries happen to all be real numbers. Regarded as 
such, A E SU(n), so there exists v E IC" such that vA = Ay for some 
unit-length A E C. Let T E C" denote the result of conjugating all of 
the entries of v. Notice that: 

(9.5) 	 = 	= vA = Ay = 

so 76 is also an eigenvector of RA, with eigenvalue  X. 
CASE 1: Suppose A E R (so A = A = +1). In this case, Equa-

tion 9.5 says that is also an eigenvector associated to A. The vector 

v + 76 
Z := 	 

Iv + iii 

has all real entries, so Z E Rn . Further, ZA = AZ, since sums of 
eigenvectors are eigenvectors. 
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CASE 2: Suppose A V R. Write A = e i9  for some angle 0, which 
is not an integer multiple of 7r. Define: 

X = y + 

Y= i(y - Tt). 

All entries of X and Y are real, so X, Y G Rn. It is straightforward 
to check that X and Y are orthogonal. Observe that: 

(9.6) 	 X A = (y +77)A -= ew v + 

(cos 0 + i sin 0)y + (cos 0 - i sin 0)f, 

(cos 0)(y + Ty) + (sin 0)(iy - 

(cos 0)X + (sin (9)Y. 

Similarly, YA = (- sin 0)X + (cos 0)Y. 

Using the fact that 0 is not a multiple of 7r, Equation 9.6 implies that 
X and Y have the same norm, which is non-zero since y 0 O. So RA 
rotates span{X, Y} C Rn  by an angle O. If X and Y are re-scaled to 
have unit-length, they still satisfy the punchline of Equation 9.6: 

X A = (cos 0)X + (sin 0)Y, 

YA = (- sin 0)X + (cos 0)Y. 

In case 1, let  12 = span(Z) c W. In case 2, let 

= span(X, Y) c 

In either case, St is stable under RA : 	Rn, meaning that 
RA(W) E 12 for all w G 12. By an argument analogous to Equation 9.4, 
the subspace 

Q -L  =  { tV E Rn w is orthogonal to every element of 12} 

is also stable under RA. So we can repeat the above argument on the 
restriction of RA to 1-2 ± . 

Repeating this argument enough times produces an orthonormal 
basis of IV of the form {Xi, •••, Xk)Yk)Z1)..., ZI}, with 2k +1  = n. 
If g is the matrix whose rows equal these basis vectors, then 

gAg -1  = diag(R,61, , 	Re, , Ai, ••-, At), 

where each A is +1. By re-ordering the basis, we can assume that the 
negative lambda's come first. There are an even number of negative 
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lambda's because det(gAg -1 ) = det(A) = 1. Each pair of negative 
lambda's is a rotation block, since diag(-1, —1) = R.„. It follows that 
gAg -1  lies in the standard maximal torus T of SO(n). 

Since the basis is orthonormal, g E 0(n). If g E SO(n), then we 
are done, so assume that g E 0(n) — SO(n). In this case, define: 

0 1 
a := diag 

(1 0) '
1,...,1) E 0(n) — SO(n). 

Notice that ag E SO(n) and that aTa-1  = T, so, 

(ag)A(ag) -1  = a(gAg-1 )a-1  G T, 

which verifies that ag E SO(n) conjugates A into T. 

This completes our proof of Theorem 9.13. 

4. The Lie algebra of a maximal torus 

In this section, let G E {SO(n),U(n), SU (n), Sp(n)} and let g be 
the Lie algebra of G. Let T = T(G) C G be the standard maximal 
torus of G, and let T = 7(g) C g be the Lie algebra of T. It is 
straightforward to calculate: 

01 

	

r(so(2m)) = {diag (( °01 	 I ei RI , 
0 ) .." ((m e0m)) 	

E 
 

0 

	

T(S0(2M + 1)) = {diag (( °el 	
( 	

I , 
0 	••'' 	Om) '43) 

0 E R} 
 

(9.7) 

r(u(n)) = { 	 i0n)  I 0i E 345 

r(sp(n)) = {diag(i0i, 	i0n ) I Oi E R}, 

r(su(n)) = { 	 i0n-1, — i(01 + • • • + 07,1)) I Oi E 

Compare to Theorem 9.8, where we described T(G) using the samc 

parameters 6+, that are used above to describe 7(g). The descriptiom 

correspond via matrix exponentiation. The exponential image of E 

vector in r(g) equals the element of T(G) described by the sam( 

angles. In U(n) for example, 

diag(ewl, 	e10-) E T(U (n)). 
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Since T is abelian, its Lie algebra, T, is abelian, which means that 
the Lie bracket of any pair of matrices in T equals zero. 

