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Why study matrix
groups?

A matrix group means a group of invertible matrices. This defini-
tion sounds simple enough and purely algebraic. You know from lin-
var algebra that invertible matrices represent geometric motions (i.e.,
lincar transformations) of vector spaces, so maybe it’s not so surpris-
ing that matrix groups are useful within geometry. It turns out that
matrix groups pop up in virtually any investigation of objects with
symmetries, such as molecules in chemistry, particles in physics, and
projective spaces in geometry. Here are some examples of how amaz-
ingly ubiquitous matrix groups have become in mathematics, physics
and other fields:

e Four-dimensional topology, particle physics and Yang-Mills
connections are inter-related theories based heavily on ma-
trix groups, particularly on a certain double-cover between
two matrix groups (see Section 8.7).

e Movie graphics programmers use matrix groups for rotat-
ing and translating three-dimensional objects on a computer
screen (see Section 3.6).

e The theory of differential equations relies on matrix groups,
particularly on matrix exponentiation (see Chapter 6).
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2 Why study matrix groups?:

e The shape of the universe might be a quotient of a certain?”
matrix group, Sp(1), as recently proposed by Jeff Weeks';
(see Section 8.6). Weeks writes, “Matrix groups model pos-,
sible shapes for the universe. Conceptually one thinks of the:
universe as a single multi-connected space, but when cosmol-t
ogists roll up their sleeves to work on such modeils they find:
it far easier to represent them as a simply connected space\’
under the action of a matrix group.” )

¢ Quantum computing is based on the group of unitary matri-»
ces (see Section 3.2). William Wootters writes, “A quantum-
computation, according to one widely used model, is nothing;
but a sequence of unitary transformations. One starts with!
a small repertoire of simple unitary matrices, some 2 x 2 and
some 4 X 4, and combines them to generate, with arbitrar-,
ily high precision, an approximation to any desired unitary:
transformation on a huge vector space.”

e In a linear algebra course, you may have learned that cer-
tain types of matrices can be diagonalized or put into other
nice forms. The theory of matrix groups provides a beauti
fully uniform way of understanding such normal forms (se
Chapter 9), which are essential tools in disciplines ranging
from topology and geometry to discrete math and statistics

¢ Riemannian geometry relies heavily on matrix groups, i
part because the isometry group of any compact Riemannia
manifold is a matrix group. More generally, since the work
of Klein, the word “geometry” itself is often understood
the study of invariants of the action of a matrix group on
space.

Matrix groups are used in algebraic geometry, complex analysis
group and ring theory, number theory, quantum physics, Einstein’
special relativity, Heisenberg’s uncertainty principle, quark theor
Fourier series, combinatorics, and many more areas; see Howe's arti
cle [10]. Howe writes that matrix groups “touch a tremendous spe
trum of mathematical areas...the applications are astonishing in thei:
pervasiveness and sometimes in their unexpectedness.” '
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You will discover that matrix groups are simultaneously algebraic
nnl peometric objects. This text will help you build bridges between
vour knowledge of algebra and geometry. In fact, the beautiful rich-

< nesis of the subject derives from the interplay between the algebraic
. il geometric structure of matrix groups. You'll see.

My goal is to develop rigorously and clearly the basic structures

.of matrix groups. This text is elementary, requires few prerequisites,

el provides substantial geometric motivation. Whenever possible,

Iy approach is concrete and driven by examples. Exploring the sym-

;nwl,rios of a sphere is a motivating thread woven through the text,

Inpinning with the cover artwork. You will need only the following
prerequisites:

e Calculus: topics through multivariable calculus, with a
brief introduction to complex numbers including Euler’s for-
mula

€' = cos(9) + isin(f).

e Linear Algebra: determinant, trace, eigenvalues, eigen-
vectors, vector spaces, linear transformations and their re-
lationship to matrices, change of basis via conjugation.

e Abstract Algebra: groups, normal subgroups, quotient
groups, abelian groups, fields.

e Analysis (optional): topology of Euclidean space (open,
closed, limit point, compact, connected), sequences and se-
ries, continuous and differentiable functions from R™ to R,
the inverse function theorem.

‘I'he analysis prerequisites are optional. I will develop these analysis
fupics from scratch for readers seeing this material for the first time,
Imt since this is not an analysis textbook, I will not feel obliged to
in-lude complete proofs of analysis theorems.

1 believe that matrix groups should become a more common staple
ol the undergraduate curriculum; my hope is that this text will help
nllow a movement in that direction.
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6 1. Matrices

the globe in some way. SO(3) becomes a group under composition of
motions (since different motions might place the globe in the same po-
sition, think about why this group operation is well-defined). Several
questions come to mind.

Question 1.1. Is SO(3) an abelian group?

The North Pole of the globe faces up in the identity position.
Rotating the globe around the axis through the North and South Pole
provides a “circle’s worth” of elements of SO(3) for which the North
Pole faces up. Similarly, there is a circle’s worth of elements of SO(3)
for which the North Pole is located as in picture 2, or at any other
point of the globe. Any element of SO(3) is achieved, starting with
the identity, by first moving the North Pole to the correct position and
then rotating about the axis through its new position. It is therefore
natural to ask:

Question 1.2. Is there a natural bijection between SO(3) and the
product 8% x S :={(p,0) | p € 52,0 € S'}?

Here 52 denotes the sphere (the surface of the globe) and S?
denotes the circle, both special cases of the general definition of an
n-dimensional sphere:

S™ = {(@1, s Bng1) ER™ 2+ 2y = 1)

Graphics programmers, who model objects moving and spinning in
space, need an efficient way to represent the rotation of such objects.
A bijection SO(3) =2 §2 x S would help, allowing any rotation to be
coded using only three real numbers — two which locate a point of S?
and one angle which locates a point of S*. If no such bijection exists,
can we nevertheless understand the shape of SO(3) sufficiently well
to somehow parameterize its elements via three real numbers?

One is tempted to refer to elements of SO(3) as “rotations” of
the sphere, but perhaps there are motions more complicated than
rotations.

Question 1.3. Can every element of SO(3) be achieved, starting
with the identity, by rotating through some angle about some single
acis? '
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If so, then for any element of SO(3), there must be a pair of
antipodal points of the globe in their identity position.

You might borrow your roommate’s basketball and use visual in-
Luition to guess the correct answers to Questions 1.1, 1.2 and 1.3. But
our definition of SO(3) is probably too imprecise to lead to rigorous
proofs of your answers. We will return to these questions after de-
veloping the algebraic background needed to define SO(3) in a more
procise way, as a group of matrices.

2. Fields and skew-fields

A matrix is an array of numbers, but what type of numbers? Matrices
of real numbers and matrices of complex numbers are familiar. Are
there other good choices? We need to add, multiply and invert ma-
lrices, so we must choose a number system with a notion of addition,
multiplication, and division; in other words, we must choose a field
or a skew-field.

Definition 1.4. A skew-field is a set, K, together with operations
valled addition (denoted “+7”) and multiplication (denoted “”) satis-
[ying:
(1) a-(b+c)=a-b+a-cand (b+c)-a=b-a+c-a.
(2) K is an abelian group under addition, with identity denoted
as “07”.
(3) K—{0} is a group under multiplication, with identity denoted

as “1 7};

I skew-field in which multiplication is commutalive (a-b="5b-a) is
vulled a field. '

The real numbers, R, and the rational numbers, Q, are fields.
I plane R? is NOT a field under the operations of component-wise
neldition and multiplication:

(a,0) + (c,d) = (a+¢,b+d)
(a,b) - (c,d) := (ac, bd),

lncause, for example, the element (5,0) does not have a multiplicative
inverse (no element times (5, 0) equals (1, 1), which is the only possible
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The other three symbols square to —1:
P=j=K=-1
Finally, the product of two of {i, j, k} equals plus or minus the third:
i-j=k j k=i, k-i=j,
ji=-k, k-j=-i, i-k=-j

This sign convention can be remembered using Figure 2.

%

Figure 2. The quaternionic multiplication rule.

This multiplication rule for {1,1,j, k} extends linearly to a mul-
tiplication on all of R*. For example,

(2+3k)-(i+7j) = 2i+ 14j+ 3ki+ 21kj
= 2i+14j+3j—21i
= —19i+ 17j.

The product of two arbitrary elements has the following formula:

(1.1) (a+bi+cj+dk) - (x+yi+ 2zj+ wk) "
= (az — by — cz — dw) + (ay + bz + cw — dz)i
+ (az + cz + dy — bw)j + (aw + dz + bz — cy)k.

The set R4, together with component-wise addition and the above-
described multiplication operation, is denoted as H and called the
quaternions. The quaternions have proven to be fundamental in sev-
eral areas of math and physics. They are almost as important and as
natural as the real and complex numbers.

To prove that H is a skew-field, the only difficult step is verifying
that every non-zero element has a multiplicative inverse. For this, it
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is useful to define the conjugate and the norm of an arbitrary element{
g =a+bi+ cj+ dk € H as follows:

g=a—bi—cj—dk
lgl = Va? + b2 + ¢ + d2.

It is straightforward to check that ¢- g = ¢- ¢ = |q|? and thereforei
that |—q|7 is a multiplicative inverse of g.

The rule for multiplying two quaternions with no k or j compo-
nents agrees with our multiplication rule in C. We therefore ha\ij
skew-field inclusions:

RcCcH.

Any real number commutes with every element of H. In Exercise 1.18
you will show that only real numbers have this property. In particular,]
every non-real complex numbers fails to commute with some elements
of H.

Any complex number can be expressed as z = a + bi for some
a,b € R. Similarly, any quaternion can be expressed as ¢ = z + wj
for some z,w € C, since:

a + bi+ ¢j + dk = (a + bi) + (c + di)j.
This analogy between R C C and C C H is often useful.

In this book, the elements of matrices are always either real, com-
plex, or quaternionic numbers. Other fields, like Q or the finite fields;
are used in other branches of mathematics but for our purposes would:
lead to a theory of matrices with insufficient geometric structure. We
want groups of matrices to have algebraic and geometric properties,
so we restrict to skew-fields that look like R™ for some n. This way;
groups of matrices are subsets of Euclidean spaces and therefore in-
herit geometric notions like distances and tangent vectors.

But is there a multiplication rule which makes R™ into a skew-
field for values of n other than 1,2 and 47 Do other (substantially;
different) multiplication rules for R!,R? and R* exist? Can R* be
made into a field rather than just a skew-field? The answer to all of}
these questions is NO. More precisely, Frobenius proved in 1877 that
R, C and H are the only associative real division algebras, up to the
natural notion of equivalence [4].




1. Matrix operations 11

Definition 1.5. An associative real division algebra is a real vec-
tor space, K, with a multiplication rule, which is a skew-field under
metor-addition and multiplication, such that for all a € R and all
n.q2 € K:

a(q1 - ¢2) = (aq1) - 2 = q1 - (aga).

The final hypothesis relates multiplication and scalar multiplica-
lion. Tt insures that K has a sub-field isomorphic to R, namely, all
sealar multiples of the multiplicative identity 1.

We will not prove Frobenius’ theorem; we require it only for re-
nssurance that we are not omitting any important number systems
lvom our discussion. There is an important multiplication rule for R,
ralled octonian multiplication, but it is not associative, so it makes
I® into something weaker than a skew-field. We will not consider the
octonians.

In this book, K always denotes one of {R,C,H}, except where
slated otherwise.

1. Matrix operations

In this section, we briefly review basic notation and properties of
matrices. Let Mp, (K) denote the set of all m by n matrices with
entries in K. For example,

Zi; € C} .

My 5(C) = {(211 212 213)
] 221 %22 223
Denote the space My, o(K) of square matrices as simply M,(K). If
A € My, n(K), then A;; denotes the element in row i and column j
ol A.

Addition of same-dimension matrices is defined component-wise,
5o that

(A+ B)y; = Aij + Bij-
The product of A € My, n(K) and B € M, ;(K) is the element
AB € M., (K) defined by the familiar formula:

n
(12)  (AB)ij = (row i of A)- (column j of B) = _ A;s - By;.

s=1
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Matrix multiplication is not generally commutative.

Denote a diagonal matrix as in this example:

1 00
diag(1,2,3)= {0 2 0
0 0 3
The identity matrix is:
I =diag(1,...,1).

The transpose of A € M, »(K) is the matrix AT € My m ob
tained by interchanging the rows and columns of A, so that:

(AT)i = Aji.

For example,
: T

12 1 35
3 4| = 9 4 6)
5 6

It is straightforward to check that

(1.3) (A-B)YT =BT . AT

for any matrices A and B of compatible dimensions to be multiplied

Matrix multiplication and addition interact as follows:

Proposition 1.6. For all A, B,C € M,(K),

(1) A-(B-C)=(A-B)-C.

(2) (A+B)-C=A-C+B-CandC-(A+B)=C-A+C-B.

3y A-I=I-A=A.

The trace of a square matrix A € Mp(K) is defined as the sum of
its diagonal entries:
trace(A) = Ay + -+ + Ann.

When K € {R,C}, we have the familiar property for A, B € M, (K)
(1.4) trace(AB) = trace(BA).

Since multiplication in H is not commutative, this property is falsgk
evern in M (H).
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When K € {R, C}, the determinant function,
det : M,(K) — K,

is familiar. It can be defined recursively by declaring that the deter-
minant of A € M;(K) equals its single element, and the determinant
ol A € Mp41(K) is defined in terms of determinants of elements of
M, (K) by the expansion of minors formula:

n+1
(1.5) det(A) == Y (17T Ay - det(A[1, 7)),

=1
where Afi, j] € M, (K) is the matrix obtained by crossing out row %
nnd column j from A. For example,

(it

'I'hus, the determinant of a 3 x 3 matrix is:

a b ¢ :
det|d e f = a-det <Z f) —b-det <d f)
g h . 1 g 1)

7
d e
+c - det <g h)

= a(ei — fh) — b(di — fg) + c(dh — eg)
= aei+bfg+cdh— (afh+bdi + ceg).

It is clear that det(I) = 1. In a linear algebra course, one proves
that for all A, B € M, (K),

{1.6) det(A - B) = det(A) - det(B).

We postpone defining the determinant of a quaternionic matrix until
the next chapter. Exercise 1.5 at the end of this chapter demonstrates
why Equation 1.5 is insufficient when K = H.

Let K € {R,C,H}. When a € K and A € M, ,,(K), we define
i+ A€ My, m(K) to be the result of left-multiplying the elements of
A by a: _

(0, . A),‘j =a- A,J
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This operation is called left scalar multiplication. The operations of
matrix addition and left scalar multiplication make M, n,(K) into a
left vector space over K.

Definition 1.7. A left vector space over a skew-field K is a set M
with an addition operation from M x M to M (denoted A, B — A+B)
and scalar multiplication operation from Kx M to M (denoted a, A —
a- A) such that M is an abelian group under addition, and for all
a,beKandall A,B € M,

1) a-(b-A)=(a-b) A

2)1-A=A.

3) (a+b)-A=a-A+b- A

4) a-(A+B)=a-A+a-B.

P~ o~ e~ o~

This exactly matches the familiar definition of a vector space. Fa-
miliar terminology for vector spaces over fields, like subspaces, bases,
linear independence, and dimension, make sense for left vector spaces
over skew-fields. For example:

Definition 1.8. A subset W of a left vector space V over a skew-field
K is called a K-subspace (or just a subspace) if for all a,b € K and
adl ABeW,a-A+b-BeW.

If we had instead chosen right scalar multiplication in M, ,(K),
defined as (A-a);; := A;;-a, then My, r (K) would have become a right
vector space over K. In a right vector space, scalar multiplication is
denoted a,A — A - a. Properties (2) through (4) of Definition 1.7
must be re-written to reflect this notational change. Property (1) is
special because the change is more than just notational: '

(1) (A-a)-b=A-(a-b).

Do you see the difference? The net effect of multiplying A by a and
then by b is to multiply A by ba in a left vector space, or by ab in a
right vector space.

When K is a field, the difference between a left and a right vector
space over K is an irrelevant notational distinction, so one speaks
simply of “vector spaces”. But when K = H, it makes an essential
difference that we are henceforth adopting the convention of left scalar
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multiplication, and thereby choosing to regard M, ,(H) as a left
vector space over H.

5. Matrices as linear transformations

One cornerstone of a linear algebra course is the discovery that ma-
trices correspond to linear transformations, and vice versa. We now
review that discovery. Extra care is needed when K = H.

Definition 1.9. Suppose that V1 and Vs are left vector spaces over
K. A function f: Vi — Vs is called K-linear (or simply linear) if for
alla,beK and all X,Y € V1,

f(a»X+b'Y):a'f(X)+b-f(Y).

It is natural to identify K™ = {(q1, ...,qn) | ¢: € K} with M; »(K)
(horizontal single-row matrices) and thereby regard K™ as a left vector
space over K. Using this identification, there are two potential ways
in which matrices might correspond to linear transformations from
K" to K™ _
Definition 1.10. If A € M,(K), define R4 : K* — K" and define
Lg : K™ — K” such that for X € K",

Ra(X):=X-A and Ls(X):= (A -XT)T.

1 2

F le, if A=
or example, if A (3 4

) € M;(R), then for (z,y) € R?,

1 2 ‘
Ra(z,y) = (9: y) . (3 4) = (z + 3y,2z + 4y), and

tao=((5 D)) = (282 = errmse s

We first prove that right multiplication determines a one-to-one
correspondence between linear functions from K™ to K™ and matrices.

Proposition 1.11.
(1) For any A € M,(K), R : K* — K™ is K-linear.

(2) Each K-linear function from K™ to K™ equals R4 for some
A e M, (K).
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Proof. To prove (1), notice that for all a,b € K and X,Y € K™,

Ra(aX +bY) = (aX +5Y) - A=a(X - A) +b(Y - 4)
=a-Ra(X)+b- Ra(Y).

To prove (2), assume that f : K™ — K" is K-linear. Let A € M, (K)
denote the matrix whose ith row is f(e;), where

e1 = (1,0,..,0),e2 = (0,1,0,...,0),...,en = (0,...,0,1)

denotes the standard basis for K. It's easy to see that f(e;) = Ra(e;)
foralli = 1,..,n. Since f and R4 are both linear maps and they agree
on a basis, we conclude that f = Ra. 0

We see from the proof that the rows of A € M,,(K) are the images
under R4 of {€1, -, €n}. Similarly, the columns are the images under
La.

Most line2r algebra textbooks use the convention of identifying a
matrix A € Mn(K) with the function L4 : K™ — K". Unfortunately,
this function is necessarily K-linear only when K € {R,C}.

Proposition 1.12. Let K € {R,C}.
(1) For any A € M, (K), Lg : K* — K" is K-linear.

(2) Each K-linear function from K" to K" equals L4 for some
Ae Mn(K) ’

Proposition 1.12 is an immediate corollary of Proposition 1.11
plus the following easily verified fact:

La=Ruar forall Ae Mn(R) or A€ Mn((C)

Our previous decision to consider H" as a left vector space over
H forces us now to use the correspondence A «— R 4 between madtrices
and linear transformations (rather than A « Lj), at least when we
wish to include K = H in our discussion.

Under either correspondence between matrices and transforma
tions, matrix multiplication corresponds to composition of transfor

mations, since:
LA(LB(X)) = LA.B(X) and RA(RB(X)) = RB.A(X).
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In a linear algebra course, this is one’s first indication that the ini-
tially unmotivated definition of matrix multiplication is in fact quite
patural.

6. The general linear groups

The set M, (K) is not a group under matrix multiplication because
gome matrices do not have multiplicative inverses. For example, if
A € M,(K) has all entries zero, then A has no multiplicative inverse;
that is, there is no matrix B for which AB = BA = I. However,
the elements of M,,(K) which do have inverses form a very important
group whose subgroups are the main topic of this text.

Definition 1.13. The general linear group over K is:

GLn(K) := {A € M,(K) | 3B € M,(K) with AB = BA =1I}.

Such a matrix B is the multiplicative inverse of A and is therefore
denoted A™!. As its name suggests, GL,(K) is a group under the
operation of matrix multiplication (why?). The following more visual
characterization of the general linear group is often useful:

Proposition 1.14.
GL,(K)={A € M,(K) | Ra : K" — K" is a linear isomorphism}.

For A € M,(K), R4 is always linear; it is called an isomorphism if

it is invertible (or equivalently, surjective, or equivalently, injective).

Thus, general linear matrices correspond to motions of K™ with no

collapsing.

Proof. If A € GL,(K) and B is such that BA = I, then

RaoRgp=Rps =Ry =id (the identity),
g0 R4 has inverse Rp.

Conversely, let A € M, (K) be such that R4 is invertible. The
map (R4)7! is linear, which can be seen by applying R4 to both sides
of the following equation:

(Ra) " (aX +bY) £ a(Ra)"1(X) + b(Ra) "L (Y).
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Since every linear map is represented by a matrix, (R4)~! = Rp fo '_1

some B € M,(K). Therefore, Rga = R4 o Rp = id, which implie

BA = I. Similarly, R4p = Rgo R4 = id, which implies AB =1. 3
The following well-known fact from linear algebra provides yet;

)

another useful description of the general linear group, at least when'
K # H:

Proposition 1.15. IfK € {R,C}, then ‘
GLA(K) = {A € My (K) | det(A) # 0}.

In fact, the elements of the inverse of a matrix can be described
explicitly in terms of the determinant of the matrix and its minors:

Proposition 1.16 (Cramer’s rule). Let K € {R,C}. Using the no-
tation of Equation 1.5,
- i+ det(A[7,14])
Y. = (=)t W
(A )23 ( ) det(A)

7. Change of basis via conjugation

In this section, we review a basic fact from linear algebra: a conjugate
of a matrix represents the same linear transformation as the matrix,
but in a different basis.

Let g denote an n-dimensional (left) vector space over K. Then
g is isomorphic to K™. In fact, there are many isomorphisms from g
to K™. For any ordered basis V = {v1, ..., v} of g, the following is an
isomorphism:

(1'7) (Clvl+"‘+cnvn) = (cl,...,cn-).

Every isomorphism from g to K” has this form for some ordered basis
of g, so choosing an isomorphism amounts to choosing an ordered
basis. In practice, there is typically no choice of basis which seems
more natural than the other choices. To convince yourself of this,
consider the case where g is an arbitrary subspace of K™ for some
m > n.

Now suppose that f : g — g is a linear transformation. In order
to identify f with a matrix, we must first choose an ordered basis V
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1'g. We use this basis to identify g = K" and thereby to regard f as
n linear transformation from K™ to K™, which can be represented as
I 4 for some A € M,(K). A crucial point is that A depends on the
rhoice of ordered basis. To emphasize this dependence, we say that
“A represents f in the basis V (via right-multiplication).” We would
like to determine which matrix represents f in a different basis.

To avoid cumbersome notation, we will simplify this problem
without really losing generality. Suppose that f : K* — K" is a
lincar transformation. We know that f = R4 for some A € M, (K).
'I'anslating this sentence into our new terminology, we say that “A
represents f in the standard basis of K*,” which is:

{e1 = (1,0,...,0),e2 = (0,1,0,...,0), ..., e = (0,...,0,1)}.

Now let V = {v1,...,v,} denote an arbitrary basis of K. We
neck the matrix which represents f in the basis V. First, we let
4 ¢ GL,(K) denote the matrix whose rows are vy, va, ..., vn,. We call
y the change of basis matrix. To understand why, notice that e;g = v;
for each i =1,...,n. So,

(c15-cn) - g=(cre1+---+cpen) - g=crv1 + -+ cnvn.

3y Equation 1.7, the vector ¢;v; + - - - + c,v, € K™ is represented in
(he basis V as the vector (cy, ..., ¢,). Thus, R, : K™ — K" translates
lielween V' and the standard basis. For X € K™, Ry(X) represents in
the standard basis the same vector that X represents in V. Further,
I, 1(X) represents in V' the same vector that X represents in the
standard . basis.

-1

'roposition 1.17. gAg™" represents f in the basis V.

Proof. Let X = (cy, ..., ¢n), which represents ¢yv, +---+ ¢ov, in V.
We must show that Rga.-1(X) represents (civy + -+ +¢pvp) - 4 in
{". This follows from:

Il’,gAg—l(X) = (Cl, . Cn)gAg_l = (clvl + .- + cnvn)Ag_l
= Rg—l((cl'l)l + 4 Cn'l)n) . A)

]
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Proposition.1.17 can be summarized in the following way: for ani

A € M,(K) and any g € GL,(K), the matrix gAg™' represents Rj

in the basis {e1g,...,eng}. "

" The basic idea of the proof was simple enough: the transformatiof

R,4g-1 = Ry-10 Ry 0 Ry first translates into the standard basis, thef
performs the transformation associated to A, then translates back.

This key result requires only slight modification when represent
ing linear transformations using left matrix multiplication when K i
R or C: for any A € M,(K) and any g € GL,(K), the matrix g~ A4
represents L 4 in the basis {gey, ..., gen } (via left multiplication). Th
proof idea is the same: Lg-144 = Lg-1 0 L4 0 L, first translates int(
the standard basis, then performs the transformation associated t
A, then translates back. '

8. Exercises

Ex. 1.1. Describe a natural 1-to-1 correspondence between elemeng"
of SO(3) and elements of

T'$ = {(p,v) € B® x R® | |p| = Ju| = L and p L v},

which can be thought of as the collection of all unit-length vectors -
tangent to all points p of S2. Compare to Question 1.2.

Ex. 1.2. Prove Equation 1.3.
Ex. 1.3. Prove Equation 1.4.
Ex. 1.4. Let A, B € M,(K). Prove that if AB = I, then BA=1

Ex. 1.5. Suppose that the determinant of A € M, (H) were define

as in Equation 1.5. Show for A = (i j) € My(H) that det(A) #
but R4 : H2 — H? is not invertible. ‘

Ex. 1.6. Find B € My(R) such that Rg : R? — R?is a counter
clockwise rotation through an angle 6.

Ex. 1.7. Describe all elements A € GL,(R) with the property thai
AB = BA for all B € GL,(R). '
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Iix. 1.8. Let SL2(Z) denote the set of all 2 by 2 matrices with integer
entries and with determinant 1. Prove that SLo(Z) is a subgroup of
(/[,2(R). Is SL,(Z) (defined analogously) a subgroup of GL,(R)?

Iix. 1.9. Describe the product of two matrices in Mg(K) which both
have the form:

a b 0 0 0 0
cd 00 0 0
00 e f g O
00 h i j O
00k I m O
0000 0 n

Describe a general rule for the product of two matrices with the same
hlock form.

Kx. 1.10. If G; C GL,,(K) and G2 C GLy,(K) are subgroups,
dlescribe a subgroup of G Ly, 4n, (K) which is isomorphic to G; x Ge.

Kix. 1.11. Show by example that for A € M,(H), L : H* — H" is
not necessarily H-linear.

Ix. 1.12. Define the real and imaginary parts of a quaternion as
lollows:
Re(a+bi+cj+dk)=a
Im(a + bi + ¢j + dk) = bi+ ¢j + dk.
let qp = z1i+y1j+ 21k and g2 = z2i 4+ y2j + 22k be purely imaginary
inaternions in H. Prove that —Re(g: - ¢2) is their vector dot product
in R® = span{i, j, k} and Im(g; - g2) is their vector cross product.

Ix. 1.13. Prove that non-real elements g1, g2 € H commute if and
mly if their imaginary parts are parallel; that is, Im(g:) = A - Im(g2)
‘or some A € R.

lix. 1.14. Characterize the pairs q1,¢2 € H which anti-commute,
neaning that gige = —gaqa.

wx. 1.15. If ¢ € H satisfies ¢i = iq, prove that g € C.

"x. 1.16. Prove that complex multiplication in C 2 R? does not
xtend to a multiplication operation on R3 which makes R? into a
cal division algebra.
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Ex. 1.17. Describe a subgroup of GL,1(R) which is isomorphic to
the group R™ under the operation of vector-addition.

Ex. 1.18. If A € H commutes with every element of H, prove that
AeR .



Chapter 2

All matrix groups are
real matrix groups

‘I'his book is about subgroups of the general linear groups. In this
chapter, we prove that every subgroup of GL,(C) or GL,(H) is iso-
morphic to a subgroup of GL,,(R) for some m. Thus, this book is
about subgroups of the real general linear group. The result is an
immediate consequence of:

Theorem 2.1.

(1) GL,(C) is isomorphic to a subgroup of GLan(R).
(2) GL,(H) is isomorphic to a subgroup of GLan(C).

It follows that GL,(H) is isomorphic to a subgroup of G Ly, (R).
We will prove Theorem 2.1 by constructing injective homomorphisms:

pn : GLn(C) = GLyn(R) and ¥, : GL,(H) — GLay(C).

‘I'hese homomorphisms play an important role in the remainder of the
lext.

Many important groups are much more naturally regarded as
nnhgroups of GL,(H) or GL,(C) rather than of GL,,(R), so the the-

orem does not obviate our future need to consider the cases K = C
and K = H.
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1. Complex matrices as real matrices

In Exercise 1.6, you showed for the matrix

B= ( cos@ sm0> € My(R)

—sinf cos@

that Rp : R? — R? is a counterclockwise rotation through angle 6
In fact, standard trigonometric identities give that for all r, ¢ € R:

Rp(rcos¢,rsing) = (rcos(8 + ¢), rsin(f + ¢)).

Compare this to the matrix A = (e!) € M;(C). For this matrix
R, : C! — C! is also a counterclockwise rotation through angle 6
since

Ra(rel?) = rell®+e),
Thus, A € M;(C) and B € Ma(R) “represent the same motion”.

More generally, we wish to construct a function
pn : Mn(C) = Man(R)

which sends A € M,,(C) to the matrix B € Ma,(R) that “represents
the same motion”. More precisely, every A € M, (C) corresponds
to a linear transformation R4 : C* — C". This transformation can
instead be thought of as a transformation from R?" to R?", ‘since
R?” is naturally identified with C™ via the bijection f, : C* — R?®
defined as:

falay + b1k, ag + boi, ..., an + bpi) := (a1, b1, a2, b2, ..., G, bp).

This transformation from R2" to R2" is represented as Rp for some
B € My, (R).

How do we determine B from A? Asked differently, how do we
define a function

Pn : My (C) —» Mo, (R)
such that the following diagram commutes for all A € M,,(C):

Ccn fn R2n
(2.1) RAl lanm)
Cr In R2n
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(the diagram is said to commute if R, () © fn = fn o Ra; that
i, if right-then-down equals down-then-right). When n = 1, it is
straightforward to check that the function p; : M;(C) — Mz(R)
defined as follows makes diagram 2.1 commute:

p1(a+ bi) := (_ab Z) i

Notice that p; relates the matrices A and B of the previous discussion,
since

M;(R).

p1(e?) = p1(cos +isinf) = ( cosd s1nt9>

—sin8 cosé

For A € M,(C) with n > 1, we build p,,(A) out of 2-by-2 blocks
rqual to p; applied to the entries of A. For example,

a b ¢ d

a+bi c+diy | -b a —d c
2(e+fi h+ji)_ e f h |’

—-f e —j h

mid so on. In Exercise 2.1, you will prove that this definition of p,
makes diagram 2.1 commute.

I’roposition 2.2. For all A € R and A, B € M,(C),
(1) pn(A-A) =X pn(4).
(2) Pn(A + B) :‘p*n(A) +Pn(B)'
(3) pn(A - B) = pn(A) - pn(B).

PProof. Parts (1) and (2) are immediate from definition. For part
(13), consider the commutative diagram:

Ccn fn R2n

RAl J'an (A)

Ccn fn R2n

RBl lanua)

Ccn fn R2n
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The composition of the two down-arrows on the right is-

Rp,(B) © Ry, (4) = Rpn(a)-pa(B)-
On the other hand, since on the left Reo R4 = Rag, this composition;
on the right also equals R, (4p). Insummary,
Ry (4)-pa(B) = Blpn(aB),

which implies that p,,(A) - p,(B) = pn(AB).

It is easy to see that p,, : M,(C) — M2, (R) is injective but not
surjective.

Definition 2.3. Matrices of Man(R) in the image of p, are called
complez-linear real matrices.

The terminology is justified by the following proposition, whose
proof is immediate.

Proposition 2.4. B € M, (R) is complez-linear if and only if the
function f71o Rgo f, : C* — C" is a C-linear transformation:

cn fa RZn

| s

-1
(Cn f RZW,

The function F = f!0 Rp o f, is always R-linear (which makeg
sense because C™ can be regarded as a vector space over R). It i
C-linear if and only if F(i- X) =i- F(X) for all X € C". So th;
complex linear real matrices are the ones that “commute with i” iy
this sense. There is an important way to re-describe this idea of é
real matrix commuting with i. Define Jon, = pn(i-I), so for exampleé

01 0 0
10 0 0
Ja=19 0 0 1
0 0 -1 0
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Notice that J2, = —1-I and that the following diagram commutes:
Cr fn RZn
R;.; = (scalar mult. by i)l . thn
Cn » fn RZn

The matrix Jo, is called the standard complex structure on R2".
Why? Because, compared to R??, the space C™ has the additional
structure of scalar-multiplication by i. This extra structure is mim-
icked in R?>™ by Ry,,. This allows an improved verbalization of
the above-indicated idea that complex-linear real matrices “commute
with i”:

P’roposition 2.5. B € M3, (R) is complez-linear if and only if
B Jop = Jop - B.

’roof. Suppose that B € M3,(R) is complex-linear, so there is a
matrix A € M, (C) for which the following diagram commutes:

cn —Ir, gon
(scalar mult. by i)l lRJ;n
cr I, Ren
RAl lRB
cr Lo gon
(scalar mult. by i)l ‘[RJ%
cn I, gon
'I'he composition of the three downward arrows on the left equals

Ria; = R_4a, so the composition of the three downward arrows on
the right must equal R,(_ 4y = R_p. Therefore:

R_p=Rj,,B15n-

It. follows that —B = JapBJ2,. Since J2, = —I, this implies that
13- Jon = Jop, - B.

The other direction is similar and is left to the reader. O
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2. Quaternionic matrices as complex matrices

The results in this section aré analogous to results from the previous
section, so we discuss them only briefly. The main idea is to think of
elements of M, (H) as transformations of C2* or R*".

There is a natural bijection g, : H"® — C2" defined as
gn(21 +wij, 22 + waj, ..., 2n + wnj) := (21, W1, 22, Wa, ..., 2n, Wn ).
Our goal is to define an injective map
¥, : M,(H) - Ms,(C)

such that the following diagram commutes for all A € M, (H):

Hr I (c2n
(2.2) R"l . l e, a)
Hr 2~ (C2n

The solution when n =1 is:

z w
1 j) = ,
1(z + wj) (_w E)
where complex conjugation is denoted as a + bi ;= a — bi. An alter
native way to express ¥, is:

W1(a + bi+cj + dk) = ( a+bi ”d‘).

—c+di a-—0b

For n > 1, define ¥,, in terms of ¥; exactly the way p, was define
in terms of p;. For example,

v <a11 +buii+ ciij +duk  aiz 4+ bioi 4 ci2j + dl2k)
ag1 +ba1i+ co1j + dark  aga + baoi + cagj + dagk

ai; +bui e Adini agg +bioi ez 4 diod
—c11 +dii an —bni —cio+dioi app — biad
az1 +ba1i co1 +dari agg +baei co2 4 daoi
—cCo1 +do1l @y — bl —cop +doai age — boai

Matrices of Ma,(C) in the image of ¥,, are called quaternionic-line:
complex matrices.
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{’roposition 2.6. For all A € R and A, B € M,(H),
(1) T,(A-A) =X-T,(A).
(2) ¥,(A+ B) =U,(A4) + U,(B).
(3) Wn(A: B) = Un(A) - Un(B).

l'urther, B € Mo, (C) is quaternionic-linear if and only if g, o Rp o
iy 2 H® — H™ is an H-linear transformation:

H” 9n C2n
[
He <~ 95" C2n

Putting it together, we have injective maps pn : M (C) — Ma,(R)
and U, : My (H) — M5, (C) such that the following commutes for all
A€ My (H):

H" C2n 92n R4n
lRA lanm lRuznown)(A)
H”» fn s C2n 92n R4n

Matrices of My, (R) in the image of (pg,0¥ ) : My, (H) — M (R)
nre called quaternionic-linear real matrices.

I'roposition 2.7. The following are equivalent for B € My, (R).

(1) B is quaternionic-linear.
(2) B commutes with both Ty, and Jun.
(3) (filogs) o Rpogan o frn) : HM - H™ is H-linear.

Hn fn C2n g2n R4n

|

H? 2 ﬂ CZn ]R4n
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Here 7y, and J;, are defined as the matrices which make thesa
diagrams commute:

" (g92n0ofn) R4n H® (g2nofn) R4n
l(scalar mult. i) lR;r‘m l(scalar mult. j) le‘m
T (g2n0fn) R4n " (92n0fn) ]R4n

“Scalar mult. i” means left scalar multiplication by i, and sim
larly for j. The analogy with Section 1 is imperfect, since Z4,, and Jy,
do not equal (p2n, © ¥,)(iI) and (p2n © ¥,)(§I) (why?). The correc
choice for 7, and J4 is easily seen to be:

01 0 0 0 01 0
10 0 0 0 0 0 —1
La=19 o0 o 1 Ja=1_1 00 o0
0 0 -1 0/ 0 10 0

The correct choice for Zy, (respectively Ju.) has block-form with
blocks of Z4 (respectively J4) along the diagonal.

3. Restricting to the general linear groups

Proposition 2.8. The image under p,, or ¥, of an invertible matria
is an invertible matriz.
Proof. Let A € M,(C). Then,
AeGL,(C) <= R4:C"— C"is bijective
<> R, (4):R> — R is bijective
<= pn(A) € GL2(R).
The argument for ¥,, is similar.
Because of this proposition, we can restrict p, and ¥, to maps
between the general linear groups:
pn : GLy(C) — GL2n (R),
VU, : GL,(H) — GL3,(C).
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By part (3) of Propositions 2.2 and 2.6, these maps are injective ho-
momorphisms between the general linear groups. Theorem 2.1 is an
immediate consequence of the existence of these injective homomor-
phisms.

Subsequent chapters contain many uses for the homomorphisms
i and ¥,. As a first application, we now use ¥, to define the
determinant of a quaternionic matrix. It turns out that there is no
pood way to define a quaternionic-valued determinant function on
Mo (H) (compare with Exercise 1.5). We will settle for a complex-
valued determinant, namely, the composition

det o¥,, : M,,(H) —C.

llor A € M,(H) we will write det(A) to mean det(¥,(A)). It is
obvious that det(I) = 1 and det(A - B) = det(A) - det(B) for all
A,B € M, (H). Also, Proposition 1.15 extends to the K = H case:

Proposition 2.9. GL,(H) = {A € M, (H) | det(A) # 0}.

Proof. Let A € M, (H). As in the proof of Proposition 2.8, we have
A€ GL,(H) if and only if ¥,,(A) € GL2,(C), which is equivalent to
det(0,,(A)) # 0. O

So now for all K € {R,C, IH[}, one can characterize the non-
invertible matrices A € M,(K) as those which satisfy det(A) = 0,
which is a polynomial equation in the entries of A.

The determinant of a quaternionic matrix is defined to be a com-
plex number; surprisingly, it is always a real number:

Proposition 2.10. For all A € M,,(H), det(A) € R.

The proof would take us too far afield from our topic, so we refer
the reader to [8].
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4. Exercises

Ex. 2.1. Prove that definition of p, in the text makes diagram 2.}
commute.

Ex. 2.2. Prove Proposition 2.4.

Ex. 2.3. Prove Proposition 2.6.

Ex. 2.4. Prove Proposition 2.7.

Ex. 2.5. Prove that for any A € GL1(H), det(4) € R.

Ex. 2.6. Prove that SL,(H) := {A € GL,(H) | det(A) = 1} is ¢
subgroup. Describe a natural bijection between elements of SL;(H
and points of the 3-dimensional sphere S3.

Ex. 2.7. Consider the following alternative way to define the fung
tion f, : C* — R2":
fn(al + b1i> ey O+ bni) = (ala ory O,y bla Ty b’n) )

Using this definition, how must p, be defined so that diagram 2.
commutes? How must J,, be defined so that Proposition 2.5 is trud
Ex. 2.8. Is it possible to find a matrix J € Ms,(C) such that th
following diagram commutes?

H" In Q2n

(sc.alar mult. by j)l lRJ

H™ gn Q2n
Ex. 2.9. Show that the image p, (M, (C)) C M3,(R) is a real vectq
subspace. What is its dimension? ‘

Ex. 2.10. Are the matrices 74, and J4, defined in Proposition 2,
quaternionic-linear? '

Ex. 2.11. Is part (1) of Proposition 2.6 true when A € C?



Chapter 3

The orthogonal groups

In this chapter, we define and study what are probably the most im-
portant subgroups of the general linear groups. These are denoted

O(n), SO{(n), U(n), SU(n) and Sp(n). In particular, the group
S0(3), which was previously described as the “positions of a globe,”
now receives a more rigorous definition. We will continue to study
these groups throughout the remainder of the book.

1. The standard inner product on K"

The conjugate and norm of an element ¢ € K are defined as:

(1) If ¢ € R, then g := ¢ and |g| means the absolute value of g.

(2) f g=a+bi€C, then :=a — bi and |q| := Va? + b2

(3) fg=a+bi+cj+dk € H, then g:=a — bi — ¢j — dk and
lg| :== Va2 + b2 + % + d2.

In all cases, it is a quick calculation to verify that for ¢, q1,¢2 € K:

(3.1) G 2=0-7;
(3.2) q¢-7=7-q=lq?

'I'hese two equalities together imply that:

(3.3) la1 - g2l = |a1| - gzl
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Definition 3.1. The standard inner product on K™ is the function
from K™ x K™ to K defined by:

<(.’L’1,.’L‘2, -"amn)a (ylay% “'ayn))K =2 @-1 + xg _372 R o/ 7 —y-n

It follows from Equation 3.2 that for all X € K®, (X, X)k is ¢
real number that is > 0 and equal to zero only when X = (0, ., 0).
This allows us to define;

Definition 3.2. The standard norm on K" is the function from K"
to the nonnegative real numbers defined by:

IXIK: V <XJX>]K-

We will omit the K-subscripts whenever there is no ambiguity.

Proposition 3.3. For all X,Y,Z € K" and \ € K,
1) (X, Y+ 2)=(X,Y)+(X, 2),
(2)(X+Y,Z2)=(X,Z)+ (Y, 2),

(3) (AX,Y) = AMX,Y) and (X,\Y) = (X,Y)],

4) (X,Y)= (Y, X).

PN

Definition 3.4.

e Vectors X,Y € K™ are called orthogonal if (X,Y) =0.

o A basis {X1,..., Xn} of K" is called orthonormal if (X, X;)
equals 1 when i = j and equals zero when i # j (that is, the
vectors have norm 1 and are mutually orthogonal).

e The standard orthonormal basis of K™ is:

e1 = (1,0,...,0), e2=(0,1,0,...,0), ..., e, = (0, ..., 0, 1).

When K = R, the standard inner product is the familiar “dot
product”, described geometrically in terms of the angle § between
X, Y eR™:

(3.4) (X,Y)r = | X|r|Y|r cosd.

When K = C, the standard inner product is also called the
hermitian inner product. Since the hermitian inner product of twc
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vectors X,Y € C™ is a complex number, we should separately in-
lerpret the geometric meanings of its real and imaginary parts. The
cleanest such interpretation is in terms of the identification

f=fa:Cr R
[rom the previous chapter. It is easy to verify that for all XY € C™,

(3.5) (X,Y)c (F(X), FY))r + K{f(X), FHY))r,
(3.6) Xle = [f(X)[r

If X,Y € C™ are orthogonal, then two things are true:

(F(X), f(¥Y))r=0 and (f(X),f(iY))x =0.
‘I'his observation leads to:

Proposition 3.5. {X1,...,X,} € C" is an orthonormal basis if and
only if {f(X1), FAX1), ..., f(Xn), f(1Xn)} is an orthonormal basis of
R2m,

When K = H, the standard inner product is also called the
symplectic inner product. For XY € H", the 1, i, j and k com-
ponents of (X, Y)n are best interpreted geometrically in terms of the
ilentification h = fa, 0 gn : H? — R4*™,

(XY = (W(X), h(Y))r +1{r(X), h(1Y))r
+i(h(X), h(Y))r + k(h(X), h(KY))g.
IXle = |h(X)lx

Proposition 3.6. {X1,...,Xn} € H" is an orthonormal basis if and
only if the following is an orthonormal basis of RA™:

{/"(Xl)v h(in)r h(le), h(le)7 sy h(X'n)’ h(an)v h(an)v h(an)}'

The following inequality follows from Equation 3.4 when K = R:
’roposition 3.7 (Schwarz inequality). For all X,Y € K7,

(X, V) < IX]- Y.
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Proof. Let X,Y € K" Let o := (X,Y). Assume that X # 0
{otherwise the proposition is trivial). For all X € K, we have:

0 < DX+YP2P=(DX+Y,AX +Y)
= MX,X)A+MX,Y)+ (Y, X)A+(Y,Y)
= PPIXP+MX,Y) + MX,Y) +|Y]
= |MPIX|? + 2Re(Ma) + |2

Choosing A = —@/|X|? gives:
0 < |a?/|X[2 - 2]af?/| X + Y],

which proves that |a| < |X|-|Y| as desired. O

2. Several characterizations of the orthogonal
groups

Definition 3.8. The orthogonal group over K,

On(K) 1= {A € GL,(K) | (XA, YA) = (X,Y) for all X,Y € K"}

. is denoted O(n) and called the orthogonal group for K = R.

. 18 denoted U(n) and called the unitary group for K = C.
. 1s denoted Sp(n) and called the symplectic group for K = H.

It is straightforward to see that O,(K) is a subgroup of GL,(K).
Its elements are called orthogonal, unitary or symplectic matrices. To
describe their form, it is useful to denote the conjugate-transpose of
A € M,(K) as A* := (A)T, where A means the matrix obtained by
conjugating all of the entries of A.

Proposition 3.9. For A € GL,(K) the following are equivalent.
(1) A € O,(K).
(2) Ra preserves orthonormal bases; i.e., if {X1,...,Xn} is an
orthonormal basis of K, then so is {Ra(X1), ..., Ra(Xn)}.
(3) The rows of A form an orthonormal basis of K".

4) A-A* =L
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Proof. (1) = (2) is obvious. (2) = (3) because the rows of A
equal {Ra(e1),..., Ra(en)}. To see that (3) <= (4), notice that:

(A-A%);; = (rowiof A)- (column j of A*)
= (row i of A) - (row j of A)T
= ((row i of A),(row j of A)).
Finally, we prove that (3) = (1). If the rows of A are orthonormal,
then for all X = (z1,...,22),Y = (y1,...,yn) € K™,

(Ra(X), Ra(Y))

-

= Z zi{(row [ of A), (row s of A))T,

l,s=1

hE

zi(row [ of A), Zys(row s of A)>

s=1

S I

= 1Yy + - + TaT, = (X, Y).
O

Geometrically, O(n) is the group of matrices A for which the lin-
ear transformation R4 : R® — R™ preserves dot products of vectors,
and hence also norms of vectors. Such transformations should be vi-
sualized as “rigid motions” of R™ (we will be more precise about this
in Section 5). The geometric meanings of U(n) and Sp(n) are best
described in terms O(n) by considering the homomorphisms from the
previous chapter.

Proposition 3.10.

(1) pn(U(n)) = O(2n) N pn(GLA(C)).
(2) ¥n(Sp(n)) = U(2n) N ¥n(GLy(H)).
(3) (p2n 0 ¥,)(Sp(n)) = O(4n) N (p2n © ¥pn)(GLn(H)).

Since U(n) is isomorphic to its image, p,(U{(n)), part (1) says
that U(n) is isomorphic to the group of complex-linear real orthog-
onal matrices. In other words, U(n) is isomorphic to the group of
rigid motions of R?” which preserve the standard complex struc-
ture. Similarly, part (3) says that Sp(n) is isomorphic to the group
of quaternionic-linear real orthogonal matrices.
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Proof. We prove only (1), since (2) is similar and (3) follows from
(1) and (2). The most straightforward idea is to use Equation 3.5. A
quicker approach is to first notice that for all A € M,,(C),

pn(A7) = pn(A)".
It A € GLn(C), then pn(A) - pn(A)* = pu(A) - pa(A°) = puld - A%,
which shows that A € U(n) if and only if p,,(4) € O(2n). O

We said that O,(K) is the group of matrices A for which R4
preserves inner products of vectors, and hence also norms of vectors.
The next result says that if R4 preserves norms, then it automatically
preserves inner products.

Proposition 3.11.

On(K) = {A € GL,(K) | |[Ra(X)| = |X| for all X € K"}.

Proof. To prove the case K = R, we show that the inner product is
completely determined by the norm. Solving the equation

IX+YR=(X+Y,X+Y)r = (X, X)r+ ¥, Y)r +2(X,Y)r
for (X,Y)r gives:
(X,Y)r =1/2(0X + Y3 - |XIg - [YIR)-

So if R4 preserves norms, then it also preserves inner products.

The above argument doesn’t work for K € {C,H} (why not?).
Instead, we prove the case K = C as a consequence of the real case.
Suppose A € GLp(C) is such that B4 : C* — C™ is norm-preserving,.
Then R, (4): R?* — R2" also preserves norms, since for all X € C™,

1By, (a) (fa(X))[R = [fr(Ra(X))lr = [Ra(X)c = [X]|c = fn(X)|r-
Therefore p,(A) € O(n), which using Proposition 3.10 implies that
AeU(n).

The K = H case is proven from the real case in a similar fashion.
d
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3. The special orthogonal groups

In this section, we define important subgroups of the orthogonal
groups, beginning with the observation that:

Proposition 3.12. If A € O,(K), then |det(A)| = 1.

Proof. Since A- A* =1,

1 =det(A- A") = det(A) - det(A*) = det(A) - det(A) = | det(A4)|>.

We used the fact that det(A*) = det(A), which should be verified
first for K € {R, C}. The quaternionic case follows from the complex
case because for quaternionic matrices, det(A) means det(¥,(A)),

and W, (A%) = T, (A)". O

The interpretation of Proposition 3.12 depends on K:

e If A€ O(n), then det(A) = £1.
o If A € U(n), then det(A) = €% for some @ € [0, 27).

e If A € Sp(n), then Proposition 2.10 implies det(A) = =+1.
We will see later that det(A) = 1.

The subgroup
SO(n) :={A € O(n) | det(A) =1}

is called the special orthogonal group. The subgroup

SU(n) == {A € U(n) | det(4) = 1}

is called the special unitary group. Both are clearly subgroups of the
general linear group and in fact of the special linear group:

SLn(K) = {A € GLn(K) | det(4) = 1}.

Notice that SO(n) comprises the orthogonal matrices whose de-
terminants are one of two possibilities, while SU(n) comprises the
unitary matrices whose determinants are one of a circle’s worth of
possibilities. We will see later that the relationship of SO(n) to O(n)
is very different from SU(n) to U(n).
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4. Low dimensional orthogonal groups

In this section, we explicitly describe O, (K) for small values of n.
First, O(1) = {(1),(-1)} and SO(1) = {(1)} are isomorphic to the
unique groups with 2 and 1 elements respectively.

Next, if A € O(2), then its two rows form an orthonormal basis
of R2. Its first row is an arbitrary unit-length vector of R?, which can
be written as (cos#,sin §) for some 6. The second row is unit-length
and orthogonal to the first, which leaves two choices: (—sin@, cos®)
or {sin@, — cos@). For the first choice, det{(A) = 1, and for the second,
det(A) = —1. So we learn:

(3.7) SO(2) = {( cosd Sine) 0 e [0,27r)},

—sinf cos@

0(2) = S0(2) U { (COS" sinf ) o <o, QW)} .

sin@ —cos#

SO(2) is identified with the set of points on a circle; its group op-
eration is addition of angles. O(2) is a disjoint union of two circles.
It is interesting that the disjoint union of two circles has a group
operation.

Next, SU(1) = {(1)} and U(1) = {(¢**) | 8 € [0,27)}, which is
isomorphic to the circle-group SO(2).

Next, Sp(1) = {{a +bi+ci+dk) [ a® + b+ + &* = 1}
is the group of unit-length quaternions, which is naturally identified
with the three-dimensional sphere $° C R* = H. In fact, it follows
from Equation 3.3 that the product of two unit-length quaternions
is a unit-length quaternion. So we might have mentioned several
pages ago the beautiful fact that quaternionic multiplication provides
a group operation on the three-dimensional sphere! It turns out that
S0, S! and S? are the only spheres which are also groups.