Using the fact that all elements of G can be conjugated into T, 
we will show that all elements of g can be conjugated into T. 

Proposition 9.20. For each X E g there exists g G G such that 
Adg (X) E T. 

Proof. Choose r > 0 such that exp : g —> G is a diffeomorphism on 
the ball in g of radius r centered at the origin. It will suffice to prove 
the proposition for X E g with IX  1 < r. By Theorem 9.13, there 
exists g E G such that a := g(ex )g-1  E  T,  SO: 

eAc1 9 (X) e9X9 -1  = g(eX)9-1 = a E T. 

Remember that lAd9 (X)1 = X < r, so Ad g (X) is the unique vector 
with length <r that exponentiates to a E T. Equation 9.7 explicitly 
describes this vector in terms of the angles 0, of a; in particular it lies 
in T. 0 

Proposition 9.20 is important in linear algebra. It says that any 
skew-symmetric or skew-hermitian or skew-symplectic matrix can be 
conjugated into the diagonal or block-diagonal form of Equation 9.7. 
This adds to the list in Theorem 9.13 of matrix types which can be 
conjugated into simple forms. In fact, Theorem 9.13 and Proposi-
tion 9.20 together give a beautifully uniform way of understanding 
many conjugation theorems from linear algebra! 

A key application of Theorem 9.13 is the following proposition, 
which implies in particular that G is path-connected: 

Proposition 9.21. The exponential map exp : g —> G is surjective. 

Proof. We have an explicit description of the restriction exp : T —>  T,  
which is clearly surjective. For any g E G, gTg -1  is a maximal torus 
with Lie algebra Ad g (T). Also, the restriction exp : Ad g (T) 	gTg -1  

is surjective, since eAdg (X) 	geXg -1  for all X E T. Theorem 9.13 
says that these conjugates cover G. 	 0 
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5. The shape of SO(3) 

We saw in Section 6 of Chapter 8 that S0 (3) is diffeomorphic to 
R1P3 . We will now give a different proof, which relies on explicitly 
understanding the exponential map exp : so(3) S0 (3). 

Recall from Section 3 of Chapter 8 the following vector space 
isomorphism f : R3 	so(3): 

( 0 —c 
(a, b, c) 	0 	—a) . 

—b a 0 

Recall that under this identification, Adg  : so(3) 	so(3) corresponds 
to L 9  : R3 	R3  for all g G  80 (3). More precisely, 

(9.8) 	 Adg  (f (a, b, c)) = f (g (a, b, c)). 

Proposition 9.22. For any A E so(3), L( eA) : R 3  —4 R 3  is a 

right-handed rotation through angle I Al I N/2-  about the axis spanned 
by f (A). 

"Right-handed" means the rotation is in the direction that the 
fingers of your right hand curl when your thumb is pointed towards 
f "(A). 

Proof. Let A E so(3). By Proposition 9.20, there exists g E S 0 (3,` 
such that 

0 —0 0 
A = g (9 0 C) 

0 0 0 

for some 0 E R. Notice that 1A1 

	

(0 
	—0 	0 

exp(A) -= g exp 	0 	0 	0 

	

0 	0 	0 

= 	so 

g'  = g  

G  = AIR/2. Next, 

cos 0 	— sin 0 	0 
sin 0 	cos 0 	0g 1 .  

0 	0 	1 

It follows that L (e A )  is a right-handed rotation through angle 0 abou 
the line spanned by g • (0, 0, 1). The verification is similar to Equf 
tion 9.3. 
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Finally, notice that by Equation 9.8, the rotation axis is: 

0 —1  0\\ 
 - (0,0,1) = f-1  (Ad g  (1 0 0)) = —1 f-1 (A). 

0 
0 0 0 

0 

Corollary 9.23. Let B = {A E so(3)  I AI < 70} . The restriction 
exp : B SO(3) is surjective. It is not injective, but for  A1,  A2 E B, 
exp(A i ) = exp(A2 ) if and only if Ai = —A2 and  lAd = 1A21 = 71-0. 

Proof. The image exp(B) contains matrices representing all right-
handed rotations about all vectors in R3  through all angles 0 E [0, /r]. 
Notice that the right-handed rotation through angle 0 about A E R3  
equals the right-handed rotation through angle — 0 about —A. This 
is why exp(A) = exp(—A) when Al1 = 70. 