We conclude this section by showing that SU(2) is isomorphic to
Sp(1), and thus in some sense also has the shape of a 3-dimensional
sphere.

Proposition 3.13. SU(2) is isomorphic to Sp(1).
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Proof. First notice that

Uy (Sp(1)) = {(_Z_w 1_;) | z,w € C such that |2|? + |w|? = 1}
is a subgroup of U(2) by Proposition 3.10, namely, the quaternionic-
linear 2-by-2 unitary matrices. Calculating the determinant of such
matrices shows that ¥;(Sp(1)) € SU(2). We wish to prove that
W;(Sp(1)) = SU(2), so that ¥; determines an isomorphism between
Sp(1) and SU(2).

Let A = (Zl 1;1> € SU(2). An easily verified formula for the
2 22
: e dee A-1 1 L2
inverse of a 2-by-2 matrix is: A7 = det(A)(—wz o ) . In our
case, det(A) = 1 and ( #2 _wl) = A1l = A = (il 1_02>,
—wWo Z1 w1 22

which tells us that 2o = Z; and we = —w;. It now follows that
SU(2) = W1(Sp(1)). o

5. Orthogonal matrices and isometries

In this section, we describe O(n) geometrically as the group of isome-
tries of R™ which fix the origin and discuss the difference between
SO(3) and O(3).

The distance between points X = (z1,...,2,) and Y = (y1, ..., Yn)
in R™ is measured as: )

dist(X,Y) :=[X — Y| = /(21 —p1)% + - + (zn — ).

A function f : R™ — R™ is called an isometry if for all X|Y € R",
dist(f(X), f(Y)) = dist(X,Y) .

Proposition 3.14.

(1) If A€ O(n) then Ra : R* — R" is an isometry.

(2) If f : R™ — R"™ is an isometry with f(0) =0, then f = Ra
for some A € O(n). In particular, f is linear.
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Proof. For A € O(n) and X,Y € R",
dist(Ra(X), Ra(Y)) = [Ra(X)— Ra(Y)|=|Ra(X-Y)]
= |X-Y|=dist(X,Y),
which proves that R4 is an isometry.

Conversely, suppose that f : R®” — R" is an isometry for which
f(0) = 0. For any X € R,

[F(X)] = dist(f(X),0) = dist(£(X), f(0)) = dist(X,0) = | X],

which shows that f preserves norms. We showed in the proof of
Proposition 3.11 that inner products are determined by norms, so f
also preserves inner products; that is, for all X, Y € R™,

(F(X), f(Y)) = (X, Y).

Let A be the matrix whose ith row is f(e;), so f(e;) = Ra(e;) for
all i =1,...,n. Notice that A € O(n), since its rows are orthonormal.
We will prove that f = R4 (and thus that f is linear) by showing that
g:=(Ra)"o f is the identity function. Notice that g is an isometry
with ¢g(0) = 0 (so g preserves norms and inner products, as above)
and g(e;) = ¢; foralli =1,...,n. Let X € R". Write X = > a;¢;
and g(X) = >_b;e;. Then,

bi = (9(X), &) = (9(X), g(&:)) = (X, &) = a;,
which proves g(X) = X, so g is the identity function. C

O(n) is the group of isometries of R™ which fix the origin and
which therefore map the sphere S~ C R™ to itself. For example,
elements of O(3) represent functions from the “globe” $? C R? to
itself. We will see next that elements of SO(3) represent real physical
motions of the globe, which justifies our characterization of SO(3) as
the group of positions of a globe (Chapter 1, Section 1).

To understand the difference between O(3) and SO(3), we must
discuss the orientation of R2. An ordered orthonormal basis of R3,
like { X1, X2, X3}, is called right-handed if X; x Xy = X3, where “x”
denotes the vector cross product in R3. Visually, this means that if
the fingers of your right hand are curled from X; towards X5, then
your thumb will point in the direction of Xj.
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Proposition 3.15. Let A € O(3). Then A € SO(3) if and only if the
rows of A, {Ra(e1), Ra(ez), Ra(es)}, form a right-handed orthonor-
mal basis.

Proof. Let Ra(e1) = (a,b,c) and Ra(ey) = (d, e, f) denote the first
two rows of A. The third row is unit-length and orthogonal to both,
which leaves two choices:

Ra(es) = £(Ra(e1) x Ra(ey)) = £(bf —ce,cd —af,ae — bd).

A quick calculation shows that the “4-” choice gives det(A) > 0, while
the “-” choice gives det(A) < 0. d

Elements of SO(3) correspond to “physically performable mo-
tions” of a globe. This statement is imprecise, but in Chapter 9
we give it teeth by proving that every element of SO(3) is a rota-
tion through some angle about some single axis. An element of O(3)
with negative determinant turns the globe inside-out. For example,
Rgiag(—1,—1,—1) maps each point of the globe to its antipode (its neg-
ative). This is not a physically performable motion.

6. The isometry group of Euclidean space

It is a straightforward exercise to show that
Isom(R"™) := {f : R® — R"| f is an isometry}

is a group under composition of functions. The subgroup of isometries
which fix the origin is isomorphic to O(n). An isometry, f, that does
not fix the origin is not linear, so cannot equal to R4 for any matrix
A. In this case, let V = f(0), so the function X — f(X) -V is
an isometry which fixes the origin and therefore equals R4 for some
A € O(n). Therefore, an arbitrary isometry of R™ has the form

HX)=Ra(X)+V
for some A € O(n) and V € R™.

There is a clever trick for representing any isometry of R™ as a
matrix, even ones which do not fix the origin. Graphics programmers
use this trick to rotate and translate objects on the computer screen
via matrices. We first describe the n = 3 case.
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Let A€ O(3) and V = (v1,v2,v3) € R3. We will represent the
isometry f(X) = Ra(X)+ V by the matrix:

An A Az O
A0 A1 Ay A2z O
= = L .
F (V 1) Aszy Azx Aszz O € GLy(R)
[ U2 vy 1

Let X = (z1,72,23) € R% Denote (X,1) = (z1,72,73,1) € R%.
Notice that

(X,1)- F = (Ra(X) +V,1) e R%.

In this way, F' represents f.

The composition of two isometries, like the ones represented by

_ Al 0 _ A2 0 . .
= (Vl 1) and F» = (V2 1), is the isometry represented by

the product:

A1 0) (A2 0) _ Ay - Ap 0
i 1 Voo 1) \Ra,(V1)+V2 1)°
Matrix multiplication is quite useful here. It allowed us to see imme-

diately that the isometry X +— Ra,(X)+ V1 followed by the isometry
X +— Ry, (X)+ Vz is the isometry X — R(4;.4,)(X)+Ra, (V1) + Va.

The above ideas also work for values of n other than 3. We
conclude that Isom(R™) is isomorphic to the following subgroup of
.GL,,H_;[(R):

Tsom(R™) = {(é (1’) |[4€0@m) and v e ]R"} .

Notice that the following subgroup of Isom(R™) is isomorphic
to (R™,+), which denotes R™ under the group-operation of vector-

addition:
Trans(R") = {(V 1) 'VG]R }

This is the group of isometries of R” which only translate and do not
rotate. It is interesting that (R™, +) is isomorphic to a matrix group
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7. Symmetry groups

The symmetry group of a subset X C R"™ is the group of all isometries
of R™ which carry X onto itself:

Definition 3.16. Symm(X) := {f € Isom(R") | f(X) = X}.

The statement “f(X) = X” means that each point of X is sent
by f to a (possibly different) point of X.

For example, the symmetry group of the sphere S™ ¢ R™*! equals
the group of isometries of R™*! with no translational component,
which is isomorphic to the orthogonal group:

Symm($™) = { (é 2) [Acom+1), V=, 0)} 2 O(n + 1).

In.an abstract algebra course, you probably met some important
finite symmetry groups. For example, the symmetry group of a regu-
lar m-gon (triangle, square, pentagon, hexagon, etc.) centered at the
origin in R? is called the dihedral group of order 2m, denoted D,y,.
The elements of D,, with determinant +1 are called rotations; they
form a subgroup of index 2 which is isomorphic to the cyclic group
Zy, of order m. The elements of D,,, with determinant —1 are called
flips.

The fact that half of the elements of D,, are rotations illustrates
a general principal:

Definition 3.17. Symm(X) = Symm™(X) U Symm™ (X), where the

[ [ [

are respectively called the “direct” and “indirect” symmetries of X.

Proposition 3.18. For any X C R*, Symm*(X) C Symm(X) is a
subgroup with index 1 or 2.

The proof is left to the reader in Exercise 3.4. An example of
a set Y C R? whose direct symmetries have index 1 (meaning all
symmetries are direct) is illustrated in Figure 1.

Symmetry groups of subsets of R? are useful for studying ob-
jects which are essentially 2-dimensional, like snowflakes and certain
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“platonic solid” or a “regular polyhedra”) is a polyhedra whose faces
are mutually congruent regular polygons, at each of whose vertices
the same number of edges meet. A famous classification theorem,
attributed to Plato around 400 B.C., says that there are only five
regular solids, pictured in Figure 2. The regular solids were once con-

dodecahedron icosahedron

Figure 2. The five regular solids.

sidered to be sacred shapes, thought to represent fire, earth, air, the
universe, and water. The fact that any other shape is “as symmetric”
as one of these five (or is infinitely symmetric) enhances one’s sense
that the regular solids are of universal importance.

It turns out that A4 is the direct symmetry group of a tetrahe-
dron, Sy is the direct symmetry group of a cube or an octahedron,
and As is the direct symmetry group of a dodecahedron or an icosa-
hedron. See [6] for a complete calculation of these direct symmetry
groups and a proof of Theorem 3.20. Since.a cube has 6 faces, 12
edges, and 8 vertices, it may be surprising that its direct symmetry
group is S4. What does a cube have 4 of which get permuted by its di-
rect symmetries? It has 4 diagonals (lines connecting antipodal pairs
of vertices). This observation is the starting point of the calculation
of its direct symmetry group.

8. Exercises

Ex. 3.1. Prove part (4) of Proposition 3.3.
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Ex. 3.2. Prove equations 3.5 and 3.6.
Ex. 3.3. Prove Proposition 3.5.
Ex. 3.4. Prove Proposition 3.18.

Ex. 3.5. Let A € GL,(K). Prove that A € O,(K) if and only if the
columns of A are an orthonormal basis of K.

Ex. 3.6.

(1) Show that for every A € O(2) — SO(2), Ra : R? — R? is
a flip about some line through the origin. How is this line
determined by the angle of A (as in Equation 3.7)7

cosd sind

(2) Let B = (— sind cosd
an integer multiple of 7. Prove that B does not commute

with any A € O(2)=SO(2). Hint: Show that Rap and Rps
act differently on the line in R? about which A is a flip.

) € SO(2). Assume that 6 is nof

Ex. 3.7. Describe the product of two arbitrary elements of O(2) ir
terms of their angles (as in Equation 3.7).

Ex. 3.8. Let A € O(n) have determinant —1. Prove that:
O(n)=S0(n)U{A-B| B € SO(n)}.
Ex. 3.9. Define a map f: O(n) — SO(n) x {+1,—1} as follows:
f(A) = (det(A) - A, det A).
(1) X n is odd, prove that f is an isomorphism.
(2) Assume that 7 is odd and that X C R" is symmetric abou
the origin, which means that —p € X if and only if p € X
Also assume that Symm(X) C O(n); in other words, X ha
no translational symmetries. Prove that Symm(X) is iso
morphic to Symm™ (X) x {+1, —-1}.
Comment: Four of the five regular solids are symmetry
about the origin. The tetrahedron is not; its direct symmetr
group is Ay and its full symmetry group is Sy
(3) Prove that O(2) is not isomorphic to SO(2) x {+1,-1)

Hint: How many elements of order two are there? i
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Ex. 3.10. Prove that Trans(R™) is a normal subgroup of Isom(R"™).
Ex. 3.11. Prove that the Affine group,

AR, (K) = {(A O) |4 €GL. )andVeK”}

is a subgroup of GL,41(K). Any F € Aff,(K) can be identified with
the function f(X) = Ra(X) + V from K" to K™ as in Section 6.
Prove that f sends lines in K™ to lines in K™. A line in K™ means a
set of the form {vy + vjv € W}, where vg € K*, and W C K* is a
1-dimensional K-subspace.

Ex. 3.12. Is Aff; (R) abelian? Explain algebraically and visually.

Ex. 3.13. Let A= (1)
0
(1) Calculate Ra(z,y, z,w).

(2) Describe a subgroup, H, of O(4) which is isomorphic to Sy
(S4 = the group of permutations of a 4 elements set).

(3) Describe a subgroup, H, of O(n) which is isomorphic to .S,,.
What is H N SO(n)?

(4) Prove that every finite group is isomorphic to a subgroup
of O(n) for some integer n. Hint: Use Cayley’s Theorem,
found in any abstract algebra textbook.

Ex. 3.14. Let g be a K-subspace of K™ with dimension d. Let
B = {Xi,..., X4} be an orthonormal basis of g. Let f : g — g be
K-linear. Let A € M, (K) represent f in the basis B. Prove that the
following are equivalent:

(1) A€ On(K). .

(2) (f(X),f(Y)) = (X,Y) foral X,Y € g.

Show by example that this is false when B is not orthonormal.






Chapter 4

The topology of matrix
groups |

This text is about the subgroups of GL,(K). So far, we have con-
sidered such a subgroup, G, as a purely algebraic object. Geometric
intuition has been relevant only because R4 is a motion of K" for
cvery A € G.

We now begin to study G as a geometric object. Since

2

R*  fK=R
G C GL,(K) C Mp(K) =2 K™ = {R2 i{fK=C,
R fK=H

we can think of G as a subset of a Euclidean space, meaning R™ for
some m. Many familiar subsets of Euclidean spaces, like the sphere
S™ C R™! or the graphs of functions of several variables, have
visualizable shapes. It makes sense to ask “what is the shape of
GG?” For example, we previously recognized the shape of Sp(1) as the
three-dimensional sphere S°.

In this chapter, we learn some topology, which provides an ideal
vocabulary for discussing the shape of a subset G € R™. Is it com-
pact? path-connected? open? closed? We will define and briefly
discuss these terms and apply them to subgroups of the general lin-
car groups.
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1. Open and closed sets and limit points

The natural distance function on R™ was defined in Section 3.5 as
dist(X,Y) := |X — Y. Its most important property is:

Proposition 4.1 (The Triangle Inequality). For all X,Y,Z € R™,
dist(X, Z) < dist(X,Y) + dist(Y, Z).
Proof. For all V,W € R™, the Schwarz inequality (Proposition 3.7)
gives:
V4+WP = [VIP+2(V,W)+|W?
< VP 2AV]- W]+ W2 = (V] + W2

Thus, |V + W] < |V| + |W|. Applying this inequality to the vectors
pictured in Figure 1 proves the triangle inequality.

zZ
. ‘ W .
V+W)
N o
» Y
Vv
o
. ¢
Figure 1. Proof of the triangle inequality.

g

Our study of topology begins with precise language for discussing
whether a subset of Euclidean space contains its boundary points.
First, for p € R™ and r > 0, we denote the ball about p of radius » -
as: ,

B(p,r) == {q € R™ | dist(p, q) < r}. :
In other words, B(p,r) contains all points closer than a distance 7
from p.

Definition 4.2. A point p € R™ is called a-boundary point of a subset
S C R™ if for all v > 0, the ball B(p,r) contains at least one point
in S and at least one point not in S. The collection of all boundary .
points of S is called the boundary of S.



1. Open and closed sets and limit points ‘ 53

Sometimes, but not always, boundary points of S are contained
in S. For example, consider the “open upper half-plane”

H := {(z,y) e R? | y > 0},
and the “closed upper half-plane”
H:= {(z,y) e R* | y > 0}.

The z-axis, {(x,0) € R?}, is the boundary of H and also of H. So
H contains none of its boundary points, while H contains all of its
boundary points. This distinction is so central we introduce vocabu-
lary for it:

Definition 4.3. Let S C R™ be a subset.

(1) S is called open if it contains none of its boundary points.

(2) S is called closed if it contains all of its boundary points.

In the previous example, H is open, while H is closed. If part
of the z-axis is adjoined to H (say the positive part), the result is
neither closed nor open, since it contains some of its boundary points
but not all of them. ‘

A set S C R™ and its complement S¢ := {p € R™ | p ¢ S}
clearly have the same boundary. If S contains none of these common
boundary points, then S¢ must contain all of them, and vice-versa.
So we learn that:

Proposition 4.4. A set S C R™ is closed if and only if its comple-
ment, S, is open.

The following provides a useful alternative definition of “open”:

Proposition 4.5. A set S C R™ is open if and only if for allp € S,
there exists r > 0 such that B(p,r) C S.

Proof. If S is not open, then it contains at least one of its boundary
points, and no ball about such a boundary point is contained in S.
Conversely, suppose that there is a point p € S such that no ball
about p is contained in S. Then p is a boundary point of S, so S'is
not open. . O
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Proposition 4.9. Any Cauchy sequence in R™ converges to some
point of R™.

We end this chapter with an important relative notion of open
and closed:

Definition 4.10. Let S C G C R™ be subsets.
(1) S is called open in G if for allp € S, 3r > 0 such that
{g € G| dist(p,q) <r} CS.
(2) S is called closed in G if {p € G| p ¢ S} is open in G.

For example, the interval (0,1) is open in R, while the interval
[0,1] is closed in R. The interval [0,1) is neither open nor closed in
R, but is open in [0, 2] and is closed in (—1,1).

The definition says that if you live in a set that’s open in G, then
so do all of your sufficiently close neighbors in G. An alternative
definition is:

Proposition 4.11. Let S C G CR™. Then S is open (respectively
closed) in G if and only if S = U NG for some open (respectively
closed) subset U of R™.

For example, if G = §% = {(z,9,2) € R® | 22 + ¢® + 22 = 1},
then the “open upper hemisphere” {(z,y,z) € G | z > 0} is open in
G, because it is the intersection with GG of the following open set:

{(z,y,2) € R*| z > 0}.

Our previous characterization of closed sets as those which con-
tain all their limit points generalizes as follows:

Proposition 4.12. Let S € G C R™. Then S is closed in G if and
only if every p € G which is a limit point of S is contained in S.

A set S is called dense in G if every point of G is a limit point of
S. For example, the irrational numbers are dense in R.

Let p € G C R™. A neighborhood of p in G means a subset of
G which is open in G and contains p. For example, (1 — ¢,1 + €)
is a neighborhood of 1 in (0,2) for any € € (0,1]. Also, [0,¢) is a
neighborhood of 0 in [0, 1] for any € € (0, 1].
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The collection of all subsets of G that are open in G is called
the topology of G. In the remainder of this chapter, pay attention
to which properties of a set G are topological, that is, definable in
terms of only the topology of G. For example, the notion of a se-
quence of points of G converging to p € G is topological. Why?
Because convergence means that the sequence is eventually inside of
any neighborhood of p in R™; this is the same as being eventually
inside of any neighborhood of p in G, which has only to do with the
topology of G. The idea is to forget about the ambient R™ and regard
G as an independent object with a topology and hence a notion of
convergerce. '

2. Continuity

Let G; C R™ and G c R™. A flinction f Gy — Gqis called
continuous if it maps nearby points to nearby points; more precisely:

Definition 4.13. A function f: Gy — G2 is called continuous if for
any infinite sequence {py, p2, ..-} of points in G which converges to a
point p € G, the sequence { f(p1), f(p2), ...} converges to f(p).

For example, the “step function” f:R — R defined as

0 ifz<0
f(x)_{l ifz>0

is not continuous. Why? Because the sequence

{1/2,1/3,1/4,...}

in the domain of f converges to 0, but the images

{£(1/2) = 1, F(1/3) = 1, 1/9) = 1,..}
converge to 1 rather than to f(0) = 0.

Notice that f is continuous if and only if it is continuous when
regarded as a function from G, to R™2. It is nevertheless useful to
forget about the ambient Euclidean spaces and regard G; and Gs
as independent objects. This vantage point leads to the following
beautiful, although less intuitive, way to define continuity:
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words, B decomposes into the disjoint union of two subsets which
are both clopen in B. Such a separation of a path-connected set is
impossible:

Proposition 4.18. A path-connected set G C R™ has no clopen
subsels other than itself and the empty set.

Proof. We first prove that the interval [0,1] has no clopen subsets
other than itself and the empty set. Suppose A C [0,1] is another
one. Let ¢ denote the infimum of A. Since A is closed, t € A. Since A
is open, there exists 7 > 0 such that all points of [0, 1] with distance
< r from t lie in A. This contradicts the fact that ¢ is the infimum
of A unless t = 0. Therefore, 0 € A. Since the complement A¢ of
A is also clopen, the same argument proves that 0 € A, which is
impossible. :

Next, let G C R™ be any path-connected set. Suppose that
A C G is a clopen subset. Suppose there exist points p,¢q € G such
that p € A and ¢ ¢ A. Since G is path-connected, there exists
a continous function f : [0,1] — G with f(0) = p and f(1) = q.
Then f~1(A) is a clopen subset of [0, 1] which contains 0 but not 1,
contradicting the previous paragraph. O

In practice, to prove that a property is true at all points in a
path-connected set, it is often convenient to prove that the set of
points where the property holds is non-empty, open, and closed.

Since continuity is a topological notion, so is path-connectedness.
In particular,

Proposition 4.19. If G; C R™ and Gy C R™ are homeomorphic,
then either both are path-connected or neither is path-connected.

4. Compact sets

The notion of compactness is fundamental to topology. We begin
with the most intuitive definition.

Definition 4.20. A subset G C R™ is called bounded if G C B(p,r)
for some p € R™ and some r > 0. Further, G is called compact if it
is-closed and bounded.
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Compact sets are those which contain their limit points and lie
in a finite chunk of Euclidean space. Unfortunately, this definition is
not topological, since “bounded” cannot be defined without referring
to the distance function on R™. In particular, boundedness is not
preserved by homeomorphisms, since the bounded set (0,1) is home-
omorphic to the unbounded set R. Nevertheless, compactness is a
topological notion, as is shown by the following alternative definition:

Definition 4.21. Let G C R™.

(1) An open cover of G is a collection, Q, of sets which are open
in G, whose union equals G.

(2) G is called compact if every open cover, Q, of G has a finite
subcover, meaning a finite sub-collection {Uy,...,Up,} C O
whose union equals G.

The equivalence of our two definitions of compactness is called
the Heine-Borel Theorem. The easy half of its proof goes like this:
Suppose that G is not bounded. Then the collection

{p € G|dist(0,p) <n},

for n = 1,2,3,..., is an open cover of G with no finite subcover.
Next suppose that G is not closed, which means it is missing a limit
point ¢ € R™. Then the collection {p € G | dist(p,q) > 1/n}, for
n=1,2,3,..., is an open cover of G with no finite subcover.

The other half of the proof is substantially more difficult. We
content ourselves with a few examples.

The open interval (0,1) C R is not compact because it is not
closed or because

0= {(0,1/2),(0,2/3),(0,3/4), (0,4/5)...}
is an open cover of (0, 1) which has no finite subcover.

The closed interval [0,1] is compact because it is closed and
hounded. It is somewhat difficult to prove directly that every open
cover of [0,1] has a finite subcover; attempting to do so will increase
your appreciation of the Heine-Borel Theorem.

Since our second definition of compactness is topological, it is
straightforward to prove that:



62 4. The topology of matrix groups

Proposition 4.22. If G; C R™t and G2 C R™2 are homeomorphic,
then either both are compact or neither is compact.

There is a third useful characterization of compactness, which
depends on the notion of sub-convergence.

Definition 4.23. An infinite sequence of points {p1, p2, p3, ...} in R™
is said to sub-converge to p € R™ if there is an infinite sub-sequence,
{Diys Pins Digs -} (With iy < iy < i3 < ---) which converges to p.

Proposition 4.24. A subset G.C R™ is compact if and only if every
infinite sequence of points in G sub-converges to some p € G.

For example, the sequence {1/2,2/3,3/4,..} in G = (0,1) sub-
converges only to 1 ¢ G, which gives another proof that (0,1) is not
compact.

The next proposition says that the continuous image of a compact
set is compact.

Proposition 4.25. Let G C R™. Let f: G — R™2 be continuous.
If G is compact, then the image f(G) is compact.

Proof. The function f is also continuous when regarded as a function
from G to f(G). Let O be an open cover of f(G). Then f~}(U) is
open in G for every U € O, so f~1(0Q) := {f~Y(U) | U € O} is an
open cover of G. Since G is compact, there exists a finite subcover
{f7Y(UL), ., f7HUn)} of f~H(0). It is straightforward to check that
{U1,Us,...,U,} is a finite subcover of Q. O

Corollary 4.26. IfG C R™ is compact and f : G — R is continuous,
then f attains is supremum and infimum.

The conclusion that f attains is supremum means two things.
First, the supremum of f(G) is finite (because f(G) is bounded).
Second, there is a point p € G for which f(p) equals this supremum
(because f(G) is closed).

5. Definition and examples of matrix groups

As mentioned earlier in this chapter, a subgroup G C GL,(K) can
be considered a subset of Euclidean space, so we can ask whether it
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is open, closed, path-connected, compact, etc. The title of this book
comes from:

Definition 4.27. A matriz group is a subgroup G C GL,(K) which
is closed in GL,(K).

The “closed” hypothesis means that if a sequence of matrices in
G has a limit in GL,(K), then that limit must lie in G. In other
words, G contains all of its non-singular limit points.

We now verify that several previously introduced subgroups of
GL,(K) are closed and are therefore matrix groups.

Proposition 4.28. 0,(K), SLn(K), SO(n) and SU(n) are matriz
groups.

Proof. We must prove that each is closed in GLn(K). For On(K),
define f : M,(K) — M,(K) as f(A) == A . A*. This function f is
continuous, because for each i, 7, the K-valued function

fi(A) = (A A");
is continuous because it is a polynomial in the entries of A. The
single-element set {I} C M,(K) is closed, so O,(K) = f~1({I}) is
closed in M, (K) and is therefore closed in GL,(K).

For SL,(K), we first prove the function det : M,(K) — R or C is
continuous. When K € {R,C}, this is because det(A) is an n-degree
polynomial in the entries of A by Equation 1.5. When K = H, this is
because det(A) is shorthand for det(®,(A)), and the composition of
{wo continuous functions is continuous. Since the single-element set
{1} is closed, SL,(K) = det™*({1}) is closed in M, (K) and therefore
also in GL,(K).

For SO(n) and SU(n), notice that SO(n) = O(n) N SL,(R) and
SU(n) = U(n) N SL,(C), and the intersection of two closed sets is
closed. _ O

In the remainder of this book, we will emphasize compact matrix
groups, so the following proposition is crucial:

Proposition 4.29. Each of the groups O(n), SO(n), U(n), SU(n)
und Sp(n) is compact for any n.
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Proof. In proving above that these groups are closed in GL,, (K), we
actually proved the stronger fact that they are closed in the Euclidean
space M, (K). So it remains to prove that these groups are bounded,
which follows from the fact that each row of A € O, (K) is unit-length,;
see part (3) of Proposition 3.9. O0

In the exercises, you will verify that several other familiar matrix
groups are non-compact, like GL,(K) for n > 1 and SL,(K) for
n> 2.

Why did we define matrix groups to be closed in GL,(K)? Be-
cause, as we will see later, non-closed subgroups are not necessarily
manifolds. Exercises 4.23 and 4.24 exhibit the bad behavior of non-
closed subgroups which underlies this fact. Nevertheless, the hypoth-
esis that matrix groups are closed will not be used until Chapter 7.
Until then, the facts we prove about matrix groups will also be true
for non-closed subgroups of GL,,(K).

6. Exercises

Ex. 4.1. Prove Proposition 4.11.
Ex. 4.2. Prove Proposition 4.12.
Ex. 4.3. Prove Proposition 4.14.
Ex. 4.4. Prove Proposition 4.15.
Ex. 4.5. Prove Proposition 4.19.
Ex. 4.6. Prove Proposition 4.22.
Ex. 4.7. Prove that GL,(K) is open in M,(K).

Ex. 4.8. Prove that GL,(K) in non-compact when n > 1. Prove )
that SL,(K) is non-compact when n > 2. What about SL;(K)? i

Ex. 4.9. Let G be a matrix group. Prove that a subgroup H C G:
which is closed in G is itself a matrix group.

Ex. 4.10. Prove that SO(n) and
O(n)™ := {A € O(n) | det(A) = —1}
are both clopen in O(n).
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Ex. 4.11. Prove that Aff,,(K) C GL,+1(K) (deﬁnbed in Exercise 3.11)
is a matrix group. Show that Aff,(K) is NOT closed in M, 1(K). Is
Aff, (K) compact?

Ex. 4.12. A matrix A € M,(K) is called upper triangular if all
entries below the diagonal are zero; i.e., A;; =0 for all ¢ < j. Prove
that the following is a matrix group:

UT,(K)={A € GL,(K) | A is upper triangular}.
Show that UT,(K) is not closed in M,(K). Is UT,(K) compact?

Ex. 4.13. Prove that Isom(R") is a matrix group. Is is compact?
Ex. 4.14. Prove that SO(3) is path-connected.
Ex. 4.15. Prove that Sp(1) is path-connected.

Ex. 4.16. Prove that the image under a continuous function of a
path-connected set is path-connected.

Ex. 4.17. We will prove later that Sp(n) is path-connected. As-
suming this, and using Propositions 2.10 and 3.12, prove that the
determinant of any A € Sp(n) equals 1.

Ex. 4.18. Provethat O, (K) is isomorphic to a subgroup of Op 41 (K).
Ex. 4.19. Prove that U(n) is isomorphic to a subgroup of SU(n+1).
Ex. 4.20. Let G C GL,(R) be a compact subgroup.

(1) Prove that every element of G has determinant 1 or —1.
(2) Must it be true that G C O(n)?
Hint: Consider conjugates of O(n).

Ex. 4.21. There are two natural functions from SU(n) x U(1) to
U(n). The first is fi1(4, (X)) := A- A. The second is fo(4, (X)) := the
result of multiplying each entry of the first row of A times A.
(1) Prove that f is an n-to-1 homomorphism.
(2) Prove that f, is a homeomorphism but not a homomor-
phism.

Later we will prove that U(n) is not isomorphic to SU(n) x U(1),
even though they are homeomorphic.
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Ex. 4.22. SO(2) is a subgroup of SL2(R). Another is:

H= {(‘; afl) & My(R)|a 0}.

Prove that the function f : SO(2)x H — SLy(R) defined as f(4, B) =
A- B is a homeomorphism, but not a homomorphism. This is a special
case of the polar decomposition theorem, which states that SL,(R)
is homeomorphic to SO(n) times a Euclidean space.

Ex. 4.23. Let XA € R be an irrational multiple of 2x. Define

G := {(eM)|t € Z} CcU(1) C GL1(C).
Prove that G is a subgroup of GL:(C), but not a matrix group. Prove
that G is dense in U(1).

Ex. 4.24. Let A € R be an irrational multiple of 2. Define

t ti i
G = {(60 e’(\)“) te R} cG= {(eo egi)”‘t:s € R} C GLy(C).

(1) Prove that G and G are subgroups of GLy(C).
(2) Prove that G is dense in G.

et 0
0 M
that f is an isomorphism (with R considered a group under
addition), but not a homeomorphism.

(3) Define f : R — G as follows: f(t) = ( ) Show

Ex. 4.25. Let G C GL,(R) denote the set of matrices whose deter-
minants are integer powers of 2. Is G a matrix group?

Ex. 4.26. Prove or find a counterexample of each statement:
(1) If X C R™ is compact, then Symm(X) is compact.
(2) If Symm(X) is compact, then X is compact.






68 5. Lie algebras

drawn). For a general subset G C R™, T,G is not necessarily ¢
subspace of R™. In Figure B, the tangent space is two sectors, while
in Figure C, the tangent space is {0}.

Definition 5.2. The Lie algebra of a matriz group G C GL,(K) i
the tangent space to G at I. It is denoted g := g(G) := T;G.

In this chapter, we prove that g is a subspace of the Euclidear
space M, (K). This is our first evidence that matrix groups are “nice’
sets (you should picture them like Figure A, not like B or C; we wil
make this precise when we prove that matrix groups are manifold
in Chapter 7). We also describe the Lie algebras of many familia
maftrix groups. . :

The Lie algebra is an indispensable tool for studying a matri:
group. It contains a surprising amount of information about th:
group, especially together with the Lie bracket operation, which w
will discuss in Chapter 8. In much of the remainder of this book, w
will learn about matrix groups by studying their Lie algebras.

1. The Lie algebra is a subspace

Let G C GL,(K) C M,(K) be a matrix group. At the beginnin
of Chapter 4, we described how M, (K) can be identified with a Et
clidean space. For example, M5(C) = R® via the identification:

a+bi c+di

e+ fi g+ hi
This identification allows us to talk about tangent vectors to diffe;
entiable paths in M, (K). For example a differentiable path in M5(C
has the form:

) - (a’b7c7d’e’f’g’h)'

() = (a(t) Fh( c(t) + d(®)i
! e(t) +f(O)i g(t) +h(®)i)’
where a(t) through h(t) are differentiable functions. The derivativ

is:
") = a(t)+b(@)i J@¢)+d ()i
S\ O JO+R01)
Matrix multiplication interacts with differentiation in the followir
way.
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Proposition 5.3 (The product rule). If v, : (—é,e) — M, (K) are
differentiable, then so is the product path (v - B)(t) := v(t) - B(t), and

(v B)(t) =~(t)- B'(t) +'(2) - B(t)

Proof. When n = 1 and K = R, this is the familiar product rule
from calculus. When n = 1 and K = C, we denote (t) = a(t) + b(¢)i
and ((t) = c(t)+d(t)i. Omitting the t’s to shorten notation, we have:
(y-BY ((ac — bd) + (ad + be)i)’
(ac +d'c—bd —bd)+ (ad’ + a'd+ bc’ + bc)i
= ((ad = bd') + (ad' +bc)i) + ((a'c — ¥'d) + (a'd + V)i
= 7B +-0
When n = 1 and K = H, an analogous argument works. This com-
pletes the n = 1 case. For the general case, since

((v-B)®)is = > v(®)at - B,
=1 )

the derivative is:
(v-B' ) = E’Y i B )y + 7 ) - By
(’Y(t) B(8)is + (v (@) - B (8))5-

d

If v : (—¢,€) — GL,(K) is a differentiable path, so is the inverse
path t — ~(t)~! (see Exercise 5.16). The product rule gives:

0= 2 (4™ =7 OO + (D)% (1))

When v(0) = I, the solution is particularly clean:
d —1 /
— t = —+'(0).

In other words, the inverse of a path through I goes through I in the
opposite direction.

(5.1)

Another consequence of the product rule is the main result of this
section: '
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Proposition 5.4. The Lie algebra g of a matriz group G C GL,(K)
is a real subspace of M, (K).

Proof. Let A € R and A € g, which means that A = 4/(0) for some
differentiable path ~(t) in G with v(0) = I. The path o(¢) := () - t)
has initial velocity vector ¢’(0) = X - A, which proves that A- A € g.

Next let A, B € g, which means that A = ~/(0) and B = #'(0)
for some differentiable paths v, 8 in G with v(0) = 8(0) = I. The
product path o(t) := «y(¢) - B(¢t) is differentiable and lies in G. By the
product rule, ¢’(0) = A + B, which shows that A+ B € g. O

The fact that Lie algebras are vector spaces over R allows us to
define an important measurement of the size of a matrix group:

Definition 5.5. The dimension of a matriz group G means the di-
mension of its Lie algebra.

Even though M,(C) = C"* is a vector space over C (rather than
just a vector space over R), the Lie algebra of a complex matrix group
G C GL,(C) is NOT necessarily a C-subspace of M,(C). Similarly,
the Lie algebra of a quaternionic matrix group need not be an H-
subspace of M,,(H). The dimension of a matrix group always means
the dimension of its Lie algebra regarded as a REAL vector space.

2. Some examples of Lie algebras

In this section, we describe the Lie algebras of three familiar matrix
groups. Lie algebras are denoted in lower case; for example, gi,(K)
denotes the Lie algebra of GL,(K).

Proposition 5.6. ¢l,(K) = M,,(K). In particular,
dim(GL,(R)) = n?, dim(GL,(C)) = 2n? and dim(GL,(H)) = 4n*.

Proof. Let A € M,(K). The path v(¢) :=I+t- A in M, (K) satisfies
~v(0) = I and +4’(0) = A. Also, = restricted to a sufficiently small
interval (—¢, €) lies in GL,(K). To justify this, notice det(v(0)) = 1.
Since the determinant function is continuous, det(+(t)) is close to 1

(and is therefore non-zero) for ¢ close to 0. This demonstrates that
A € gl (K). O
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J

The general linear groups are large; all matrices are tangent to
paths in them. But matrices in the Lie algebras of other matrix
groups have special forms.

Proposition 5.7. The Lie algebra u(1) of U(1) equals span{(i)}, so
dim(U(1)) =1.

Proof. The path v(t) = (e¥*) in U(1) satisfies ¥(0) = I and has
~'(0) = (i), so (i) € u(1). Therefore span{(i)} C u(1). For the other
inclusion, let y(t) = (a(t) + b(t)i) be a differentiable path in U(1)
with v(0) = I = (1). Since |y(¢)|> = a(t)? + b(t)2 = 1, the value
a{0) = 1 must be a local maximum of a(t), so a’(0) = 0. Therefore
~'(0) € span{(i)}. O

A similar argument shows that dim(SO(2)) = 1. We will see later
that smoothly isomorphic matrix groups have the same dimension.

Proposition 5.8. The Lie algebra of Sp(1) is

sp(1) = span{(i), (§4), (k)},
so dim(Sp(1)) = 3.

Proof. The path v1(t) = (cos(t)+sin(t)i) in Sp(1) satisfies 1 (0) = I
and v{(0) = (i), so i € sp(1). Similarly, v2(t) = (cos(t) + sin(¢)j)
and v3(t) = (cos(t) + sin(t)k) have initial velocities v5(0) = (j) and
73(0) = (k). So span{(i), j), (k)} C sp(1). :

For the other inclusion, let y(¢) = (a(t) + b(t)i+ c(t)j + d(t)k) be
a differentiable path in Sp(1) with ¥(0) = I = (1). Since
(O = a®)® +b(t)* + c(t)® +d()* =1,

the value a(1) = 1 must be a local maximum of a(t), so a’(0) = 0.
Therefore v'(0) € span{(i), (j), (k)}. O

In Figure 1, the circle group U(1) and its Lie algebra are pictured
on the left. The right image inaccurately represents Sp(1) as $? C R?
rather than S% C R, but is still a useful picture to keep in mind.

We end this section by describing the Lie algebras of the special
linear groups.
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Re-applying the above argument to compute % |t=0 det(~y(¢)[1,1]) and
repeating n times gives:
d ‘ ‘
atlio det(7(t)) =7 (0)11 + 7' (0)22 + - - - +7 (0}
O

Proof of Theorem 5.9. If v : (—¢,¢) — SL,(K) is differentiable
with v(0) = I, the lemma implies that trace(y'(0)) = 0. This proves
that every matrix in sl,(K) has trace zero.

On the other hand, suppose A € M, (K) has trace zero. The path
v(t) := I +tA satisfies v(0) = I and v'(0) = A, but this path is not
in SL,(K). Define a(t) as the result of multiplying each entry in the
first row of v(¢t) by 1/det(y(¢)). Notice that a(t) is a differentiable
path in SL,(K) with a(0) = I. Further, since trace(A) = 0, it is
straightforward to show that o/(0) = 4 (Exercise 5.2). This proves
that every trace-zero matrix is in sl,(K). An alternative proof is to
choose a(t) to be a one-parameter group, which will be introduced in
the next chapter. O

3. Lie algebra vectors as vector fields

A vector field on R™ means a continuous function F' : R™ — R™,
By picturing F(v) as a vector drawn at v € R™, we think of a vector
field as associating a vector to each point of R™.

If A e M,(K), then R4 : K™ — K" is a vector field on K” (= R”,
R or R**). The vector fields on R? associated to the matrices

0 1 ' 1 0 .
A= (_1 O) and B = (0 _1) are shown in Figure 2.

zZhN
N=%

Figure 2. Vector fields on R? associated to the matrices A
and B.
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Elements of GL,(K) are thought of as linear transformations of
K" (by the correspondence A < R,); therefore, a differentiable path
v : (—€,€) = GL,(K) should be regarded as a one-parameter family
of linear transformations of K™. How does this family act on a single
vector X € K"? To decide this, let o(t) := R, (X), which is a
differentiable path in K™. If 4(0) = I, then o(0) = X.. By the
product rule (which holds also for non-square matrices),

O',(O) = R‘y’(O) (X)

We can think of R,/ gy as a vector field on K™ whose value at any
X € K" tells the direction X is initially moved by the family of
linear transformations corresponding to the path (). In this way,
it is often useful to visualize an element +'(0) of the Lie algebra of a
matrix group G C GLn(K) as represented by the vector field R,/ (g
on K™,

cost sint
—sint cost
_01 (1)) , lies in the Lie
algebra so(2) of SO(2). In fact, so(2) = span{A}. The vector field
R4 in Figure 2 illustrates how this family of rotations initially moves
individual points of R%. The rotating action of the family v(t) of
transformations is clearly manifested in the vector field R4.

) in SO(2).

For example, consider the path v(t) = (

Its initial tangent vector, A = +/(0) =

Next look at the graph of Rp in Figure 2. Can you see from
this graph why B is not in the Lie algebra of so(2)? If ~(t) is a
path in GLo(R) with 4(0) = I and 4/(0) = B, then for small ¢,
Ryt : R? — R? does not preserve norms. Which X € R? have
initially increasing norms, and which are initially shrinking?

The vector field R4 has an important visual property that Rg
lacks: the vector at any point is perpendicular to that point. By the
above visual reasoning, we expect that for general A € M, (R), if the
vector fleld R4 lacks this property, then A could not lie in the Lie
algebra so(n) of SO(n). We could promote this visual reasoning to a
careful proof without too much work (Exercise 5.11), but instead we
use a cleaner, purely algebraic proof in the next section.
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4. The Lie algebras of the orthogonal groups

The set 0n(K) = {A € Mo (K) | A+ A* = 0}

.. is denoted so(n) and called the skew-symmetric matrices if
K=R.

.. is denoted u(n) and called the skew-hermitian matrices if
K=C.
.. is denoted sp(n) and called the skew-symplectic matrices if
K =H.
We wish to prove that o, (K) is the Lie algebra of O, (K). The con-
dition A = —A* means that A;; = —Aj; for all 4,5 = 1..n. So,
the entries below the diagonal are determined by the entries above,
and the diagonal entries are purely imaginary (which means zero if
K = R). For example,

ai b+ci
(5.2) u(2) = {(—b—i—ci di )}a,b,c,deR}

= waf{(% 000600

which is a 4 dimensional R-subspace of M3(C), but not a C-subspace.
Also,

aii+bij+eak T4yt zj+wk) |a;,bi,c,

2) = R
p(2) {(—x+yi+zj+wk aoi + boj + c2k ar,y,z,wE ’
and

0 a b
50(3) = -a 0 ¢ ‘a,b,ceR
-b —c O

If A € so(n), then the vector field R4 on R™ has the property
discussed in the previous section: the vector at any point is perpen-
dicular to that point. This follows from (3) below:

Lemma 5.11. For A € M,(K), the following are equivalent:
(1) A € 0,(K).
(2) (Ra(X),Y) = —(X,Ra(Y)) for all X,Y € K".
(3) (assuming K =R) (Ra(X),X) =0 for all X € R".
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Proof. To see that (1) = (2), notice that for all ¢,j = 1..n,
(Ra(e:),e5) = Aij = —Ajs = —(Ra(e;), &) = —{ei, Rale;))-

This verifies (2) for X,Y chosen from the standard orthonormal basis
of K™. It is straightforward to extend linearly to arbitrary X, Y € K"
The proof that (2) = (1) is similar.

Now assume that K = R. In this case, (2) = (3) by letting
X =Y. To see that (3) = (2), notice that:
0 = (Ra(X+Y),X+Y)
= (Ra(X),X) + (Ra(Y),Y) 4+ (Ra(X),Y) 4+ (Ra(Y), X)
= 040+ (Ra(X),Y) +(Ra(Y), X).

Theorem 5.12. The Lie algebra of O, (K) equals on(K).

Proof. Suppose 7 : (—¢,€) — On(K) is differentiable with v(0) = I.
Using the product rule to differentiate both sides of
Y(E) (@) =1

gives 4'(0) ++'(0)* = 0, so v'(0) € 0,(K). This demonstrates that
8(0n(K)) C on(K).

Proving the other inclusion means explicitly constructing a path
in 0, (K) in the direction of any A € o0, (K). It is simpler and sufficient
to do so for all A in a basis of on (k).

The natural basis of so(n) = o,(R) is the set
{E-,;j - Ej'gil <i<j< n},

where E;; denotes the matrix with ¢j-entry 1 and other entries zero.
For example,

s0o(3) = span{Eiz — Ea1, B3 — B3, F23 — E32}
0 1.0\ /001y (0 0 0\)
span -1 0 0},{0 0O0],[0 O 1 .
0 0 0O -1 00 0 -1 0
The path '

’)’ij(t) =1+ (sin t)Eij — (sint)Eji +(“1 + COSt)(EiZ' + E]])
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lies in SO(n), has 7;;(0) = I and has initial direction
7%;(0) = Ei; — Eji.

R, (1) : R — R" rotates the subspace span{e;, e;} by an angle ¢ and
does nothing to the other basis vectors. For example, the path

cost O sint

")’13(t): 0 1 0
—sint 0 cost

in SO(3) satisfies v13(0) = E13 — E31. This proves the theorem for
K = R. We leave it to the reader in Exercise 5.1 to describe a natural
basis of u(n) and sp(n) and construct a path tangent to each element
of those bases. ' O

Corollary 5.13.

(1) dim(SO(n)) = M2zl

(2) dim(U(n)) = n?.

(3) dim(Sp(n)) = 2n? + n.
Proof. The n? entries of an n by n matrix include d below the diag-
onal, d above the diagonal, and n on the diagonal. So n? = d+d+ n,

2

which means d = 5. Skew-symmetric matrices have zeros on the
diagonal, arbitrary real numbers above, and entries below determined
by those above, so dim(so(n)) = d. Skew-hermitian matrices have
purely imaginary numbers on the diagonal and arbitrary complex
numbers above the diagonal, so dim(u(n)) = 2d + n = n?. Skew-
symplectic matrices have elements of the form ai + bj + dk along the
diagonal and arbitrary quaternionic numbers above the diagonal, so
dim(sp(n)) = 4d + 3n = 2n% + n. O

5. Exercises
Ex. 5.1. Complete the proof of Theorem 5.12.

Ex. 5.2. In the proof of Theorem 5.9, verify that o’(0) = A.

Ex. 5.3. Prove that the product rule holds for non-square matrices.
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Ex. 5.4. In Figure 2, how can you see visually that A and B both
lie in sl3(R)? Remember that a real 2 X 2 matrix with determinant 1
preserves the areas of parallelograms.

Ex. 5.5. Describe the Lie algebra of the affine group (see Exer-
cise 3.11). :

Ex. 5.6. Describe the Lie algebra of Isom(R"™).
Ex. 5.7. Describe the Lie algebra of UT, (K) (see Exercise 4.12).

Ex. 5.8. Prove the Lie algebra of pn(GLn((C)) C GL2,(R) is equal
t0 pn(gln(C)).

Ex. 5.9. Prove the Lie algebra of ¥, (GL,(H)) C GL2,(C) is
W (gln (H)).

Ex. 5.10. Prove that the tangent space to a matrix group G at
AeGis:

Ta(G)={BA|Beg(G)} ={AB| B €g(G)}.
Ex. 5.11. Give a geometric proof of the fact at the end of Section 3.
Ex. 5.12. Give an exa;nple of a 2-dimensional matrix group.
Ex. 5.13. Is Lemma 5.10 true for K = H?
Ex. 5.14. Describe the Lie algebra of SL,,(H).
Ex. 5.15. Is part 3 of Lemma 5.11 valid when K € {C, H}?

Ex. 5.16. Let v : (—¢,€) — GL,(K) be a differentiable path. Prove
that the inverse path t — y(t)~! is differentiable.
Hint: For K € {R, C}, use Cramer’s rule.



Chapter 6

Matrix exponentiation

To prove Theorem 5.12, which said g(On(K)) = 0,(K), we con-
structed a differentiable path through the identity in O,(K) in the
direction of any A in a basis of 0,(K). Our paths were defined with
sines and cosines and seemed natural because they corresponded to
families of rotations in certain planes. On the other hand, the paths
we constructed to prove Theorem 5.9 (verifying the Lie algebra of
SL,(K)) seemed less natural. In general, is there a “best” path in
the direction of any A € gl,(K), and is this best path guaranteed
to be contained in any matrix group G C GL,(K) to which A is a
tangent vector? In this chapter, we construct optimal paths, which
are called one-parameter groups and are defined in terms of matriz
exponentiation. We begin the chapter with preliminary facts about
series, which are necessary to understand matrix exponentiation.

1. Series in K
We say that a series
Zaz=ao+a1+a2+---

of elements a; € K converges if the corresponding sequence of partial
sums

{ao0,a0 + a1,a0 + a1 + ag, ...}
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converges to some a € K. Here we are regarding K as R, R? or R¢,
and “convergence” means in the sense of Definition 4.6. In this case,
we write Y a; = a. The series ) q; is said to converge absolutely if
>~ la;| converges.

Proposition 6.1. If 3_ a; converges absolutely, then it converges.

Proof. By the triangle inequality,

Iz 123
Z aql < Z |al|.

l=ll l=l1

The right side of this inequality is the distance between the l>-th and
the l;-th partial sums of ) |a;|. The left side equals the distance
between the l-th and the [;-th partial sums of Y_a;. If 3 la;| con-
verges, then its sequence of partial sums is Cauchy, so the inequality
implies that the sequence of partial sums of Y q; is also Cauchy and
therefore convergent by Proposition 4.9. 0

One expects that the product of two series can be calculated
by “infinitely distributing” and organizing terms by the sum of the
indices, as in:

(a0 +ar+az+---)bo+bi+ba+---)
= (aobo) + (aob1 + albo) + (aobz +a1b; + azbo) B RN
This manipulation is justified by the following fact, which is proven

in most analysis textbooks:

Proposition 6.2. Suppose that >_ a; and Y, b both converge, at least
one absolutely. Let ¢, := Ei:o agbi—x. Then > ¢ = (O an)(O_ bi).

A power series means a “formal infinite-degree polynomial”, that
is, an expression of the form:

f(m):CO+61:E+62$2+C313+...

with coefficients ¢; € K. When the variable z is assigned a value in
K, the result is a series which may or may not converge. The domain
of f means the set of all z € K for which the series f(z) converges.
The next proposition says that the domain of any power series is a
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ball about the origin (possibly including some of its boundary and
possibly with a radius of zero or infinity).

Proposition 6.3. For any power series there exists an R € [0,00]
(called its radius of convergence) such that f(x) converges absolutely
if |z| < R and diverges if |z| > R.

When R = 0, the series converges only at x = 0. When R = oo,
the series converges for all z € K.

Proof. The root test says that a series > a,, converges absolutely if

o := limsup(|a,|) /™

n—00

is less than one, and diverges if « is greater than one. Even when
K € {C,H}, this is essentially a statement about series of positive
real numbers, so the K = R proof found in any calculus textbook
needs no alteration. In the series obtained by substituting z € K into
the power series f(z) = 3 chz™,
o = |z| limsup(|ea|)/™,
n—oo

so the proposition holds with

-1
R .= (1imsup(|cn|)1/") .

n—00

The interpretations of the extreme cases are: if limsup,,_, o (|cn|)!/™

equals zero, then R = oo, and if it equals oo, then R equals zero. O

In future applications, we will often restrict a power series to the
real numbers in its domain. Such a restriction can be differentiated
term-by-term as follows:

Proposition 6.4. Let f(z) = co+c1z+coz® + -+ be a power series
with radius of convergence R. The restriction of f to the real numbers
in its domain, f : (—R, R) — K, is a differentiable path in K with
derivative f'(x) = c1 + 2cox + 3c3x? + - - - .

Proof. The case K = R is familiar from calculus, and the general
case follows immediately from the real case. 0
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2. Series in M, (K)

We will also study series of matrices. We say that a series
> A=Ag+ A+ At

of elements A4; € M,(K) converges (absolutely) if for each i, j the
series (Ao)ij + (A1) + (A2)ij + -+~ converges (absolutely) to some
A;; € K. In this case, we write > 4 = A.