Points of SO(3) are in one-to-one correspondence with points of 
BI where is the equivalence relationship on B that identified 
each point on the boundary of B with its antipode (its negative). 

What does this have to do with RP3 ? Well, B is homeomorphic 
to the "upper-hemisphere" V of S3 : 

:= {(x0, xi, x2,x3) E S3  C R4  xo > 01, 

by an argument analogous to the proof of Proposition 7.15. A typical 
line through the origin in R4  intersects V in exactly one point. The 
only exceptions are the lines in the subspace {x0  = 0 } ; these intersect 
V in a pair of antipodal points on its boundary. So RP3  can be mod-
elled as the upper hemisphere V modulo identification of antipodal 
boundary pairs. This is another way of understanding why SO(3) is 
diffeomorphic to RIP. 

6. The rank of a compact matrix group 

Let G E {SO(n),U (n), SU (n), Sp(n)}. Let T be the standard maxi-
mal torus of G. In this section we prove the following: 

Theorem 9.24. Every maximal torus of G equals gTg -1  for some 
g E G. 
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Our proof actually holds when T is any maximal torus of any 
path-connected compact matrix group, granting the previously men-
tioned fact that the conjugates of T cover G in this generality. 

In particular, any two maximal tori of G have the same dimension, 
so the following is well-defined: 

Definition 9.25. The rank  of G is the dimension of a maximal torus. 

The ranks of our familiar compact groups are: 

rank(S0(2n)) = rank(S0(2n + 1)) = rank(U (n)) 

= rank(Sp(n)) = rank(SU(n + 1)) = n. 

Isomorphic groups clearly have the same rank, so rank is a useful 
invariant for proving that two groups are not isomorphic. The proof 
of Theorem 9.24 relies on a useful fact about tori: 

Lemma 9.26. For any n, there exists a E Tn such that the set 
{a, a2 , a3 , a4 , ...} is dense in Tn 

Proof of the n = 1 case. Let 0 be an irrational angle, which means 
an irrational multiple of Ir. Let a := (e 10 ) E T1  U(1). To verify that 

( eie) , a2 = ( e2161 ) 5 a3 	( e310) 7 777 1 is  this choice works, notice that {a -- 
an infinite sequence of points which are all distinct because B is irra-
tional. Since U(1) is compact, some subsequence converges (Propo-
sition 4.24). This convergent subsequence must be Cauchy, which 
means that for any E > 0, we can find integers n1 < n2 such that 
dist(ani , an 2 ) < E. Next, notice that for any integer m, 

dist (am+ (n2-ni ) , am) = dist (aman 2 a-n 1 ,  am) 

= dist (an' a 	, /) = dist (an 2  , an' ) < E. 

ni ) a2(n2 -ni a3(n2 -ni) ...} So the sequence 0(712- 	 takes baby steps of 
uniform size < E  and thus comes within a distance e of every element 
of U(1) as it marches around the circle. Since c > 0 was arbitrary, 
the lemma follows. 

For  n> 1, we must choose a :=  (e 10', 	E  Tn  such that the 
O's are rationally independent, which means there are no equalities 
of the form ,_,N-nk=i  skOk = 7r, where sk are rational numbers. The 
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proof that this works is found in [2, page 66]. An alternative purely 
topological proof of Lemma 9.26 is found in [1]. 

Proof of Theorem 9.24. Let T' C G be a maximal torus. Choose 
a E T' such that {a, a2 , a3 , ...} is dense in T'. Choose g E G such that 
gag-1  ET. Since T is a subgroup, (gag-1)n gang-1  E T for every 
integer n, so a dense subset of gT'g -1  lies in T. Since T is closed, 
gT'g -1  C T. Since gT 1g-1  is a maximal torus, gT'g -1  = T. 

7. Who commutes with whom? 

Let G E {SO (n), U (n), SU (n), Sp(n)} . In order to better understand 

the group structure of G, we wish for each x E G to describe the set 
of elements of G that commute with x. We first solve this problem 
when x E T the standard maximal torus of G. For a "regular" 

E T, we will show that x commutes only with the other elements 
of T. Remember that in Theorem 9.8, an element of T is described 
by a list of angles 0 1 ,  ...,0.  

Definition 9.27. An element x E T is called regular  if its angles are 
all distinct, and in the case G = 80(n), none are equal to 0 or 7. 

When G = SU(n), an element of T looks like 

diag(e ie' , 

and the "distinct angle" restriction in the definition includes the final 
summed angle. 