Proposition 6.2 generalizes to series of matrices.

Proposition 6.5. Suppose that > A; and > B; both converge, at
least one absolutely. Let C; := Ei:o ApBi_. Then,

Y= Aa)d_ B

The proof of Proposition 6.5 is left for Exercise 6.1. The idea is
to use Proposition 6.2 to prove that for all 7, 7,

(s26), - ((24) (22),

A power series f(z) = co+c1x+cx?+- - with coefficients ¢; € K
can be evaluated on a matrix A € M,(K). The result is a series in
M, (K):

fA)=coll + A+ A+ .
Proposition 6.6. Let f(z) = co+c1z+c22?+ -+ be a power series
with coefficients ¢; € K with radius of convergence R. If A € M,(K)
satisfies |A| < R, then f(A) = col + c1A + caA? + --- converges
absolutely. V '

Remember that |A] denotes the Euclidean norm on M,(K) re-
garded as ]R”z, R2"” or R4, For example,

a+bi c+di
e+ fi g+hi
Several other texts use an alternative norm on M,(K), defined as

4] = sup{|X 4| | X € K™ with |X| = 1}.

Using this norm has the advantage that Proposition 6.6 becomes
sharper: if ||A|| < R, then f(A) converges absolutely, and if [|4|| > R,
then f(A) diverges. We will not use this “sup norm” in our text.

=1a2+b2+c2+d? +e? + f2+ g2+ h2,
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The proof of Proposition 6.6 will require an important lemma:

Lemma 6.7. For all XY € M,(K), | XY| < |X|-|Y].

Proof. The proof depends on Proposition 3.7, the Schwarz inequal-
ity. For all indices 1, j,

Z leg

|(row i of X)|*- |(column j of 7)T|2

Summing over all indices %, gives:

|(XY)Z-J-|2 = = |{(row i of X), (column j of?)T)|2

IN

n k03 k23 k3
IXY[P = D IXY)P< )] <<Z |Xu|2) . <Z |Ylj|2))
i,j=1 4,j=1 =1 =1
n
= Z Xl |- D0 1Yl ) = 1XPIYP
i,j=1 i,j=1 '

O

Proof of Proposition 6.6. For any indices 4, j, we must prove that
|(col)isl + I(e1A)ij] + |(c2a A%)is] + - -
converges. The [th term of this series satisfies:
[(@AD)y] < lad'| = al - |A'] < |al - AL

Since |A| is less than the radius of convergence of f, the result follows.
O

When the power series of the function f(x) = e” is applied to a
matrix A € M, (K), the result is called matrix exponentiation:

=T+ A+ (1/20)A% + (1/3) A3 + (1/4D)A* +

The radius of convergence of this power series is oo, so by Proposi-
tion 6.6, e converges absolutely for all A € M,(K). As you might
guess from its appearance as the chapter title, matrix exponentiation
is a central idea in the study of matrix groups.
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3. The best path in a matrix group

In this section, we use matrix exponentiation to construct canonical
“best paths” in each given direction of a matrix group. Let’s begin
with a simple example. Figure 1 illustrates the vector field associated

to
A= (—(-)1 (1)> € 50(2).

What is the most natural differentiable path y(t) in SO(2) with
v(0) = I and +'(0) = A? The choice v(t) := I 4 tA seems natu-
ral, but is not in SO(2). Every path in SO(2) through A has the

form:
[ cosf(t) sin f(¢)
(8) = (— sin f(t) cos f(t)) '

where f(t) is a differentiable function with f(0) = 0 and f'(0) = 1.
The choice f(t) = t is clearly the most natural choice; what visual
property does this path «(t) have that no other candidate shares?
The answer is that for every X € R?, the path a(t) := R, (X)
is an integral curve of the vector field R4. This means that the
vector field R4 tells the direction that X is moved by the family of
linear transformations associated to v(t) for all time rather than just
initially at ¢ = 0; more precisely,

Definition 6.8. A path a : (—e€,€) — R™ is called an integral curve
of a vector field F : R™ — R™ if & (t) = F(a(t)) for all t € (—¢,¢).

Ny

e

Figure 1. An integral curve of R4.
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For the matrix A above, the integral curves of R4 are (segments
of) circles centered at the origin, parameterized counterclockwise with
speed one radian per unit time.

More generally, if A € gl,(K), we would like to find the “most
natural” path v(t) in GL,(K) with v(0) = I and +/(0) = A. We will
attempt to choose 7(t) such that for all X € K", the path

t = Ry (X)

is an integral curve of R4. You might find it surprising that a single
path «(t) will work for all choices of X.

The trick is to find a power series expression for the integral curve
a(t) of R4 beginning at a(0) = X. We contrive coefficients ¢; € K"
such that the path o : R — K™ defined by the power series

at) =co+at+ot® +cat® + -
is an integral curve of R4 with a(0) = ¢ = X. Being an integral
curve means that o/ (t) (which is ¢; +2cot+3c3t2+- - - ) equals Ra(a(t))
(which is copA + c1tA 4 c2t?A 4 c3t>A + - -+ ). So we want:
(c1 + 2cat +3cgt? 4+ -+ ) = (cpA + c1tA + cot?A+catPA+ ).
Equating coefficients of corresponding powers of ¢ gives the recursive

formula lc; = ;-1 A. Together with the initial condition co = X, this
gives the explicit formula ¢; = %X Al, so the integral curve is:

I

at) X+ XtA+ g(tA)2 + %(tAP + -

= Xe!4 = R.a(X).
In summary, the path v(t) = e!” has the desired property that for all

X € K", a(t) = Ry )(X) is an integral curve of Ra. This could also
have been proven quickly from scratch using:

Proposition 6.9. Let A € gl,.(K). The path v: R — M,(K) defined
as y(t) == et is differentiable, and ¥'(t) = A - y(t) = 7(t) - A.
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Proof. Each of the n? entries of
Y(t) =t =T +tA+ (1/2)t2A% + (1/6)t3 4% + -
is a power series in ¢, which by Proposition 6.4 can be termwise dif-
ferentiated, giving:
Y () =0+ A+tA% + (1/2)t243 + .- .

This equals y(¢) - A or A-~(t) depending on whether you factor an A
out on the left or right. O

- There are two interesting interpretations of Proposition 6.9, the
first which we’ve already discussed:

Proposition 6.10. Let A € M,(K) and let v(t) = e*4.
(1) Forall X € K", a(t) = Ry)(X) is an integral curve of Ra.
Also, aft) = L)(X) is an integral curve of La.
(2) ~(t) is itself an integral curve of the vector field on M,(K)

whose value at g is A-g (and is also an integral curve of the
vector field whose value at g is g- A).

Both (1) and (2) follow immediately from Proposition 6.4. The
two parts have different pictures and different uses. It is interesting
that the left and right versions of part (2) can simultaneously be true,
since the two vector fields on M, (K) do not agree. Evidently, they
must agree along the image of ~.

4. Properties of the exponential map

The exponential map exp : M,(K) — M, (K), which sends A - e4
is a powerful tool for studying matrix groups. We have already seen
that exp restricted to a real line is a “best path”. In this section, we
derive important algebraic properties of the exponential map, which
further justify our use of the term “exponential”.

Proposition 6.11. If AB = BA, then ¢A+B = eA . ¢B,
Proof. By Proposition 6.5,

eheP = (I+A+ /DA + ) I+ B+ (/2B + )
= I+ (A+B)+((1/2)A2 + AB+ (1/2)B*) +---.
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On the other hand,

etB = T4+ (A+B)+(1/2)(A+B)?+
I+ (A+B)+(1/2)(4*+ AB+BA+B%) +

Since AB = BA, the first terms of e“e? equal the first terms of e 5,
To verify that the pattern continues:

[a)
mh:-
[o+}

I
TN
8
=)
N’
N
M8
N’
I
M8
M-~
Zln
o~ ol
Bk
Kol

=0 1=0 1=0 k=0
oo 1 [es)
_ 1 U\ gk pi—k _ (A+ B)
= Y ()aEr -
1=0 " k=0 1=0
The last equality uses the fact that A and B commute. O

Since most pairs of matrices do not commute, you might not
expect Proposition 6.11 to have much use, except in the n = 1 case.
Surprisingly, the proposition has many strong consequences, including
every proposition in the remainder of this section.

Proposition 6.12. For any A € M,(K), e4 GL (K). Therefore,

matriz exponentiation is a map exp : gln(K) — GL,(K).
Proof. Since A and —A commute, e .- e 4 =e4 4 =0 = I, 50 e
has inverse e~ 4. , O

We will see later that the image of exp contains a neighborhood
of I in M,,(K), so it may seem counterintuitive that this image misses
all of the singular matrices.

Proposition 6.13. If A € 0,(K), then e?* € O, (K).
Proof. Since A € 0,(K), A* = —A. Therefore,
et (eA)* —efdet =efte i =t A= =1

So e? € O,(K) by part (4) of Proposition 3.9. Exercise 6.2 asks
you to verify that (e?)* = e, which was used in the first equality
above. O
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This proposition allows a cleaner proof of Theorem 5.12, which
says that o, (K) is the Lie algebra of O,,(K). How? If A € 0,,(K), then
¥(t) = et is a differentiable path in O, (K) with 4/(0) = A. This
proves that o, (K) C g(O,(K)), which was the more difficult inclusion
to verify.

Since SU(n) = U(n)NSL,(C), one expects the Lie algebra su(n)
of SU(n) to equal the set of trace-zero skew-hermitian matrices:

Proposition 6.14. su(n) = u(n) N sl,,(C).
The inclusion su(n) C u(n) N sl,(C) is trivial. For the other
inclusion, we must construct a path in SU(n) tangent to any A €

u(n)Nsl,(C). The path y(t) = €' is contained in U(n), but we have
yet to verify that it is contained in SL,(C), which follows from:

Lemma 6.15. Let K € {R,C}. For any A € M,(K),
det(e ) tmce(A)
Proof. Let f(t) = det(et4). Its derivative is:
f(t) = lim(1/h)(det(e“TM4) — det(e*))
= Jim (1/h)(det(et4e™4) — det(et*))
= lim (1/h)(det(e"))(det(e"*) — 1)
= (det(e")) lim (1/h)(det(e**) — 1)
= e
= f(t) - trace(A).
The last equality follows from Lemma 5.10. Since f(0) =1 and
f/(t) = f(t) - trace(A),
the unique solution for f is f(t) = et**2°*(4), In particular,
F(1) = det(e?) = e=<=(),
O

For A € gl,(K), we have verified that the path () := €4 has
several geometric and analytic properties. It also has an important
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algebraic property; namely, its image is a subgroup of GL,(K). To
elaborate this comment, we make the following definition, in which
(R, +) denotes the group of real numbers under the operation of ad-
dition.

Definition 6.16. A one parameter group in a matriz group G is a
differentiable group-homomorphism 7y : (R,+) — G.

“Homomorphism” means that y(¢1 + t2) = Y{t1)y(t2). A one-
parameter group is both an algebraic object (a homomorphism) and
a geometric object (a differentiable path). The interplay between al-
gebra and geometry is what makes matrix groups so rich in structure.

Proposition 6.17.
1) For every A € gl,(K), 4(t) := et” is a one parameter group.
Y
(2) Every one parameter group in GL,(K) has the description
v(t) = et for some A € gl,(K).
Proof. Part (1) follows from Proposition 6.11, since:
Yt +12) = erAHad = ehAeh A = y(41)y(t2).
Notice in particular that (¢) - y(—t) = I, which shows that
v(&)~ = ().

For part (2), suppose 7(¢) is a one-parameter group in GL, (K).
Let A :=+/(0). Notice that for all ¢t € R,

Y'(t) = lim %(v(t +h) =7(t) = 7(t) lim %(v(h) —I) =~@)A.

Since 7/(t) = v(t)A, we suspect (by comparing to Proposition 6.9)
that ~(t) = e4. This is verified by applying the product rule:

GO = A B ()2 ()

= q(t)Ae " — (t)Ae™ = 0.

d
dt

So y(t)e~*4 = I, which implies that y(t) = e*4. m|
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Finally, we describe how conjugation and exponentiation relate:

Proposition 6.18. For all A, B € M, (K) with A invertible,

-1
eABAT = AeB AT

Proof.
APATN = A(I+B+(1/2)B* +(1/6)B> +---)A™"
= I+ ABA™'+ (1/2)AB*A™" 4+ (1/6)AB*A™" 4 - -
= I+ ABA™' 4+ (1/2)(ABA™')> + (1/6)(ABA™!)® + ...

-1
eABA .

O

5. Exercises

Ex. 6.1. Prove Proposition 6.5.

Ex. 6.2. Prove that (e4)* = " for all A € M,(K).
Ex. 6.3.

(1) Let A = diag(ai, az, ...,an) € M,(R). Calculate e?*. Using
this, give a simple proof that det(e4) = e°¢(4) when A is
diagonal.

(2) Give a simple proof that det(e?) = etr°®(4) when A is con-
jugate to a diagonal matrix.

0 1

Ex. 6.4. Let A = (_1 0

) . Calculate e”.

Ex. 6.5. Can a one parameter group ever cross itself?
Ex. 6.6. Describe all one parameter groups in GL;(C). Draw several

in the zy-plane.

Ex. 6.7. Let G = {(g 31/) € GLQ(R)‘x > O}. Describe the one

parameter groups in G, and draw several in the zy-plane.

Ex. 6.8. Visually describe the path y(t) = €% in Sp(1) = S3.
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a
—b
A as the sum of two commuting matrices). Draw the vector field R4
when a = 1 and b = 2, and sketch some integral curves.

Ex. 6.9. Let A = < Z) € gla(R). Calculate e4 (Hint: Write

Ex. 6.10. Repeat the previous problem with A = <Z b).

a
Ex. 6.11. When A is in the Lie algebra of UT,(K), prove that
e € UT,(K) (see Exercise 4.12).

Ex. 6.12. When A is in the Lie algebra of Isom(R"™), prove that
e” € Isom(R™).

Ex. 6.13. Describe the one-parameter groups is Trans(R™).

Ex. 6.14. The multiplicative group of positive real numbers can be
identified with the subgroup: G = {(a) € GLi(R) | @ > 0}. Given A
in the Lie algebra of G, describe the vector field on G associated to
A, as part (2) of Proposition 6.10. Solve for the integral curve of this
vector field beginning at (1).






Chapter 7

Matrix groups are
manifolds

In this chapter we prove two crucial facts about how the exponential
map restricts to a Lie algebra. For » > 0, denote

B, :={W € M,(K) | |[W| <r}.

Theorem 7.1. Let G C GL,(K) be a matriz group, with Lie algebra
g C gln(K).
(1) Forall X € g, X €G.

(2) For sufficiently small r > 0, V := exp(B, N g) is a neigh-
borhood of I in GG, and the restriction exp: B,Ng — V is
a homeomorphism.

Part (1) says that if a one parameter group in GL,(K) begins
tangent to a matrix group G, then it lies entirely in G. In the previous
chapter, we verified (1) when G € {GL,(K), O,(K), SL,(R), SL,(C),
SU(n)}. However, the proofs were different in each case, and new
ideas are needed in this chapter to generalize to arbitrary matrix
groups.

Part (2) has not yet been verified for any familiar matrix groups.
We will actually prove the stronger statement that exp : B,Ng — V is
a diffeomorphism (which will be defined in this chapter, but roughly
means a differentiable homeomorphism).
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A beautiful corollary of Theorem 7.1 is that every matrix group
is a manifold, which we will carefully define in this chapter. Roughly,
a manifold is a nice subset of Euclidean space; at every point p its
tangent space is a subspace, and a neighborhood of p is diffeomorphic
to a neighborhood of 0 in the tangent space. Manifolds are central
to modern mathematics. Their investigation is the starting point of
several branches of geometry.

1. Analysis background

In this section, we review some concepts from analysis which are nec-
essary to prove Theorem 7.1, including the inverse function theorem.
Let U C R™ be an open set. Any function f : U — R™ can be
thought of as n separate functions; we write f = (f1,-.., fn), Where
each f; : U — R. For example, the function f:R? — R3 defined as

flz,y) = Gin(z +y), e, 2 — )

splits as f1(z,y) = sin(z + y), fo(z,y) = *¥ and f3(z,y) = 2% — °.
Let p € U and let v € R™. The directional derivative of f in the
direction v at p is defined as:

dfy(v) = lim w

if this limit exists.

The directional derivative can be interpreted visually by consid-
ering the straight line y(¢) = p+tv in R™. If the initial velocity vector
of the image path (fov)(t) = f(p+tv) in R™ exists, it is called df,(v).
In other words, df,(v) approximates where f sends points near p in
the direction of v; see Figure 1.

The directional derivatives of the component functions { f1, ..., fn}
in the directions of the standard orthonormal basis vectors {e1, ..., em}
of R™ are called partial derivatives of f and are denoted as:

Ofi
ij

(p) == d(fi)p(e5)-

They measure the rates at which the component functions change
in the coordinate directions. For fixed {4, j}, if (%%(p) exists at each
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Notice that it is not enough for all directional derivatives to exist
at p; we require the function v — dfp(v) to be linear and to approxi-
mate f well near p before we are willing to call f differentiable at p
or to refer to the function df, as its derivative.

If f is C! on a neighborhood of p, then df, = L4 = R 47, where
A € M, n(R) is the matrix of all first order partial derivatives of f:

Shp) - 2h(p
A=l o
Ua(p) - Sl=(p)

When n = 1, this is familiar from multivariable calculus: directional
derivatives are computed by dotting with the gradient. The n > 1
case follows by applying this fact to each component function f;.

The derivative of a composition of two functions turns out to be
the composition of their derivatives:

Proposition 7.4 (Chain rule). Suppose y : R! — R™ is differentiable
at z € R' and f : R™ — R is differentiable at y(z). Then their
composition is differentiable at z, and

d(f o 'Y):c = df’y(z) o d’}’z

The chain rule is an important tool, and some comments about
it are in order. First, v need not be defined on all of R!, but only
on a neighborhood of z for the chain rule to be valid. Similarly, it is
enough that f be defined on a neighborhood of ¥(z).

Second, the case | = 1 has an important visual interpretation. In
this case, v is a path in R™ and f o« is the image path in R". Set
z =0 and p = v(0). The chain rule says that for all v € R,

d(f ©7)o(v) = dfp(do(v)).
Choosing v as the unit-vector v = e; € R! gives:
(f 27)'(0) = dfp(v'(0)).

This provides an important interpretation of the derivative of a func-
tion f: R™ — R™ at p € R™:
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Proposition 7.5. df,(v) is the initial velocity vector of the image
under f of any differentiable path ~(t) in R™ with v(0) = p and
7Y (0) = v.

This proposition says Figure 1 remains valid when the straight
line ~(t) is replaced by any (possibly curved) path (t) with v(0) = p
and «/(0) = v. This proposition is so useful, we will take it as our
definition of df,(v) in the remainder of the book.

Another important consequence of the chain rule is that the de-
rivative of an invertible function is an element of the general linear
group. More precisely, suppose that U C R™ isopen and f: U — R™
is an invertible function from U to its image f(U). Suppose that f is
differentiable at x € U and f~! is differentiable at f(z). The chain
rule says:

d(f_l o fle = d(fﬂl)f(x) o df ;.

On the other hand, f~!o f is the identify function, whose derivative
at any point is the identify map. So d(f™!) () © df is the identity
linear map, which means that dfy; is an invertible linear map (the
corresponding matrix is an element of GL,(R)).

A crucial result from analysis is the following converse:

Theorem 7.6 (Inverse function theorem). If f: R™ — R™ is C” on
a neighborhood of x € R™ (r > 1) and dfy is an invertible linear map,
then there exists a (possibly smaller) neighborhood U of x such that
V = f(U) is a neighborhood of f(x), and f : U — V is invertible
with C™ inverse.

The inverse function theorem is quite remarkable. It reduces the
seemingly difficult problem of deciding whether f is locally invertible
near x to the computationally simple task of checking whether the
determinant of the linear map df, is non-zero! The proof is non-
trivial, but the theorem is believable, since f(y) = f(z) + dfz{y — z)
is a first-order approximation of f near z. The theorem says that if
this first-order approximation is bijective, then f is bijective near x.
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2. Proof of part (1) of Theorem 7.1

Let G C GL,(K) be a matrix group with Lie algebra g. Part (1)
of Theorem 7.1 says that for all X € g, eX € G. We verified this
for several groups. Another reason to expect the theorem to be true
comes from the following idea. The tangent space to G at I is g, and
the tangent space at a € G is

T.G=a-g:={a-Y|Y €eg}

(by Exercise 5.10). Fix a vector X € g. Counsider the vector field V
on M,(K) whose value at a € M,(K) is V(a) := a- X. At points
of G, this vector field is tangent to G. The path 4(t) = X is an
integral curve of V, because v/(t) = v(t) - X (see Proposition 6.10).
Since v(0) = I € G, we expect (t) to remain in G.

It would be nice to know that G is a manifold, since an integral
curve of a smooth vector field on Euclidean space which at points
of a manifold M is tangent to M must remain on M if it begins
on M. But we’re getting ahead of ourselves, since we haven’t defined
manifold, and we will need Theorem 7.1 in order to prove that matrix
groups are manifolds. To avoid circular reasoning, we must abandon
the argument, although the following proof (from {11]) does reflect
some of its essence.

Proof of part (1) of Theorem 7.1. Let {Xq, ..., Xi} be a basis of
g. For each i = 1,...,k choose a differentiable path a; : (—¢,e) = G
with o;(0) = I and «}(0) = X;. Define

Fy : (neighborhood of 0 in g) — G
as follows:
Fy(ar X1+ -+ aXe) =oa(cr) - az(e2) - - - axlck).
Notice that F,(0) = I, and d(Fy)o is the identify function:
d(Fg)o(X) =X forall X € g,

as is easily verified on basis elements.

Choose a subspace p C M,(K) which is complementary to g,
which means completing the set { X1, ..., X} to a basis of all of M, (K)
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and defining p as the span of the added basis elements. So M, (K) =
gxp.

Choose a function F, : p — M,(K) with F,(0) = I and with
d(Fp)o(V) =V for all V € p. For example, F,(V) := I + V works.
Next define the function

F : (neighborhood of 0 in g X p = M,,(K)) — M, (K)
by the rule F(X+Y) = F(X)-F,(Y) forall X € gand Y € p. Notice
that F(0) = I and dFy is the identity function: dFg(X +Y) = X +Y.

By the mverse function theorem, F' has an inverse function de-
fined on a neighborhood of I in M, (K). Express the inverse as follows
for matrices @ in this neighborhood:

F~Ya) = u(a) + v(a) € g x p.

By definition, u(F(X +Y)) = X and v(F(X +Y)) =Y for all
X €gand Y € pnear 0. The important thing is that v tests whether
an element a € M,,(K) near I lies in G:

v(a) =0 = a €G.

Let X € g and define a(t) = e*X. We wish to prove that a(t) € G
for small ¢ by showing that v(a(t)) = 0. Since v(a(0)) = 0, it will
suffice to prove that %v(a(t)) = 0 for small ¢. Since

2y
dt

the result will follow from the following lemma:

(a(t)) = dvaey(a'(t)) = dvage) (X - a(?)),

Lemma 7.7. For alla € M,(K) near I and all X € g, dvy,(X-a) = 0.

Proof. Express a as:
a=F(Z+Y) = Fy(2)- F(Y),
where Z € gand Y € p. For all W € g, and for sufficiently small ¢,

v(Fy(Z + W) - Fp(Y)) =Y,
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which means that v is not changing at a in these directions:

0 — dit (F(Z + W) B (V)
= dva((d(F )z(W)) - Fp(Y))
dva((d(Fg)z(W)) - Fy(Z)™" - a)

= dvg(X - a),
where X := (d(Fy)z(W))  F4(Z)~1. It remains to prove that X is an

arbitrary element of g. First, X € g because it is the initial tangent
vector of the following path in G:

ts Fg(Z +tW) - Fy(Z) 1.

Second, X is arbitrary because the linear map from g — g which
sends

W = (d(Fg)z(W)) - Fy(2) 7
is the identity map when Z = 0, and so by continuity has determinant

close to 1, and is therefore an isomorphism, when Z is close to 0. In
other words, W can be chosen so that X is any element of g. O

The lemma completes our proof that if X € g, then e!X € G for
small ¢, say for ¢t € (—e,€). The result can be extended by observing
that for all ¢ € (—e, €) and all positive integers N,

eNEX _ gt XX botX _ tX | tX tX oo

This verifies that e € G for all t € R, which completes the proof!
a

3. Proof of part (2) of Theorem 7.1

It can be shown that any power series gives a smooth function on
the set of matrices with norm less than its radius of convergence. In
particular:

Proposition 7.8. exp : M, (K) — M,(K) is smooth.

This fact allows us to verify pé.rt (2) of Theorem 7.1 in the special
case G = GL,(K). Remember that B, := {W € M,(K) | |W| < r}.
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Lemma 7.9. For sufficiently small r > 0, V := exp(B,) is a neigh-
borhood of I in GL,(K), and exp : B, — V is a homeomorphism
(which is smooth and has smooth inverse).

Proof. For all X € M,(K), d(exp)o(X) is the initial tangent vector
to the path ¢ — e*X| namely X. In other words, d(exp)p is the iden-
tity map. The result now follows from the inverse function theorem,
together with the observation that a sufficiently small neighborhood
of I in M,(K) must lie in GL,(K). o

The inverse of exp is denoted “log”; it is a smooth function defined
on a neighborhood of I in GL,(K). Although we will not require this
fact, it is not hard to prove that log(A) equals the familiar power
series for log evaluated on A:

log(A) = (A—I)—(1/2)(A—1)*+(1/3)(A—1)* - (1/4)(A—T)*+- - -

Now let G C GL,(K) be a matrix group with Lie algebra g.
Part 2 of Proposition 7.1 says that for sufficiently small » > 0,
exp(B- N g) is a neighborhood of I in G. Lemma 7.9 handled the
case where G is all of GL,(K). Generalizing to arbitrary G is not as
obvious as it might at first seem. In fact; the proposition can be false
for a subgroup G C GL,(K) which is not closed, as the next example
illustrates.

Example 7.10. Let A € R be an irrational multiple of 2w, and define

et 0
G:=<¢g = 0 e 1t€R CGLQ(C).

The Lie algebra of G 1is the span of W = ((1) )(\)i

allt € R. For 0 < r < 00, notice that

exp({tW |t € (=r,n)}) = {ge |t € (=1,7)}

is not a neighborhood of I mG . Any neighborhood of I in G contains
points of the form gony for arbitrarily large integers n; compare with
Ezercise 4.24.

), and eV = g for

We require the following important lemmas:
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Lemma 7.11. Let G C GL,(K) be a matriz group with Lie algebra -
g. In Lemma 7.9, 7 > 0 can be chosen such that additionally:

exp(B, Ng) = exp(B,) NG.

For any r, exp(B, Ng) C exp(Br) NG, so the real content of this
lemma is that the other inclusion holds for sufficiently small r. The
lemma is false for certain non-closed subgroups of GL, (K), including
the one in Example 7.10. The essential problem is this: there are
elements of G (namely go.n, for certain large n) which are arbitrarily
close to I, so they are exponential images of arbitrarily short vectors
in M, (K), but they are exponential images only of very long vectors
in g.

Proof of Lemma 7.11. Choose a subspace p C Mp(K) which is
complementary to g, as in the proof of part (1) of Theorem 7.1, so
M,(K) = g x p. Define the function ® : g x p — M,(K) so that
O(X +Y) =e¥Xe¥ forall X € g and Y- € p. Notice that ® agrees
with exp on g. The functions ® and exp are also similar in that
the derivative of each at 0 is the identity. In particular, ® is locally
invertible by the inverse function theorem.

Assume the lemma is false. Then there must be a sequence of non-
zero vectors {Aj, Az, ...} in M,(K) with |A;] — 0 such that A; ¢ g
and ®(A;) € G for all . Write A; = X; +Y;, where X; € g and
0#Y; € p. For all 4, let g; := ®(A;) = eX+e¥* € G. Notice that
e¥i = (X)) lg; € G.

By compactness of the sphere of unit-length vectors in p, the
sequence {%, |1;_§|’ ...} must sub-converge to some unit-length vec-
tor Y € p (by Proposition 4.24). For notational convenience, re-
choose the A;’s above so that the sequence converges rather than
sub-converges to Y.

Let t € R. Since |Y;| — 0, it is possible to choose a sequence of
positive integers n; such that n;¥; — tY. Since e™¥i = (e¥1)™ € G,
and since G is closed in G L, (K), it follows that e/¥ € G. In summary,
etY € G for all t € R, which is impossible since Y ¢ g. O

Proof of part (2) of Theorem 7.1. Pick r > 0 as in Lemma 7.11.
Then V = exp(B- N g) is a neighborhood of I in G because it equals
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the set exp(B,) N G, and exp(B;) is open in M,(K) by Lemma 7.9.
‘The restriction exp : B, Ng — V is continuous. Its inverse function
log : V — B, N g is continuous because it is a restriction of the
continuous function log : exp(B,) — B,. O

In the previous proof, exp : B, Ng — V is not only continuous, it
is smooth. Its inverse log : V — B, Ng is also better than continuous;
it is the restriction to V' of the smooth function log.

4. Manifolds

In this section, we define manifolds and prove that matrix groups are
manifolds.

Let X C R™ be any subset, and let f : X — R™ be a function.
If X is open, it makes sense to ask whether f is smooth. If X is not
open, then the partial derivatives of f at p € X might not make sense,
because f need not be defined near p in all coordinate directions. We
will call f smooth if it locally extends to a smooth function on R™:

Definition 7.12. If X C R™, then f : X — R™ is called smooth if
forallp € X, there ezists a neighborhood U of p in R™ and a smooth
function f : U — R™ which agrees with f on X NU.

This extended notion of smoothness allows us to define an impor-
tant type of equivalence for subsets of Euclidean space:

Definition 7.13. X C R™ and Y C R™2 are called diffeomorphic
if there exists a smooth bijective function f : X — Y whose inverse
is also smooth. In this case, f is called a diffeomorphism.

From the discussion after its proof, it is clear that the word
“homeomorphism” can be replaced by the word “diffeomorphism”
in part (2) of Theorem 7.1.

A diffeomorphism is a homeomorphism which is smooth and has
a smooth inverse. Figure 2 shows two sets which are homeomorphic
but are not diffeomorphic, because no homeomorphism between them
could be smooth at the cone point.

A manifold is a set which is locally diffeomorphic to Euclidean
space:
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Proposition 7.15. S? C R? is a 2-dimensional manifold. -

Proof. The upper hemisphere
V ={(z,y,2) € 8% | z > 0}
is a neighborhood of (0,0, 1) in 2. Define
U={(z,y) eR? | 2> +y* < 1},
and define ¢ : U — V as ¢(z,y) = (£,9,/1 — 2 — y2). Then ¢

is smooth and bijective. The inverse ¢! : V — U has the formula
v Yz,y,2) = (z,y). By Definition 7.12, ¢! is smooth because it
extends to the smooth function with this same formula defined on the
open set {(z,y,2) € R® | z > 0}, or even on all of R3.

For arbitrary p € S?, the function (Ra)o ¢ : U — Ra(V) is a
parametrization at p, assuming A € SO(3) is any matrix for which
RA(0a0>1) =p- u

Before proving that all matrix groups are manifolds, we give a
simple example:
Claim 7.16. The matriz group
T = {diag(e”,¢'%) | 6,¢ € [0,27)} C GL2(C)

is a 2-dimensional manifold in My(C) = C* = R8.

Proof. Making the identification M>(C) = R® explicit, we write:
T = {(cos,sinh,0,0,0,0,cos¢,sin ¢) | 8,4 € [0,27)} C RE.

The identity element of T is p = (1,0,0,0,0,0,1,0). To describe a
parametrization of T at p, let U = {(8,¢) e R? | —7w/2 < 0,¢ < w/2}
and define ¢ : U — T as (6,¢) — (cos8,sin6,0,0,0,0, cos ¢,sin ¢).
This parametrization is clearly smooth and is bijective onto its image
V = @(U). The inverse ¢=! : V — U is also smooth because it
extends to the smooth function from an open set in R® to U defined
as follows:

(z1,x2, 3, %4, T5, Te, 7, Ts) — (arctan(zs/z, ), arctan(zg/z7)).

A parametrization at an arbitrary point of T is defined similarly. [
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f : X1 — X5 between manifolds. The derivative of f at p € X3
will be denoted df, and is a linear map from 7, X7 to Tf()X2. In
future sections, our primary applications will be when f is a smooth
homomorphism between matrix groups, in which case dfr is a linear
map between their Lie algebras.

Remember that in Definition 5.1, the tangent space to a subset
X C R™ at p € X was defined as:

TpX :={7(0) | v: (—€,€) — X is differentiable with v(0) = p}.

Proposition 7.18. If X C R™ is an n-dimensional manifold, then
for allpe X, T, X is an n-dimensional subspace of R™.

Proof. To prove the proposition, we will present a more technical
definition of 7, X and then prove that the two definitions are equiv-
alent. Let ¢ : U C R™ —» V C X be a parametrization at p. Assume
for simplicity that 0 € U and (0) = p. Define

TpX 1= dio(R™).

This makes sense if ¢ is regarded as a function from U C R™ to
R™. Clearly T, X is a subspace, since it’s the image of a linear map.
The two definitions of 7, X agree because differentiable paths through
pin X are exactly the images under ¢ of differentiable paths in U
through 0. In particular, this agreement shows that the technical
definition of 7, X is well-defined; it does not depend on the choice of
parametrization, (. O

Next we define the derivative of a function between manifolds.
The definition is analogous to Proposition 7.5 and is pictured in Fig-
ure 9.

Definition 7.19. Let f : X; — X3 be a smooth function between
manifolds, and let p € X,. Ifv € T, Xy, then dfp(v) € Typ)Xa
denotes the initial velocity vector (f o «)'(0) of the image under f of
any differentiable path v(t) in X; with v(0) = p and v/ (0) = v.

Proposition 7.20. Under the hypotheses of Definition 7.19, the map
v dfy(v) is a well-defined linear function from T, X1 to TypyXa.

Here “well-defined” means independent of the choice of +.
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or [13] for a proof. On the other hand, it is possible for a homomor-
phism between matrix groups to be discontinuous. For example, the
additive group (R, +) can be considered a matrix group, because it
is isomorphic to Trans(R'). There are many discontinuous isomor-
phisms f : (R,+) — (R,+). In fact, any bijection of a basis for R
(regarded as a vector space over Q) extends linearly to an isomor-
phism. o

6. Exercises

Ex. 7.1. Prove that S™ C R**! is an n-dimensional manifold.

Ex. 7.2. Prove that the cone {(z,y,2) € R® | z = /22 +y2} C R3
is not a manifold. )

Ex. 7.3. If X; e R™ and Xy € R™2 gre manifolds whose dimensions
are d; and dg, prove that

X1 x X2 ={(p1,p2) ER™ x R™ = R™T™2 | p; € X1,p2 € X}
is a di + do dimensional manifold.
Ex. 7.4, Is the group G in Example 7.10 a manifold?

Ex. 7.5. Let f : R™ — R™ be a linear function. For any p € R™,
show that df, = f. In other words, the derivative of a linear function
is itself.

Ex. 7.6. Let G be a (not necessarily path-connected) matrix group,
Define the identity component, Gg, of G as:

{9 € G | 3 continuous v : [0,1] — G with v(0) = I and v(1) = g}.

Prove that G° is a matrix group (don’t forget to prove G° is closed).
Prove that G° is a normal subgroup of G.

Ex. 7.7. Prove that there exists a neighborhood of I in GL,(K)
which does not contain any subgroup of GL,(K) other than {/}.

Ex. 7.8. Prove the chain rule for manifolds.

Ex. 7.9. Prove the inverse function theorem for manifolds. - ¥
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Ex. 7.10. Let X be a manifold. If X contains no clopen subsets
other than itself and the empty set, prove that X is path-connected
(this is a converse of Proposition 4.18 for manifolds).

Ex. 7.11. Let X C R™ be a manifold. Define the tangent bundle of
X as:

TX :={(p,v) ER"xR™" ~2R?*" |pec X and v € TpX}.
Prove that T X is a manifold of dimension twice the dimension of X.

Ex. 7.12. If X ¢ R™ is a manifold, define the unit tangent bundle
of X as:

X = {(p,v) e R"xR™ = R*" |pe X and v € Tp,X and |v| = 1}.

’rove that T'X is a manifold of dimension one less than the dimen-
sion of TX.

Ex. 7.13. Describe a diffeomorphism between SO(3) and 7152
(compare to Exercise 1.1).

kix. 7.14. Let f : R® —» R™ (n > 2) be a diffeomorphism which
sends lines to lines, in the sense of Exercise 3.11. Prove that f has
the formula f(X) = Ra(X) + V for some A € GL,(R) and some
V€ R™; in other words f is represented by an element of Aff,(R).

Ilint: First prove that the matriz df, is independent of the choice of
pEeR™,

Ix. 7.15. Let G1 and G2 be matrix groups with Lie algebras g:
and g2. Let f: Gy — G, be a C' homomorphism. Notice that
dfy : g1 — g2. Prove that for all v € g,

f(ev) — eHf1(v)

In other words, a C* homomorphism is completely determined by its
lerivative at the identity, at least in a neighborhood of the identity.
Itint: Use Proposition 6.17. Conclude that any C'! homomorphism is
imooth, at least in a neighborhood of the identity.

lix. 7.16. Let X C R™ be a manifold. Let f: X — R be a smooth
uinction. Define the graph of f as:

A:={(p,t) eR" xR=R™! |pe X and f(p) = t}.

rove that A is a manifold.






Chapter 8

The Lie bracket

Since dimension is the only invariant of vector spaces, any two matrix
groups of the same dimension have Lie algebras which are isomorphic
as vector spaces. So how can we justify our previous assertion that
the Lie algebra g encodes a surprising amount of information about
the matrix group G7 In this chapter, we define the “Lie bracket” op-
cration on g. For vectors A, B € g, the Lie bracket [A, B] € g encodes
information about the products of elements of G in the directions of
A and B. Together with its Lie bracket operation, g encodes informa-
tion about what G looks like near the identity, not just as a manifold,
but also as a group. We define Lie brackets in terms of the adjoint
action. We also use the adjoint action in this chapter to construct a
fundamental 2-to-1 smooth homomorphism from Sp(1) to SO(3).

l. The Lie bracket

let G be a matrix group with Lie algebra g. For all g € G, the
conjugation map Cy : G — G, defined as

Cy(a) :=gag™",

i o smooth isomorphism. The derivative d(Cy); : g — g is a vector
apace isomorphism, which we denote as Adg:

Ad, :=d(Cy)r1.

113
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To derive a simple formula for Ady(B), notice that any B € g
can be represented as B = b'(0), where b(t) is a differentiable path in
G with 5(0) = I. The product rule gives:

d _ _
Ady(B) = d(Co)1(B) = —| _ gb(t)g™" =gBg™".
So we learn that:

Ady(B) = gBg™".

If all elements of G commute with g, then Adg is the identity
map on g. So in general, Adgy measures the failure of g to commute
with elements of G near I. More specifically, Ady(B) measures the
failure of g to commute with elements of G near I in the direction of
B. Investigating this phenomena when g is itself close to I leads one
to define:

Definition 8.1. The Lie_bracket of two vectors A and B in g is:

d
[4,B] = T tZOAda(t)Bv

where a(t) is any differentiable path in G with a(0) = I and a’(0) = A.

Notice [A, B] € g, since it is the initial velocity vector of a path
in g. It measures the failure of elements of G near I in the direction
of A to commute with elements of G near I in the direction of B.
The following alternative definition is easier to calculate and verifies
that Definition 8.1 is independent of the choice of path a(t).

Proposition 8.2. For oll A,B € g, [A,B] = AB - BA.

Proof. Let a(t) and b(t) be differentiable paths in G with a(0) = I,
b(0) = I, a’(0) = A and ¥'(0) = B. Using the product rule and
Equation 5.1:
d -1
[A,B] = pn 1‘zoox(t)Ba(t) = AB — BA.
|

Notice [A, B] = 0 if and only if A and B commute. The commu-
tativity of A and B reflects the commutativity of elements of G in
the directions of A and B. One precise way to formulate this is:
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Proposition 8.3. Let A,B € g.

(1) If [A, B] = 0, then €4 commutes with e*B for all t,s € R.
(2) If et and e commute for t,s € (—¢,€), then [A, B] = 0.

Proof. For (1), if A and B commute, then
tAgsB _ gtA+sB _ sB+tA _ ,sB tA

For (2), fix ¢t € (—¢, €), and notice that

d d
AdyayB = e4Be 4 = tA sB —tA _ @
) ©e dsle=o® ¢ ° dsls=o

which implies that [A, B] = 0. O

esB — B,

The following properties of the Lie bracket follow immediately
from Proposition 8.2:

Proposition 8.4. Forall A, A;,A3,B,B;,B,C € g and A\j, A2 € R,
(1) AL+ X2 Az, Bl = M [A;, B + X2[A;, Bl.
(2) [A, \1B1 + X2 Ba] = Mi[A, Bi] + A2[A, Ba.
(3) [A,B] = —[B, A].
(4) (Jacobi identity) [[A, B],C] + [[B,C], A] + [[C, A], B] = 0.

The group operation in G determines the Lie bracket operation
in g. One therefore expects smoothly isomorphic groups to have iso-
morphic Lie algebras. Before proving this, we need to precisely define
“isomorphic Lie algebras”.

Definition 8.5. Let g1 and g2 be two Lie algebras. A linear function
f 91 — @2 s called a Lie algebra homomorphism if for all A, B € g1,

f([A, B)) = [f(A), f(B)).

If f is also bijective, then f is called a Lie algebra isomorphism.

The most important Lie algebra homomorphisms are the ones
determined by smooth group homomorphisms.

Proposition 8.6. Let Gy,Gs be matriz groups with Lie algebras
91,92. Let f : Gi — Gg be a smooth homomorphism. Then the
derivative dfy : g1 — g2 is a Lie algebra homomorphism.
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Proof. Let A, B € g1. Let a(t) and b(t) be differentiable paths with

a(0) = b(0) = I, a’(0) = A and ¥'(0) = B. For all a € Gy, we will
first show:

(8.1) dfr(Ada(B)) = Ady(,)(df1(B)).

Since a(t) = ab(t)a™! satisfies a(0) = I and o/(0) = Ad,(B), Equa-
tion 8.1 can be justified as follows:

Gr(Ad(B) = S (roa)t)= 2| fabt)a™)

= &) @60 @) = Ady (42 (B)).

Finally, apply Equation 8.1 to a = a(t) as follows:

dfl([A, B])

I

d d
dfy ('d_tlt:OAda(t)B> = zl—t{t:()de(Ada(t)B)

S| Adgaon @rr(B) = [dr2(4), 42 (B)]

The second equality above implicitly uses that, since dfr : g; — ga is
linear, its derivative at any point of g; is itself (see Exercise 7.5). So,
since v(t) := Ad, ) B is a path in g, this second equality is justified
by: -

&1 (0) = ddir)uo)(v'(0) = 5| _ dir(wle)).

O

Corollary 8.7. Smoothly isomorphic matrixz groups have isomorphic
Lie algebras.

Proof. Suppose that f : G; — G2 is a smooth isomorphism be-
tween two matrix groups. Then dfr : g1 — g2 is a Lie algebra homo-
morphism. Further, df; is bijective, as is justified by the discussion
preceding Theorem 7.6. Thus, dfy is a Lie algebra isomorphism. [
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Several familiar 3-dimensional matrix groups have isomorphic Lie
algebras:

(8.2)
0 0 O 0 0 1 0 -1 0
so(3)=span¢ [0 O -1],| 0 O O],|1 O O
01 0 -1 0 0, 0 0 O

wramfE(%, D16 )36 9
o) = span {5 0,50 500}

In all three, for the given basis {41, Ag, A3}, it is straightforward to
check:

[A1, Ag] = A3z, [As, As] = A1, [As, A1] = As.

So all three Lie algebras have the same Lie bracket structure, or more
precisely, the linear map between two of them which sends basis ele-
ments to corresponding basis elements is a Lie algebra isomorphism.
If these bases are used to identify the Lie algebras with R3, notice
that the Lie bracket operation becomes the familiar cross product
from vector calculus. »

The fact that su(2) = sp(1) is not surprising, since SU(2) and
Sp(1) are smoothly isomorphic (by Proposition 3.13). We will later
learn that SO(3) is neither isomorphic nor homeomorphic to Sp(1),
in spite of the fact that their Lie algebras look identical. Another
such example is the pair SO(n) and O(n), which have identical Lie
algebras but are not isomorphic. It turns out that path-connected,
simply connected matrix groups are smoothly isomorphic if and only
if their Lie algebras are isomorphic. It is beyond the scope of this
text to precisely define “simply connected” or prove this fact.

2. The adjoint action

Let G C GL,(K) be a matrix group of dimension d, with Lie algebra
g. For every g € G, Ad, : g — g is a vector space isomorphism. Once
we choose a basis B of g, this isomorphism can be represented as L4
for some A € GL4(R), as in Section 1.7. In other words, after fixing
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a basis of g, we can regard the map g — Ad, as a function from G to

GL4(R).
Lemma 8.8. Ad: G — GL4(R) is a smooth homomorphism.

Proof. For all g1,92 € G and all X € g,

Ady, ,(X) = (9192)X(9192) " = 9192X g5 g7 ' = Adg, (Adg, (X))

This shows that Adg, g, = Adgy, o Adg,. Since the composition of two
linear maps corresponds to the product of the matrices representing
them, this verifies that Ad : G — GL4(R) is a homomorphism. We
leave to the reader (in Exercise 8.11) the straightforward verification
that Ad is smooth. O

This homomorphism is called the adjoint action of G on g. In
general, an action of a matrix group G on a Euclidean space R™ means
a homomorphism from G to GLn,(R). It associates each element of
G with a linear transformation of R™, and hence determines how
elements of G “act on” vectors in R™. For example, we have studied
all along how SO(n) acts on R"; it is interesting that SO(n) also acts
naturally on so(n) = R™n—1)/2, :

The image of Ad in GL4(R) contains only Lie algebra isomor-
phims, since:
Lemma 8.9. For all g € G and all X,Y € g,
[Ady(X), Ady(Y)] = Ady([X,Y]).

Proof. This follows.from Proposition 8.6, since Ady = d(Cy);. An
alternative proof is the following explicit verification:

[Adg(X),Ady(Y)] = [9Xg™", gYg "]
= gXg 'g¥g ' —gYg lgXg!
= g(XY—YX)g_1
= Ad,([X,Y]).
O

The fact that Ad : G — GL4(R) is a smooth homomorphism has
a very strong consequence; namely, Ad sends one-parameter groups in
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G to one-parameter groups in GL4(R). To elaborate on this comment,
for any X € g, we denote by

adx :g— ¢
the linear map which sends Y to [X,Y]. That is, adx(Y) := [X,Y].
Proposition 8.10. For all X € g, Ad_x = e®?*.

Before proving this proposition, we explain it. On the right side,
exponentiation of the linear map ady : g — g is defined as follows. In
our fixed basis, B, of g, adx is represented by a matrix. This matrix
can be exponentiated, and the linear transformation g — g associated
to the result is denoted e*3%. The result is independent of the choice
of B by Proposition 6.18. In fact, e?X can be computed by formally
substituting ady into the exponential power series. That is, for all
Yeg,

(e4X)(Y) = (I + (adx) + (1/2)(adx)? + (1/6)(adx)® + -+ )Y
=Y +[X,Y] 4+ (1/2)[X, [X, Y]] + (1/6)[ X, [X, [X, Y]] +-- - .

So the theorem says that the transformation Ad, : g — g (when

g = %) can be calculated purely in terms of repeated Lie brackets
with X.

Proof. The key is that for X € g, d(Ad);(X) € gl4(R) is the matrix
representing adx. We abbreviate this as:

Equation 8.3 follows immediately from Definition 8.1, or more explic-
itly by observing that for all Y € g:

(8.4)
% t_OAdetx (Y) = (% t—O(etx Ve )= XY - Y X = adx(Y).

Now, Ad : G — GL4(R) is a smooth homomorphism. By Ex-
ercise 7.15, a smooth homomorphism between matrix groups sends
one-parameter groups to one-parameter groups and is therefore com-
pletely determined by its derivative at 7. More precisely, for all X < g,

Adgx = eADI(X) — gadx

O
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3. Example: the adjoint action for SO(3)

In this section, we explicitly compute the adjoint action for SO(3).
For this purpose, a convenient choice of basis of so(3) is:

00 O 0 01 0 -1 0
E,={0 0 -1},Eb=|10 0 O0}],Es5={1 0 0 .
01 O -1 0 0 0 0 O

As mentioned in Equation 8.2, the Lie bracket structure is:
(Er, En] = E3, [E», B3] = B, [Es, Er] = E».

This basis determines a vector space isomorphism f : R? — so(3),

namely,
0 —-c b
(a,b,c)»—]; c 0 -—-af.
b a 0

For every g € SO(3), Ady : s0(3) — so(3) can be regarded (via
f) as a linear map R® — R3, which equals left-multiplication by some
matrix. We carefully chose the basis above such that this matrix will
turn out to be g. In other words, conjugating an element of so(3) by
g gives the same answer as left-multiplying the corresponding vecto
in R3 by ¢: ‘

(8.5) 9(f(a,b,))g7" = f(g- (a,b,¢)).
Equation 8.5 is equivalent to the following proposition:

Proposition 8.11. In the above basis, Ad: SO(3) — GL3(R) is just
the inclusion map, which sends every matriz to itself.

Proof. We first show that the derivative d(Ad)s : so(3) — gl3(R)
sends every matrix to itself. Let «(¢) be a path in SO(3) with y(0) = I
and 7/(0) = Ej. Let v € 50(3). Then ¢ — Ad,)(v) is a path in so(3)
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whose derivative equals (as in Equation 8.4):

4] _Adu®) = 2| ono
0ifv=E
=FEv—vE = [E,v]=( Eyifv=FE, Zf(El'f_l(U))-
—Eyifv=F3

Thus, the linear transformation

d

V= 'd—t t=0Ad7(t)('U)

is represented in this basis as left multiplication by the matrix Fj.
This shows that d(Ad);(F;) = E;. A similar argument gives that
d(Ad);(E;) = E; and d(Ad);(F3) = E3. Thus, d(Ad); sends every
matrix in so(3) to itself.

Since d(Ad); sends every matrix to itself, Ad : SO(3) — GL3(R)
sends every one-parameter group in SO(3) to itself. We will prove
in the next chapter that exp : so(3) — SO(3) is surjective, so every
element of SO(3) is contained in a one-parameter-group. To conclude
the proof without using this fact, one can verify that the set of all
g € SO(3) sent to themselves by Ad is clopen, and hence is all of
SO(3). O

4. The adjoint action for compact matrix groups

We saw that the image of Ad in GL4(R) contains only Lie algebra
isomorphisms. A second important restriction on the image of Ad in
GL4(R) applies only when G is a subgroup of O(n), U(n) or Sp(n):

Proposition 8.12. If G is a subgroup of O,(K), then for all ¢ € G
and all X € g, |4dy(X)| = | X|.

Remember that | - | denotes the restriction to g of the Euclidean
norm on M, (K) regarded as R™*, R?** or R4"’. For example, in u(2),

al b+ci
~b+ci di

=1/a2 + 2b2 + 2¢2 + d2.
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Proof. For X,Y € M,(K) = K”z, a convenient alternative descrip-
tion of their inner product, (X, Y)k, is:

(8.6) (X,Y)x = trace(X - Y™).

Equation 8.6 is justified as follows:

trace(X - Y*) = Z (XY = ZZX” (Y");

=1 j=1

Z XY = (X, Y)k. |

4,j=1

We will use this alternative description to prove that for all g € On(K)
and all X € M,(K),

(8.7) 1Xgl = gX]| = |X].
To justify Equation 8.7, we use the fact that g ¢* = I
| X g|* = trace((Xg)(Xg)*) = trace(Xgg*X*) = trace(X X*) = | X|2.
For the other half:
|9X[* = |(9X)*|* = trace((¢X)* (9X)) = trace(X"g*gX)
= trace(X*X) = | X*|2 = | X |2
The proposition follows immediately, since [gXg¢g7}| = |gX]| = |X|.
O

Since g is only an R-subspace of M,(K) = K® (not necessarily
a K-subspace), we will consider only the real part of the K-inner
product (-,)k on g C M, (K). This is the same as regarding M, (K)
as R™*, R?" or R4 and restricting the R-inner product (-, )r to g.
For example, in u(2),

ai by + eid asi by + ool
—b1 + il dil "\ =by + coi dol R

= aiap + 2b1by + 2¢1¢0 + dids.