The identity I E T is as non-regular as possible. Also, if -I E G 
(as is the case for G = S0(2m) but not G = S0(2m + 1)), then 
-I E T and is very non-regular. Notice that I and -I commute with 
every element of G and are contained in every maximal torus of G. 

Proposition 9.28. If x E T is regular, then x only commutes with 

other elements of T, so T is the only maximal torus that contains x. 

Proof. In the proof of Theorem 9.8, we verified that T is maximal by 

showing that if g e G commutes with all of T, then g E T. We leave 
it to the reader in Exercise 9.2 to modify this argument, obtaining the 
slightly stronger claim that if g E G commutes with a single regular 
x E T, then g E T. 
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Next, we show that the problem of determining who commutes 
with x E G reduces to the case x E T. 

Definition 9.29. An element y E G is called regular  if y = gxg -1 

 for some g E G and some regular x E T. 

For example, an element y E U(n) is regular if and only if its 
eigenvalues all have multiplicity 1, which means that the vector space 
of eigenvectors associated to any eigenvalue is 1 (complex) dimen-
sional. 

Corollary 9.30. A regular element of G is contained in only one 
maximal torus and commutes only with elements of that maximal 

torus. 

Proof. Let y E G be regular, which means y  = gxg -1  for some 
g E G and some regular x E T. We claim that y commutes only 
with elements of the maximal torus gTg -1 . This follows from the 
previous proposition, since z E G commutes with x if and only if 
gzg -1  commutes with y. 0 

It is also straightforward to determine which elements of G com-
mute with a non-regular x E T and hence with a non-regular x E G. 

In summary, basic facts about maximal tori empower us to completely 
answer the question: who commutes with whom in G? 

8. The classification of compact matrix groups 

A major achievement of Lie group theory is the classification of com-
pact matrix groups. The only such groups we have encountered so 
far are SO(n), 0(n), U(n), SU (n), Sp(n), and products of these, like 
for example S0(3) x S0(5) x SU(2). It turns out that there are not 
many more than these. 

Theorem 9.31. The Lie algebra of every compact matrix group is 
isomorphic to the Lie algebra of a product G1  x G2 X • • • X Gk, where 

each Gi is one of {SO(n),SU(n),Sp(n)} for some n, or is one of a 

list of five possible exceptions. 
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The five "exceptional matrix groups" mentioned in the theorem 
are named. 

(1) G2, which has dimension 14; 

(2) F4, which has dimension 52; 

(3) E6, which has dimension 78; 

(4) E7, which has dimension 133; 

(5) Eg, which has dimension 248. 

It is beyond the scope of this text to construct the exceptional 
groups or to address the proof of Theorem 9.31. 

We have seen that non-isomorphic matrix groups sometimes have 
isomorphic Lie algebras. For example, U(n) is not on the list in 
Theorem 9.31 because it has the same Lie algebra as SU (n) x SO(2), 
by Exercise 4.21. 

The problem of determining all matrix groups with the same Lie 
algebra as G1 x G2 X • • • X Gk is well-understood, but is also beyond 
the scope of this text. Aside from this detail, the theorem gives a 
complete classification of compact matrix groups! 

9. Lie groups 

Lie groups have proven to be among the most fundamental objects in 
mathematics. 

Definition 9.32. A Lie group  is a manifold, G, with a smooth group 
operation G< G G. 

In other words, a Lie group is a manifold which is also a group. 
One often adds to the definition that the "inverse map" G —> G, send-
ing g g-1 , is smooth; however, this turns out to be a consequence 
of the smoothness of the group operation (gi, 94  gi 92. 

In Chapter 7, we proved that matrix groups are manifolds. It is 
straightforward to see that the group operation is smooth and there-
fore that matrix groups are Lie groups. 

Not all Lie groups are matrix groups, but at least it has been 
shown that: 
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Theorem 9.33. Every compact Lie group is smoothly isomorphic to 
a matrix group. 

All important structures of matrix groups carry over to Lie groups. 
For example, the Lie algebra g of a Lie group G is defined as you would 
expect: 

g = T/G. 

For every g E G, the conjugation map C9  : G G  sending x 1—* gxg -1  

is smooth, so one can define: 

Ad g  :--= d(C9 )1 : g --+ g. 

Next, the Lie bracket operation in g is defined as you would expect: 
for A, B E g, 

[A, 	:=  
dt t=0 a  

where a(t) is any differentiable path in G with a(0) = I and with 
a/ (0) = A. It turns out that this operation satisfies the familiar Lie 

bracket properties of Proposition 8.4. Next, the exponential map 
exp : G is defined with inspiration from Proposition 6.10: For 
A E g, the path t 1-4 el A  means the integral curve of the vector field 
on G whose value at g E G is  d( 9 )1(A) E T 9 G, where Lg : G — * G 
denotes the map x g • x. 

Further evidence that Lie groups are only slightly more general 
than matrix groups is provided by the following non-trivial theorem: 

Theorem 9.34. The Lie algebra of any Lie group is isomorphic to 
the Lie algebra of a matrix group. 

For readers with more advanced topology background, we men-
tion that every simply connected Lie group is smoothly isomorphic to 
a matrix group. 

10. Exercises 

Ex. 9.1. In Theorem 9.10, prove the remaining cases G = SU(n), 

G = SO(n), G = Sp(n). 

Ex. 9.2. Prove Proposition 9.28. 
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Ex. 9.3. Prove that the standard maximal torus of S0(3) is also a 
maximal torus of GL3(R). Do its conjugates cover GL 3 (R)? 

Ex. 9.4. If  T1  C G1 and T2 C G2 are maximal tori of matrix groups 
G1  and G2, prove that T1  X T2 is a maximal torus of G1 X G2. 

Ex. 9.5. Prove U(n)IZ(U(n)) is isomorphic to SU(n)IZ(SU(n)). 

Ex. 9.6. Let G E {SO(n),U(n),SU(n),Sp(n)}, and let g denote 
its Lie algebra. Characterize the elements X E g that are regular, 
meaning that X is tangent to only one maximal torus and commutes 
only with other vectors that are tangent to that maximal torus. 

Ex. 9.7. Use maximal tori to find a simple proof that if A E U(n), 
then 

det(eA) = etrace(A) .  

This is a special case of Lemma 6.15. 

Ex. 9.8. Let A = diag(1, 1, ...,  1,-1) E 0(n). An element of 0(n) 
of the form gAg -1  for g E 0(n) is called a reflection. 

(1) Show that RA : Rn  —> Rn  fixes span{ el, ..., e n_1}  and can 
be visualized as a reflection across this subspace. 

(2) Show RgAg -i : Rn  —> Rn  fixes span{ eig -1 , en _19 -1 } and 
can be visualized as a reflection across this subspace. 

(3) Prove that every element of 0(2)— S0 (2) is a reflection, and 
every element of S0 (2) is the product of two reflections. 

(4) Prove that every element of the standard maximal torus of 
SO(n) is the product of finitely many reflections. 

(5) Prove that every element of 0(n) is the product of finitely 
many reflections. 

Ex. 9.9. Identify Sp(1) with the unit-length quaternions S3  C H. 

(1) Prove that the conjugates of the standard maximal torus 
of Sp(1) are exactly the intersections of S 3  with the 2- 
dimensional R-subspaces of H that contain 1. 

(2) Prove that two elements al ±bii±cij±dik, a2±b2i±c2j-Pd2k 
in Sp(1) are conjugate if and only if ai a2. 
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(3) Prove that two elements of SU(2) are conjugate if and only 
if they have the same trace. 
Hint: Consider the isomorphism W1: Sp(1) 	SU(2). 

Ex. 9.10. If H c G is a subgroup, define the normalizer  of H as 
N(H) {g E G I gHg-1  = H}. Prove that N(H) is a subgroup of 
G and that H is a normal subgroup of N(H). 

Ex. 9.11. Let G E {SO(n),U(n), SU (n), Sp(n)}, let T be the stan-
dard maximal torus of G, and let T C g denote their Lie algebras. 

(1) Prove that if X E g commutes with every vector in T, then 
X E T. In other words, T is a "maximal abelian" subspace. 

(2) Prove that the Lie algebra of N(T) equals T. 

Hint: Use part (1) and also Exercise 8.13. 

(3) Conclude that N(T) is comprised of finitely many noninter-
secting subsets of G, each diffeomorphic to T. 

Ex. 9.12. Prove that the normalizer of the standard maximal torus 
T of Sp(1) is: 

N(T) = T U (T • j). 

Ex. 9.13. Prove that the normalizer of the standard maximal torus 
T of SO(3) is: 

{
cos 0 sin 0 	0 

N(T)=T U 	sin 0 — cos 0 0 
0 	0 	—1 

 

E [0, 27) . 
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