Assume that G is a subgroup of O, (K). Equation 8.6 provides
an important description of the R-inner product of vectors X,Y € g:

(8.8) (X,Y)r = Real(trace(X - Y™)).
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Proposition 8.12 can be restated as follows:

Corollary 8.13. If the fized basis B of g is orthonormal with respect
to (-, )r, then Ady € O(d) for all g € G. Thus, Ad: G — O(d) is a
homomorphism into the orthogonal group.

Proof. For all ¢ € G, Ad, : g — g preserves norms and therefore
also inner products. That is, (Ad(X),Ad(Y))r = (X,Y)g for all
X,Y € g. The result now follows from Exercise 3.14. a

An important consequence is that Lie brackets interact with the
R-inner product in the following way:

Proposition 8.14. If G is a subgroup of O, (K), then for all vectors
XY, Z ey,
([X’ Y]a Z)R = _<[Xa Z]’ Y)]R

Proof. Let a(t) be a path in G with a(0) = I and o/(0) = X. Since
(-,-)r is Ad-invariant:

0 = , (AdaY; Ada Z)g

il

d d
<3¥ ‘tzOAda(t)Y, Z>R + <Y, = ltZOAda(t)Z>R
<[X7 Y]7 Z)]R + (Ya [Xv Z])R .

The second equality uses the rule (4, B)' = (A’, B) + (A, B’), which
is a basic differentiation rule for the dot product found in any multi-
variable calculus textbook. O

fl

We end this section by looking more carefully at Equation 8.7,
which said that for all g € O,(K) and all X € M,(K),

|Xgl =lgX|=|X|.
We learned: back in Chapter 3 that left or right multiplication by
g determined an isometry of K* 2 R™, R?" or R**. Now we learn
that left or right multiplication by g also determines an isometry of
Mo (K) & R"* R or R4,
This observation is crucial in Riemannian geometry. Whenever

G C O,(K) ¢ M,(K) is a subgroup, and g € G, then the function
from M,(K) to M,(K) sending z — gz (or z — zg) is an isometry
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which restricts to a function G — G. This restriction is called an
isometry G, because the distance between a pair of points of G is the
same as the distance between their images. This remains true when
the “distance” between a pair of points in G is re-defined to mean the
length of the shortest path in G between them. It is interesting that
subgroups of O, (K) have so many isometries; they are highly sym-
metric manifolds, more so than typical non-compact matrix groups.

5. Global conclusions

By definition, the Lie bracket provides information about the group
operation among elements near I. What about elements far from I?
In this section, we demonstrate some global conclusion about a group
which can be derived from information about its Lie algebra.

Let G be a matrix group with Lie algebra g. A subspace h C g is
called a sub-algebra if it is closed under the Lie bracket operation;
that is, [A, B] € b for all A, B € h. Further, b is called an ideal if
[A,B] € h for all A € h and B € g. Notice that the Lie algebra of

any subgroup of G is a subalgebra of g. We will prove:

Theorem 8.15. Let G be a path-connected matrix group, and let
H C G be a path-connected subgroup. Denote their Lie algebras as
b C g. Then H is a normal subgroup of G if and only if b is an ideal

of g.

Proof. First assume that H is a normal subgroup of G. Let A € §
and B € g. Let a(t) be a path in H with a(0) = I and o'(0) = A.
Let b(t) be a path in G with 6(0) = I and b'(0) = B.

d
[4,B] = —[B, 4] = —=| _ AdyyA

_ _% . (dils b(t)a(s)b(t)_l) .

Since H is normal in G, b(t)a(s)b(t)~! € H, which implies [A, B] € §.

Next assume that § is an ideal of g. For every B € g and every
Aeb,

s=0

Ad.,sA € b,
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because it is the limit of a series of elements of § by Theorem 8.10:

Ad,s A = 342 (4)
= A+[B, Al + (1/2)[B, B, Al + (1/6)[B, [B, [B, Al]] + - - - .

Now let @ € H and b € G. Assume that a and b lie in a small
neighborhood, U, of I in G, so that a = e for some A € h and b= B
for some B € g. Then

bab! = beb™! = P4 = AL ¢ g,

We leave the reader (in Exercise 8.3) to show that bab~! € H for all
a € H and b € G (not necessarily close to I). O

The previous proof demonstrates that it is possible to derive a
global conclusion about a matrix group (H is normal in G) from a
hypothesis about its Lie algebras (f is an ideal of g). The Lie algebra,
with its Lie bracket operation, seems to encode a lot of information
about the matrix group. It turns out that the Lie bracket operation
in g completely determines the group operation in G, at least in a
neighborhood of the identity! An explicit verification of this surpris-
ing claim is provided by the Campbell-Baker-Hausdorff series. For
X,Y, Z € g with sufficiently small norm, the equation eXe¥ = eZ has
a power series solution for Z in terms of repeated Lie brackets of X
and Y. The beginning of the series is:

Z=X+Y+(1/2)[X, Y]+ (1/12)[X, [X, Y]] + (1/12)[Y, [V, X]} + - --

The existence of such a series means that the group operation is com-
pletely determined by the Lie bracket operation; the product of eX
and e¥ can be expressed purely in term of repeated Lie brackets of
X andY.

One important consequence of the Campbell-Baker-Hausdorff se-
ries is the following correspondence between Lie algebras and matrix
groups.

Theorem 8.16 (The Lie Correspondence Theorem). There is a nat-
ural one-to-one correspondence between sub-algebras of gl,(R) and
path-connected subgroups of GL,(R).
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Under this correspondence, the path-connected subgroup H C
GL,(R) is mapped to its Lie algebra, g(H) C gl,(R). In the other
direction, a sub-algebra h C gl,(R) is mapped to the group I'(h)
generated by the set {exp(4) | A € h}, which means the group of all
finite products of elements from this set and their inverses.

Why is this a bijective correspondence? For any path-connected
subgroup H C GL,(R), the fact that I'(g(H)) = H follows from
Theorem 7.1 and Exercise 8.3, at least in the case when H is closed.
The case where H is not closed requires no new arguments.

For any sub-algebra h C gl,(R), the fact that g(I'(h)) = b is much
more difficult. See [11] for a complete proof.

We conclude this section with a caution: the Lie algebra, g, of a
matrix group, G, contains information only about the identity com-
ponent Gp of G (defined in Exercise 7.6). For example, G = SLy(Z)
(defined in Exercise 1.8) has identity component Gy = {I} and Lie al-
gebra g = {0}. This matrix group is comprised of discrete points; the
Lie algebra tells you nothing about the interesting group operation
on these discrete points.

6. The double cover Sp(1) — SO(3)
In this section, we study the adjoint action of Sp(1):
Ad: Sp(1) — O(3).

Since Sp(1) is path-connected (by Exercise 4.15), so is its image under
Ad (by Exercise 4.16), so we in fact have a smooth homomorphism:

Ad: Sp(1) — SO(3).

Our goal is to prove that Ad : Sp(1) — SO(3) is a surjective, 2-to-1
local diffeomorphism. The term “local diffeomorphism” means that
there exists a neighborhood of any point of the domain, restricted to
which the function is a diffeomorphism onto its image. A surjective 2-
to-1 local diffeomorphism between compact manifolds is often called a
double cover. This double cover provides an extremely useful tool for
better understanding both Sp(1) and SO(3). For g € Sp(1) (regarded
as a unit-length quaternion) and for v € sp(1) = span{i, j, k}, we have
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that

Adg(v) = gug™* € sp(1).
Notice that conjugation by g determines an isometry H — H, which
fixes span{1} and thus also fixes sp(1) = span{i, j, k}. So the adjoint
action of Sp(1) can be regarded as conjugation restricted to the purely
imaginary quaternions. ‘

Ad is a 2-to-1 map, because its kernel has two elements:

Lemma 8.17. Ker(Ad) = {1,-1}.

Proof. If g € Ker(Ad), then gvg~! = v for all v € sp(1). In other
words, g commutes with all purely imaginary quaternions, and hence
with all quaternions. So g € R by Exercise 1.18, which means that
g = =*1. d

Lemma 8.18. Ad is a local diffeomorphism at I. In other words,
Ad restricted to a sufficiently small neighborhood of I in Sp(1) is a
diffeomorphism onto its image.

Proof. By the Inverse Function Theorem 7.22, it will suffice to prove
that d(Ad)s : sp(1) — so(3) sends the natural basis {i, j, k} of sp(1)
to a basis of so(3).

The path v(t) = €i* = cos(t) + isin(t) in Sp(1) satisfies y(0) = I
and +'(0) = i. For all v € sp(1) = span{i, j, k},

d 4 Difv=i
el A _ = 3t —4t — . . . — . — .
T oo dy(e)(v) )0 € Ve iv—vi 2kifv=7]
=2jifv=k
This shows that
0 0 O
dAd)@)=[0 0 -2
0 2 0

Now repeat this argument with j and k to verify that
{d(Ad)r(i), d(Ad)r(j), d(Ad)1(k)}

is a basis of so(3). d
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It follows from Exercise 8.2 at the end of this chapter that Ad is
a local diffeomorphism at every g € Sp(1) (not just at the identity).

We prove next that every element of SO(3) is in the image of
Ad. This might be surprising, since elements in the image are all
Lie algebra isomorphisms of sp(1). But this restriction is redundant,
since matrices in SO(3) preserve the vector cross-product in R, which
is the same as the Lie bracket operation in sp(1), and are therefore
automatically Lie algebra isomorphisms.

Lemma 8.19. Ad: Sp(1) — SO(3) is surjective.

Proof. Since Sp(1) is compact (by Exercise 4.15), its image under Ad
is compact (by Proposition 4.25) and therefore closed. On the other
hand, this image is open by the local diffeomorphism property. Thus,
the image is a non-empty clopen subset of SO(3). Since SO(3) is
path-connected (by Exercise 4.14), its only non-empty clopen subset
is all of SO(3) (see Proposition 4.18). O

This double cover Sp(1) — SO(3) has many implications. It
explains why Sp(1) and SO(3) have isomorphic Lie algebras. Its
algebraic import can be summarized as follows:

SO(3) is isomorphic to Sp(1)/{I, I},

which makes sense because {I, —I} is a normal subgroup of Sp(1).

Its geometric import has to do with the shape of SO(3). We will
show that SO(3) is diffeomorphic to an important manifold called
RP°.

Definition 8.20. The set of all lines through the origin in R*1 is
called n-dimensional real projective space and is denoted as RP".

Since every line through the origin in R™*! intersects the sphere
S™ in a pair of antipodal points, one often identifies RP™ with the set
of antipodal pairs on S™. The identification SO(3) = Sp(1)/{I, I}
associates each point of SO(3) with a pair of antipodal points on the
sphere 5% = Sp(1), and therefore provides a bijection between SO(3)
and RP3. This natural bijection helps us understand the shape of
SO(3).
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It may seem inappropriate that we referred to RP™ as a manifold,
since it is not a subset of any Euclidean space. There is a more general
definition of “manifold” under which RP™ can be proven to be one.
For our purposes, it suffices to regard RIP® as a manifold by identifying
it with SO(3), which we know is a manifold.

We learned in Exercise 7.13 that SO(3) is diffeomorphic to 7% $2,
which is another way to visualize the shape of SO(3). In topology, one
uses an invariant called “fundamental groups” to prove the following:

Proposition 8.21. No pair of the following three 3-dimensional man-
ifolds is homeomorphic:

(1) T'S? = SO(3) = RP?,
(2) 5% =Sp(1) = SU(2),
(3) §% x S*.

In particular, SO(3) is not homeomorphic to 52 x S*, which im-
plies a negative answer to Question 1.2 from Chapter 1. Airline engi-
neers have an intuitive appreciation for the fact that 7152 is different
from 52 x S!. Because of this difference, it is impossible to construct
a continuously changing basis for all of the tangent spaces of S2?. For
example, the “east and north” basis does not extend continuously
over the north and south poles of a globe. This phenomenon under-
lies the subtlety of describing travel on the surface of the Earth. It
also underlies the complexity of the shape of SO(3).

The double cover Ad : Sp(1) — SO(3) can be used to construct
important finite groups. If H C SO(3) is a finite subgroup (these are
classified in Section 3.7), then

Ad'(H) :={q € Sp(1) | Ad, € H}

is a finite subgroup of Sp(1) with twice the order of H. For example
let H C SO(3) denote the direct symmetry group of the icosahedron,
which is isomorphic to As (see Section 3.7). Let H* := Ad™!(H) C
Sp(1). H has order 60 and is called the icosahedral group. H* has
order 120 and is called the binary icosahedral group. The set of cosets
Sp(1)/H* is a three-dimensional manifold called the Poincaré do-
decahedral space. This manifold is very recently of great interest to



130 8. The Lie bracket

cosmologists because it has been proposed as a good candidate for
the shape of the universe [14].

7. Other double covers

It turns out that for every n > 2, there is a matrix group which
double-covers SO(n). The first few are:

Sp(1) — SO(3)
Sp(1) x Sp(1) — SO(4)
Sp(2) — SO(5)
SU(4) — SO(6)
In general, the double cover of SO(n) is denoted Spin(n) and is called
the spin group , not to be confused with the symplectic group, Sp(n).
For 3 < n < 6, Spin(n) is as above. For n > 6, Spin(n) is not isomor-
phic to any thus far familiar matrix groups. See [3] for a construction
of the spin groups.

Since these double covers are group homomorphisms, the Lie al-
gebra of Spin(n) is isomorphic to the Lie algebra of SO(n). Thus,

sp(1) = s0(3)

sp(1) x sp(1) = so(4)
sp(2) = s0(5)
su{4) = so( )

We will describe only the second double cover above, denoted
F: Sp(1) x Sp(1) — SO(4).

Remember that Sp(1) x Sp(1) is a matrix group by Exercise 1.10.
The double cover is defined such that for (g1, g2) € Sp(1) x Sp(1) and
veR* @ H,
F(g1,92)(v) = g1v7;.

By arguments completely analogous to the previous section, the image
of F' is SO(4), and F is a smooth 2-to-1 homomorphism and a local
diffeomorphism at every point. The kernel of F' is {(I,I),(—1I,—-I)},
which means that:

- 50(4) = (Sp(1) x Sp()/{(L, I}, (=1, -I)}
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The derivative dF(;, 1) : sp(1) x sp(1) — so(4) is the following Lie
algebra isomorphism:

0 —a—z —-b—y —c—z

. . .. a+zx 0 —c+2z b-—

dF 1, (ai+bj+ck, zit-yj+zk) = bty c—z 0 —a+yac
c+z —-b+y a-—=z 0

This is straightforward to verify on basis elements. For example,

iifo=1
d N d a . )-lifv=i
@l P D) = 5| _etv=iv= kifv=j
—-jifv=k
which shows that
0 -1 0 O
. 1 0 0 O
dF,n(i,0) = 0 0 0 —1
0O 0 1 O

The vectors (j, 0), (k, 0),(0,1), (0,j) and (0,k) are handled similarly.

The fact that so(4) is isomorphic to sp(1) x sp(1) has many im-
portant consequences. It is the essential starting point on which the
inter-related theories of 4-dimensional manifolds, Yang-Mills connec-
tions, and particle physics are built.

8. Exercises

Ex. 8.1. Question 1.1 in Chapter 1 asked whether SO(3) is an
abelian group. Prove that it is not in two ways: first by finding two
elements of so(3) which do not commute, and second by finding two
elements of SO(3) which do not commute. Which is easier? Prove
that SO(n) is not abelian for any n > 2.

Ex. 8.2. Let G1, G5 be matrix groups with Lie algebras g1, g2. Sup-
pose that f : G4 — G2 is a smooth homomorphism. If df; : g1 — go is
bijective, prove that dfy : T¢G1 — Ty(4)G2 is bijective for all g € G.
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Ex. 8.3.

(1) Let G be a path-connected matrix group, and let U be a
neighborhood of I in G. Prove that U generates G, which
means that every element of G is equal to a finite product
9192 - - - 9k, where for each i, g; or gi"1 lies in U.

(2) In the proof of Theorem 8.15, remove the restriction that a
and b are close to the identity.

Ex. 8.4. Define d : Sp(1) — Sp(1) x Sp(1) as a — (a, a). Explicitly
describe the function ¢ : SO(3) — SO(4) for which the following
diagram commutes:

Sp(1) —2— Sp(1) x Sp(1)

Adl lF
S0(3) —— SO(4)
Ex. 8.5. Express so(4) as the direct sum of two 3-dimensional sub-

spaces, each of which is an ideal of so(4). Show there is a unique way
to do so. '

Ex. 8.6. Prove that Sp(1) x SO(3) is not smoothly isomorphic to
SO(4). Hint: A smooth isomorphism would be determined by its
derivative at (I,1), which would send ideals to ideals.

Ex. 8.7. Construct an explicit diffeomorphism between SO(4) and
Sp(1) x SO(3).

Ex. 8.8. Does there exist a basis for «(2) such that the function
Ad : U(2) — O(4) is the familiar injective map, denoted as pz in
Chapter 27

Ex. 8.9. Let G be a path-connected matrix group, and let H CG
be a path-connected subgroup. Denote their Lie algebras as h C g.
H is called central if gh = hg for all ¢ € G and h € H. Prove that H
is central if and only if [X,Y] =0forall X e gand Y € h.

Ex. 8.10. Do SO(3) and Isom(R?) have isomorphic Lie algebras?

Ex. 8.11. For a matrix group G of dimension d, prove that the
function Ad : G — GLg4(R) is smooth.
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Ex. 8.12. Let G be a matrix group with Lie algebra g and A;, 4z € g.

1)

(2)

Prove that the path
,Y(t) —_ etAletAge—tA]_e—tAz

satisfies v(0) = I, 7/(t) = 0 and v”(0) = 2[A1, A2]. This is
another precise sense in which [A;, A;] measures the failure

" of et4r and e*42 to commute for small ¢.

Explicitly verify this when {A;, A2} is a natural basis for
the Lie algebra of Aff;(R). Explain visually in terms of
translations and scalings of R.

Use a computer algebra system to explicitly verify this when
G = SO(3), and A;, A are the first two elements of the
basis of s0(3) in Equation 8.2. In this example, is y(t) a one-
parameter group? Explain this result in terms of rotations
of a globe.

Ex. 8.13. Let G be a closed subgroup of O(n), U(n) or Sp(n). Let
g be the Lie algebra of G. Let h C g be a subalgebra, and denote

(1)
(2)

ht:={Ae€g]|(X,A) =0 for all X €h}.
If X € h and A € b, prove that [X, 4] € h=.

If b is an ideal, prove that b is also an ideal.

Ex. 8.14. In contrast to the fact that TS # S2? x S, prove that
T183 is diffeomorphic to S3 x S2, and more generally that TG is
diffeomorphic to G x S¢~! for any matrix group G of dimension d.






Chapter 9

Maximal tori

In Chapter 1, we regarded SO(3) as the group of positions of a globe.
We asked whether every element of SO(3) can be achieved, starting
at the identity position, by rotating through some angle about some
single axis. In other words, is every element of SO(3) just a rotation?
In this chapter, we provide an affirmative answer. Much more gener-
ally, we characterize elements of SO(n), SU(n), U(n) and Sp(n). An
elements of any of these groups is just a simultaneous rotation in a
collection of orthogonal planes.

To explain and prove this characterization, we must understand
mazimal tori, a fundamental tool for studying compact matrix groups.
We use maximal tori in this chapter to prove several important the-
orems about familiar compact matrix groups, including:

Theorem 9.1. Let G € {SO(n),U(n),SU(n), Sp(n)}.
(1) Every element of G equals eX for some X in the Lie algebra
’ of G.
(2) G 1is path-connected.

Notice that part (2) follows from part (1), since every element of
G is connected to the identity by a one-parameter group. It turns out
that part (1) is true when G is any compact path-connected matrix
group, but is false for several path-connected non-compact matrix
groups, like SLy(R) and SL2(C).

135
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To understand the group operation in a matrix group, G, you
must understand which elements commute with which elements. If
G is compact and path-connected, maximal tori provide a clean way
to explicitly describe, for each z € G, the set of elements of G which
commute with z. They also help us determine the center, Z(G),
defined as:

Z(G):={9g€G|ga=ag forall a € G}.

For example, we will prove that SO(3) and SU(2) are not isomorphic
by showing that their centers are not isomorphic. The size of Z(G)
measures how much commuting there is in G. We will see that the
size (dimension) of a maximal torus of G also measures the amount
of commuting in G.

1. Several characterizations of a torus

In this section, we define a torus and prove that tori are the only
path-connected compact abelian matrix groups.

Remember that U(1) = {(e®) | € [0,27)} is the circle-group
whose group operation is addition of angles. U(1) is abelian, path-
connected, and isomorphic to SO(2).

Definition 9.2. The n-dimensional torus T™ is the group

T :=U(1) x U(1) x --- x U(1) (n copies).

In general, the product of two or more matrix groups is isomor-
phic to a matrix group by Exercise 1.10. In this case,

T™ = {diag(e'1, ..., ') | 6; € [0,27)} € GL,(C).

There is a useful alternative description of T". Remember (R", +)
denotes the group of vectors in Euclidean space under the operation
of vector addition. (R™,+) is isomorphic to a matrix group, namely
Trans(R™), as explained in Section 6 of Chapter 3.

In group theory, if a4, ..., ax are elements of a group, G, one often
denotes the subgroup of G which they generate as (aj,...,ax) C G.
This means the group of all finite products of the a’s and their in-
verses. For example, if {vy,...,vx} C (R™, +), then

(v1, .y vE) = {m1v1 + - - + g | 0y € Z},
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where Z = {...,—2,-1,0,1,2, ...} denotes the integers. Since (R", +)
is an abelian group, any subgroup N C (R™,+) is normal, so the
coset space (R™, +)/N is a group.

Proposition 9.3. If {vi,...,un} C R"™ is a basis, then the quotient
group (R™, +)/(vy, ..., un) s isomorphic to T™.

Proof. We first prove the proposition for the standard basis of R™,
{e1 = (1,0,...,0),e2 = (0,1,0,...,0),...,en = (0,...,0,1) }.
The homomorphism f : (R, +) — T™ defined as
ft1, . tn) = diag(e®™ ..., e2mitn)
is surjective. The kernel of f equals (ei,...,en). Therefore, T™ is
isomorphic to (R™, +)/(e1, ..., €n).

Next let {vi,...,v,} be any basis of R®. Let A € GL,(R) have
rows equal to vy, ..., Vs, 5o that Ra(e;) = v; for all 4 = 1,...,n. The
function R4 : (R™, +) — (R™, +) is an isomorphism, which sends the
subgroup generated by the e’s to the subgroup generated by the v’s.
It follows that

(R™, +)/ (V1 ., Un) 2 (R™, +)/(e1,.ren) = T™
O

Corollary 9.4. If {v,...,9%} C R"™ is a linearly independent set,
then (R™,+)/(vy, ..., vk) is isomorphic to T* x (R*~%, 4).

Proof. Choosing vectors vg+1,...,Un 80 that the v’s form a basis of
R'ﬂ
(R™, +)/(v1, ..., Vk)
= ((Span{vh sy ’Uk;}, +)/<vl) “eey Uk)) X (Spa‘n{vk+11 sy 'Un}’ +)
> Tk x (R™%, 4).
O
The term “torus” is justified by an important way to visualize
T2. Figure 1 shows the subgroup (vy,v3) C R? generated by a basis

{v1,v2} of R2. The coset of R?/(v;,v2) containing a typical vector
w € R? is pictured as a collection of grey circles. For most choices
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Next we claim that exp : g — G is surjective. The image,
exp(g) C G, contains a neighborhood, V| of the identity in G. Since
exp(g) is a subgroup of G, it contains the set (V) consisting of all
products of finitely many elements of V' and their inverses. We prove
now that (V) = G (which amounts to proving part (1) of Exercise 8.3).
Since G is path-connected, it will suffice by Proposition 4.18 to prove
that (V) is clopen in G. First, (V) is open in G because for any
g € (V), theset g-V := {ga | a € V} is a neighborhood of g in G
which is contained in (V). Second, to prove that (V) is closed in G,
let ¢ € G be a limit point of (V). The neighborhood g- V of g in
G must contain some b € (V); that is, ga = b for some a,b € (V).
So g = ba~! is a product of two elements of (V), which shows that
ge (V).

In summary, exp : g — G is a surjective homomorphism whose
kernel equals (vy, ..., vk): So,

G = g/(vi,...,v) = TF x (RT*,4),
where d = dim(g). Since G is compact, we must have d = k. a

The above proof actually verifies the following more general the-
orem:

Theorem 9.6. Any abelian path-connected matriz group is isomor-
phic to T* x (R™,+) for some integers k,m > 0.

2. The standard maximal torus and center of
SO(n), SU(n), U(n) and Sp(n)

Definition 9.7. Let G be a matriz group. A torus in G means a
subgroup of G which is isomorphic to a torus. A mazimal torus in G
means a torus in G which is not contained in a higher dimensional
torus in G.

Every matrix group G contains at least one maximal torus, which
is justified as follows. The subgroup {I} C G is a 0-dimensional
torus in G. If it is not contained in a 1-dimensional torus, then it
is maximal. Otherwise, choose a 1-dimensional torus 7! in G. If
T! is not contained in a 2-dimensional torus, then it is maximal.
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Otherwise, choose a 2-dimensional torus 7' in G containing 7", etc.
This process must stop, since G clearly can not contain a torys with
dimension higher than its own.

Maximal tori are really useful only for studying path-connected
compact matrix groups. So, in this section, we will determine maxi-
mal tori of our familiar compact matrix groups: SO(n), U(n), SU(n)
and Sp(n).

We will use “diag” as a shorthand for block-diagonal mat rices as
well as diagonal matrices. For example,

120 0 0 o0
340 0 0 0

5 6 7
. 1 2 oo s 6 7 o
diag (3 4)’ 181 192 ig 1= 100 8 9 10 o
00 11 12 13 0
00 0 0 0 14

Notice that the product of similarly shaped block-diagonal matrices
is calculated blockwise. For example, when A4, By € M, (K) and
when Az, By € M,,,(K), we have:

diag(Al, Az) . diag(Bl, B2) = d1ag(A1 . Bl, A2 ‘ B2) S Mn1+7~¢2 (K)
Therefore, if Gi C GLy,(K) and G2 C GLp,(K) are both matrix
groups, then their product Gi x G2 is isomorphic to the following
matrix group:

Gy x Gy = {diag(A1,A2) | A € Gy, A € Gz} - GLn1+n2(K).

Also notice that the determinant of a block-diagonal matrix is the
product of the determinants of its blocks.

We also introduce notation for the familiar 2-by-2 rotation ma-

Re = ( cosf s1n0> .

trix:

—sinf cosé
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Theorem 9.8. Fach of the following is a maximal torus.

T = {diag(Re,,-.,Re,,) | 0; €0,2m)} € SO(2m).
{diag(Re,,...,Re..,1) | 0; € [0,2m)} C SO(2m + 1).
{diag(e'®, ..., ") | ; € [0,2m)} C U(n)

= {diag(e', ...,e"") | 6; € [0,2m)} C Sp(n).

= {diag(el®, ..., e'%1, 7O+ +0n-1)) | 9. € [0,2m)} € SU(n).

e B B B

In each case, the given torus T is called the standard maximal
torus of the matrix group. It is not the only maximal torus, as we
will see, but it is the simplest to describe. Notice that the standard
maximal torus of SU (n) is the intersection with SU(n) of the standard
maximal torus of U(n).

Proof. In each case, it is easy to see that T is.a torus. The challenge
is to prove that T is not contained in a higher-dimensional torus of the
group G. In each case, we will justify this by proving that any element
g € G which commutes with all elements of 7" must lie in T. Since
any element of an alleged higher-dimensional torus would commute
with all elements of T, this shows that no such h1gher—d1men51onal
torus could exist.

CASE 1: SO(n). For clarity, we will prove that
T= {diag('Rgl ,'R,gz, 1) I 91, #: € [0, 27T)}

is a maximal torus of SO(5). Our arguments will generalize in an
obvious way to SO(n) for all even or odd n.

Suppose that g € SO(5) commutes with every element of 7. Let
@ be an angle which is not an integer multiple of 7. We will use that
g commutes with A := diag(Rg,Rs,1) € T. Notice that multiples
of es = (0,0,0,0,1) are the only vectors in R® that are fixed by Ra.
Since esgA = es Ag = esg, we learn that R4 fixes esg, which means
esg = Fes. That is, the 5% row of g looks like (0,0,0,0,+1).

Next, use that g commutes with A := diag(Rp,1,1,1) € T. The
only vectors in R® fixed by Ra are in span{es,es,es}. For each of
1 € {3,4}, we have that e;gA = e;Ag = eig, so Ra fixes e;g, which
means that e;g € span{es, es,e5}. In fact, e;g € span{es,eq}, since
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otherwise (e;g, e59) # 0. So the 37¢ and 4** row of g each has the form
(0,0,a,b,0). Repeating this argument with A := diag(1,1,Rs,1)
gives that the first and second row of g each has the form (a,b,0,0,0).

In summary, g has the form g = diag(g;, g2, £1) for some elements
91,92 € M2(R). Since g € SO(5), we have g1, g2 € O(2). It remains
to prove that g;,g2 € SO(2), which forces the last argument to be
+1 rather than —1 because det(g) = 1. Suppose to the contrary that
91 € O(2) — SO(2). Then g does not commute with diag(Re,1,1,1).
This is because g1 does not commute with Ry by Exercise 3.6, which
states that flips of R? never commute with rotations of R?. Therefore
g1 € SO(2), and similarly go € SO(2). Therefore, g € T

CASE 2: U(n). We will prove that
T := {diag(e'®*, ...,e!%) [ 6; € [0,27)}

is a maximal torus of U(n). Suppose that g € U(n) commutes with
every element of 7. Let 6 be an angle which is not an integer multiple
of 7. We use that g commutes with A := diag(e'?, e, ...,e1? 1) € T.
Notice that complex multiples of e, = (0, ...,0, 1) are the only vectors
in C™ fixed by R4. Since e,gA = e, Ag = e,g, we learn that R4 fixes
eng, which means e,g = Ae,, for some A € C. That is, the n** row of
g looks like (0, ...,0, ). Repeating this argument with the “17 entry
of A moved to other positions gives that g is diagonal. It follows that
geT.

CASE 3: Sp(n). Suppose g € Sp(n) commutes with every ele-
ment of T := {diag(e!:, ..., i) | ; € [0,27)}. The argument in case
2 gives that g is diagonal; that is, g = diag(qi, ..., ¢») for some ¢; € H.
Since g commutes with diag(i, 1,...,1) € T, we know that ¢;i = ig.
By Exercise 1.15, this implies that ¢; € C. Similarly, ¢; € C for
i=1,...,n. It follows that g € T'.

CASE 4: SU(n). For clarity, we will prove that
T = (ding(c™, %, e C49) | 0, 6, € [0, 2)}

is a maximal torus of SU(3). Suppose that g € SU(3) commutes with
every element of T. Since g commutes with A = diag(1,e'?,e™%%) € T,
the first row of g must be a multiple of e;. Permuting the three
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diagonal entries of A gives that the second row of g is a multiple of
ez and the third of e3. So g is diagonal, which implies that g € T'.

This argument generalizes to SU(n) for all n > 3. It remains to
prove that 7 := {diag(e*,e=%) | § € [0,27)} is a maximal torus of
SU(2). The isomorphism from Sp(1) to SU(2) (Section 4 of Chap-
ter 3) sends the standard maximal torus of Sp(1) to T, so this follows
from case 3. O

In each case of the previous proof, we verified the maximality of
the standard torus by proving something slightly stronger:

Proposition 9.9. Let G € {SO(n),U(n), SU(n), Sp(n)}, and let T
be the standard mazimal torus of G. Then any element of G which
commutes with every element of T must lie in T. In particular, T is
mazimal abelian, which means that T is not contained in any larger
abelian subgroup of G.

As an application, we will calculate the centers of SO(n), U(n),
Sp(n) and SU(n). Remember that the center of a group G is defined
as

Z(G):={g€eG|ga=agforallacG}.
Theorem 9.10.
(1) Z(SO(2m)) = {I,—1I} (the group of order 2).

(2) Z(SO(2m + 1)) = {I} (the trivial group).

(3) Z(U(n)) = {e® - |6 €[0,2n)} (isomorphic to U(1)).

(4) Z(Sp(n ))— {L,-1}.

(8) Z(SU(n)) = {w-I|w" =1} (the cyclic group of order n).

Notice that Z(SU(n)) = Z(U(n)) N SU(n).

Proof. By Proposition 9.9, the center of each of these groups is a
subset of its standard maximal torus. From this starting point, the
arguments are straightforward, so we will leave to the reader all but
the case G = U(n).

Suppose that g € Z(U(n)). Since g lies in the standard maximal
torus, it must be diagonal: g = diag(A1, ..., An). We will use that g
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10

. 0 A\ .
diag ((/\2 O) , Az, ...,/\n) =gA
= Ag = diag ((/\01 /\02> A3, ...,/\n> ,

which implies that A; = Az. By a similar argument, any other pair
of X’s must be equal. So g has the form diag(},...,A) = A\- I for some
A € C with unit norm. ' ]

commutes with A := diag ((O 1) 1, 1) e U(n):

Corollary 9.11.
(1) SU(2) is not isomorphic to SO(3).
(2) SU(n) x U(1) is not isomorphic to U(n).

Proof. Their centers are not isomorphic. O

Remember that SU(2) and SO(3) have isomorphic Lie algebras.
There exists 2-to-1 homomorphism from SU(2) to SO(3) which is
a local diffeomorphism. Corollary 9.11 (or the fact that they are
not homeomorphic by Proposition 8.21) says that “2-to-1” cannot be
improved to “1-to-1”.

The pair SU(n) x U(1) and U(n) are diffeomorphic, but the nat-
ural diffeomorphism between them does not preserve the group struc-
ture. They have isomorphic Lie algebras because there is an n-to-1
homomorphism from SU(n) x U(1) to U(n) which is a local diffeo-
morphism. These statements are all justified in Exercise 4.21. The
corollary implies that “n-to-1” cannot be improved to “1-to-1".

3. Conjugates of a maximal torus

The standard maximal tori are not the only maximal tori of SO(n),
U(n), Sp(n) and SU(n). Other ones are obtained by conjugating the
standard ones.

Proposition 9.12. If T is a mazrimal torus of a matriz group G,
then for any g € G, gTg™! := {gag™ | a € T} is also a mazimal
torus of G.
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Proof. The conjugation map Cy : G — G, which sends a — gag™',

is an isomorphism. So the image of T under Cgy, namely gTg™, is
isomorphic to T and is therefore a torus. If T C G were a higher
dimensional torus containing gTg~*, then C 1(T) would be a higher
dimensional torus containing 7". This is not possible, so gT'g~* must
be maximal. a

Since the standard maximal torus is not a normal subgroup, it
differs from some of its conjugates. The main result of this section is
that there are enough different conjugates to cover the whole group.

Theorem 9.13. Let G € {SO(n),U(n),SU(n), Sp(n)}, and let T
be the standard mazimal torus of G. Then every element of G is
contained in gTg~1 for some g € G.

A more general fact is true, which we will not prove: the con-
jugates of any maximal torus of any path-connected compact matrix
group cover the group.

Theorem 9.13 says that:
(9.1)  For each = € G, there exists g € G such that z € gTg~".
This is equivalent to:
(9.2)  For each z € G, there exists g € G such that grg™' € T.

In other words, every £ € G can be conjugated into the diagonal
or block-diagonal form that characterizes elements of the standard
maximal torus.

In Equation 9.2, think of ¢ as a change of basis matrix, as ex-
plained in Section 7 of Chapter 1. The linear transformation R, is
represented with respect to the orthonormal basis {eig,...,eng} by
the matrix gzg~! € T.

The example G = SO(3) helps clarify this idea. Let z € SO(3).
The theorem insures that there exists g € SO(3) such that

cosf sinf O
grg ! = | —sinf cosd 0
0 0 1
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for some 6 € [0,27). This is the matrix representing R, in the basis
{e19, e29, €39}, which means that R, is a rotation through angle 6
about the line spanned by ezg. To verify this explicitly, notice:

(9.3) e3(grg™?!) = e3 = (e39)T = eag,

e1(gz9™") = (cosf)e; + (sinf)ex = (e19)x = (cosf)erg + (sinh)ezg,
e2(gzg™t) = (cos@)ey — (sinf)e; = (eag)x = (cosB)ezg — (sinf)e, g.
We conclude that every element of SO(3) represents a rotation!

Analogous interpretations hold for SO(n). Take SO(5) for ex-
ample. An element, y, of the standard maximal torus of SO(5) is
particularly simple: Ry represents a rotation by some angle 8, in the
plane span{ej, ez} and a simultaneous rotation by a second angle 6,
in the plane span{es, e4}. The theorem says that every « € SO(5) is
equally simple. There exist g € SO(5) such that R, represents a si-
multaneous rotation in the planes span{e; g, e2g} and span{esg, esg}.
Notice that these two planes are orthogonal because g € SO(5). Sim-~
ilarly, every element of SO(n) represents a simultaneous rotation in
a collection of orthogonal planes.

Before proving Theorem 9.13, we review some linear algebra ter-
minology. Let K € {R,C}, and let f: K® — K™ be a linear transfor-
mation. Recall that A € K is called an eigenvalue of f if f(v) =X v
for some non-zero v € K™. Notice that for any A € K,

VA :={veK"| flv)y=\ v}

is a subspace of K" (this is false for K = H). Notice that A is an
cigenvalue of f exactly when V() has dimension > 1. The non-zero
vectors in V(A) are called eigenvectors associated to A. For a matrix

A € M,(K), a basic fact from linear algebrais: A € K is an eigenvalue
of R4 if and only if det(A—A-1)=0.

Lemma 9.14. Any linear transformation f : C* — C™ has an eigen-
nalue.

Proof. f = R4 for some A € M,(C). The fundamental theorem of
algebra says that every polynomial of degree > 1 with coefficients in
{C has a root in C. In particular,

g(A) :=det(A—X-1)
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equals zero for some A € C, which is an eigenvalue of f. O

Proposition 9.15. For every A € U(n), Ra has an orthonormal
basis of eigenvectors.

Proof. Let A € U(n). By Lemma 9.14, there exists an eigenvalue \;
of R4. Let v € C™ be an associated eigenvector, which can be chosen
to have norm 1, since any multiple of an eigenvector is an eigenvector.
Notice that \; # 0, since R4 is invertible.

To find a second eigenvector, we use that A is unitary. The key
observation is: if w € C™ is orthogonal to v; (in the hermitian inner
product), then R4(w) is also orthogonal to v;. To justify this, notice
that:

(9.4)  (wA,v) = (w,nA™!) = <UJ, %1’01> = (w,n)(1/X) = 0.

This means that R4 : C* — C™ restricts to a linear transformation,
Ra :span{un}t — span{'ul}J‘,
where
span{v; }* := {w € C" | w is orthogonal to v, },

which is an (n — 1) dimensional C-subspace of C*. By applying
Lemma 9.14 a second time, the restricted R 4 has a unit-length eigen-
vector ve € span{v;}*, and R4 restricts further to a linear transfor-
mation

R4 : span{vi, va}+ — span{v, v}t

Repeating this argument a total of n times proves the lemma. O

As a corollary of Proposition 9.15, we prove that Theorem 9.13
is true when G = U(n).

Corollary 9.16. For any A € U(n), there ezists g € U(n) such that
gAg~! is diagonal and hence lies in the standard mazimal torus of
U(n). '

Proof. Let {v,...,v,} be an orthonormal basis of eigenvectors of R4
with eigenvalues {1, ..., \,}. Let g denote the matrix whose i*" row
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equals v;, so that e;g = v;, for each ¢ = 1,...,n. Notice that g € U(n).
We claim that

: gAg~! = diag(\1, ..., An).
This is simply because gAg~! represents the linear transformation R4
in the basis {v1,...,vn}. To understand this more concretely, notice

that for eachi=1,...,n,

ei(gAg™") = v Ag™! = Nvig Tt = Mes.

Next we verify Theorem 9.13 when G = SU(n).

Corollary 9.17. For any A € SU(n), there exists g € SU(n) such
that gAg~" is diagonal and hence lies in the standard mazimal torus

of SU(n).

Proof. Let A € SU(n). By the previous corollary, there exists some
g € U(n) such that gAg~! is diagonal. Notice that for any 6 € [0, 27),

(e?9)A(e?g)™! = gAg™".
Further, 8 can easily be chosen such that e®g € SU(n). O

The U(n) case also helps us prove the Sp(n) case:

Corollary 9.18. For any A € Sp(n), there exists g € Sp(n) such
that gAg~?! is diagonal with all entries in C and hence lies in the
standard maximal torus of Sp(n).

Proof. Let A € Sp(n).. Recall from Chapter 2 that the injective ho-
momorphism ¥, : Sp(n) — U(2n) is defined such that the following
diagram commutes:

H? 9n Cc2n

RAl 1an(m

H» 9n C2n
Since every unitary matrix has a unit-length eigenvector, there exists
u1 "€ C?* such that Ry, (4)(u1) = My for some Ay € C with |\ = 1.
Let vy = g;(u1) € H*. We claim that Ra(v1) = Ajv;. This is
because:

gn(M1v1) = Aign(v1) = Mur = Ry, (4)(u1) = gn(Ra (1))
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Next notice that if w € H" is orthogonal to vy (with respect to
the symplectic inner product), then so is R4(w). The-verification is
identical to Equation 9.4. So R4 : H™ — H™ restricts to an H-linear
function from the following (n — 1)-dimensional H-subspace of H" to
itself: _

span{v;}t = {w € H" | w is orthogonal to v, }.

Therefore, Ry, (4) : C** — C?" restricts to a linear function from
gn(span{v; }*) to itself. Let ug € C>" be a unit-length eigenvector of
this restriction of Ry, (4, with eigenvalue Az, and let vy := g, ' (ua).
As before, R4(v2) = Aava. Repeating this argument a total of n times
produces an orthonormal basis {v1, ..., v, } of H” and unit-length com-
plex numbers {A1, ..., An} such that R4(v;) = \;v; for each 1.

Finally, if g € Sp(n) is the matrix whose rows are vy, ..., v, then
gAg~! = diag(\1, ..., An),

exactly as in the proof of Corollary 9.16. O

Finally, we prove Theorem 9.13 in the case G = SO(n).

Proposition 9.19. For any A € SO(n), there exists g € SO(n) such
that gAg=! lies in the standard mazimal torus of SO(n).

Proof. Let A € SO(n). We can regard A as an n by n complex
matrix whose entries happen to all be real numbers.. Regarded as
such, A € SU(n), so there exists v € C™ such that vA = Av for some
unit-length A € C. Let T € C™ denote the result of conjugating all of
the entries of v. Notice that:

(9.5) TA=TA =vA=v=)\7,

50 T is also an eigenvector of R4, with eigenvalue \.
CASE 1: Suppose A € R (so A = X\ = +1). In this case, Equa-
tion 9.5 says that ¥ is also an eigenvector associated to A\. The vector
v+ w
T v+l
has all real entries, so Z € R™. Further, ZA = AZ, since sums of
eigenvectors are eigenvectors.
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CASE 2: Suppose A ¢ R. Write A\ = ¢! for some angle #, which
is not an integer multiple of 7. Define:

X =v+7,
Y =i(v—1).

All entries of X and Y are real, so X,Y € R™. It is straightforward
to check that X and Y are orthogonal. Observe that:

(9.6) XA = (w40 A=¢% 4%
(cos@ +isinf)v + (cosf — isin0)T
= (cos@)(v+ ) + (sinf)(iv — iv)
(cos @)X + (sin#)Y.
Similarly, YA = (—sin8)X + (cosé)Y.
Using the fact that 6 is not a multiple of 7, Equation 9.6 implies that
X and Y have the same norm, which is non-zero since v # 0. So R4

rotates span{X,Y} C R" by an angle 6. If X and Y are re-scaled to
have unit-length, they still satisfy the punchline of Equation 9.6:

XA = (cos0)X + (sin @)Y,
YA=(—sinh)X + (cosh)Y.
In case 1, let © = span(Z) C R™. In case 2, let
Q =span(X,Y) C R™
In either case, Q is stable under R4 : R®™ — R", meaning that

Ra(w) € Q for all w € Q. By an argument analogous to Equation 9.4,
the subspace

Q1 = {w € R® | w is orthogonal to every element of Q}

is also stable under R4. So we can repeat the above argument on the
restriction of R4 to QL.

Repeating this argument enough times produces an orthonormal
basis of R” of the form { Xy, Y3,..., Xk, Y%, Z1, ..., Z1 }, with 2k+1 = n.
If g is the matrix whose rows equal these basis vectors, then

gAg~! = diag(Ra,, s Roys A1y s AL,

where each X is 1. By re-ordering the basis, we can assume that the
negative lambda’s come first. There are an even number of negative
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lambda’s because det(gAg~!) = det(A) = 1. Each pair of negative
lambda’s is a rotation block, since diag(—1,—1) = R. It follows that
gAg~? lies in the standard maximal torus T' of SO(n).

Since the basis is orthonormal, g € O(n). If g € SO(n), then we
are done, so assume that g € O(n) — SO(n). In this case, define:

o := diag ((‘1) 'l) 1. 1) € O(n) - SO(n).

Notice that ag € SO(n) and that aTa™! = T, so,
(ag)A(ag) ™" = a(gAg™")a™ €T,
which verifies that ag € SO(n) conjugates A into T'. O

This completes our proof of Theorem 9.13.

4. The Lie algebra of a maximal torus

In this section, let G € {SO(n),U(n),SU(n),Sp(n)} and let g be
the Lie algebra of G. Let T' = T(G) C G be the standard maximal
torus of G, and let 7 = 7(g) C g be the Lie algebra of T'. It is
straightforward to calculate:

r(s0(2m)) = {diag ((—?91 901) (_gm 96“)) 16; € ]R},
T(so(2m + 1)) = {diag ((—091 601) s eeny <—2m 96") ,O) | 6; € ]R}

(9.7)
7(u(n)) = {diag(ibs, ...,i0,) | 6; € R},
7(sp(n)) = {diag(ibs, -..,16,) | 6; € R},
7(su(n)) = {diag(if1, ..., 10pn—1, —i(61 + -+ - + 6,-1)) | 6; € R}.

Compare to Theorem 9.8, where we described T(G) using the same
parameters §; that are used above to describe 7(g). The descriptions
correspond via matrix exponentiation. The exponential image of ¢
vector in 7(g) equals the element of T(G) described by the samse
angles. In U(n) for example,

ed1ag(if1,...,16n) diag(eiol, ...,eie") € T(U(n)).
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Since T is abelian, its Lie algebra, 7, is abelian, which means that
the Lie bracket of any pair of mstrices in 7 equals zero.

Using the fact that all elements of G can be conjugated into T,
we will show that all elements of g can be conjugated into 7.

Proposition 9.20. For each X € g there exists g € G such that
Ady(X) e .

Proof. Choose r > 0 such that exp: g — G is a diffeomorphism on
the ball in g of radius r centered at the origin. It will suffice to prove
the proposition for X € g with {X| < r. By Theorem 9.13, there
exists g € G such that a := g(eX)g~! € T, so:

eAds(X) — g9X97" = g(eX)g ' =aeT.

Remember that [Adg(X)| = [X| <, so Adg(X) is the unique vector
with length < r that exponentiates to a € T. Equation 9.7 explicitly
describes this vector in terms of the angles 6; of a; in particular it lies
in 7. O

Proposition 9.20 is important in linear algebra. It says that any
skew-symmetric or skew-hermitian or skew-symplectic matrix can be
conjugated into the diagonal or block-diagonal form of Equation 9.7.
This adds to the list in Theorem 9.13 of matrix types which can be
conjugated into simple forms. In fact, Theorem 9.13 and Proposi-
tion 9.20 together give a beautifully uniform way of understanding
many conjugation theorems from linear algebra!

A key application of Theorem 9.13 is the following proposition,
which implies in particular that G is path-connected:

Proposition 9.21. The exponential map exp : g — G 1is surjective.

Proof. We have an explicit description of the restrictionexp :' 7 — T,
which is clearly surjective. For any g € G, gT g~ " is a maximal torus
with Lie algebra Ady(7). Also, the restriction exp : Ady(7) — gTg™*
is surjective, since ed¢(X) ='geXg~" for all X € 7. Theorem 9.13
says that these conjugates cover G. O
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5. The shape of SO(3)

We saw in Section 6 of Chapter 8 that SO(3) is diffeomorphic to
RP?. We will now give a different proof, which relies on explicitly
understanding the exponential map exp : s0(3) — SO(3).

Recall from Section 3 of Chapter 8 the following vector space
isomorphism f : R3 — s0(3):

0 —c b
(a,b,c)»L ¢c 0 -—-a].
-b a 0

Recall that under this identification, Adg : s0(3) — so(3) corresponds
to Ly : R?* — R3 for all g € SO(3). More precisely,

(9-8) Ady(f(a,b,¢)) = f(g - (a;b,)).

Proposition 9.22. For any A € 50(3), Lay : R> — R® s a
right-handed rotation through angle |A|/V2 about the axis spanned
by f1(A).

“Right-handed” means the rotation is in the direction that the
fingers of your right hand curl when your thumb is pointed towards

f7H(A).

Proof. Let A € so(3). By Proposition 9.20, there exists g € SO(3

such that
0 -6 0
A=gl|6® 0 0]g!
0 0 0
for some @ € R. Notice that |A| = v/26, so 6 = |A|/V/2. Next,

0 -6 0 cosf —sind 0
exp(A)=gexp [0 0 0]gl=g|sind cosd 0g L
0 0 O 0 0 1
It follows that L(.4) is a right-handed rotation through angle 8 abou

the line spanned by ¢ - (0,0,1). The verification is similar to Equs
tion 9.3.
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Finally, notice that by Equation 9.8, the rotation axis is:

0 -1 0 1
g-0,0)=f" A4y (1 0 0]]=zrT(A).
0 0 O

O

Corollary 9.23. Let B = {A € 50(3) | |A| < mv/2}. The restriction
exp : B — SO(3) is surjective. It is not injective, but for Ay, As € B,
exp(A1) = exp(Az) if and only if A1 = —Az and |A4;| = |4z| = 7v/2.

Proof. The image exp(B) contains matrices representing all right-
handed rotations about all vectors in R? through all angles 6 € [0, 7).
Notice that the right-handed rotation through angle § about 4 € R3
equals the right-handed rotation through angle —8 about —A. This
is why exp(A) = exp(—A) when |A4| = 7v/2. O

Points of SO(3) are in one-to-one correspondence with points of
B/ ~, where ~ is the equivalence relationship on B that identified
each point on the boundary of B with its antipode (its negative).

What does this have to do with RP3*? Well, B is homeomorphic
to the “upper-hemisphere” V of S3:

V = {(z0, 21,22, 23) € S> C R* | 2o > 0},

by an argument analogous to the proof of Proposition 7.15. A typical
line through the origin in R* intersects V in exactly one point. The
only exceptions are the lines in the subspace {zo = 0}; these intersect
V in a pair of antipodal points on its boundary. So RP® can be mod-
elled as the upper hemisphere V' modulo identification of antipodal
boundary pairs. This is another way of understanding why SO(3) is
diffeomorphic to RP®.

6. The rank of a compact matrix group

Let G € {SO(n),U(n), SU(n), Sp(n)}. Let T be the standard maxi-
mal torus of G. In this section we prove the following:

Theorem 9.24. Every mazimal torus of G equals gT'g~' for some
geq. :
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Our proof actually holds when 7' is any maximal torus of any
path-connected compact matrix group, granting the previously men-
tioned fact that the conjugates of T' cover G in this generality.

In particular, any two maximal tori of G have the same dimension,
so the following is well-defined:

Definition 9.25. The rank of G is the dimension of a maximal torus.

The ranks of our familiar compact groups are:

rank(SO(2n)) = rank(SO(2n + 1)) = rank(U(n))
= rank(Sp(n)) = rank(SU(n + 1)) = n.

Isomorphic groups clearly have the same rank, so rank is a useful
invariant for proving that two groups are not isomorphic. The proof
of Theorem 9.24 relies on a useful fact about tori:

Lemma 9.26. For any n, there exists a € T™ such that the set
{a,a? a3 a?, ...} is dense in T".

Proof of the n =1 case. Let 8 be an irrational angle, which means
an irrational multiple of 7. Let a := (¢®) € T? = U(1). To verify that
this choice works, notice that {a = (e%),a? = (e?9),a® = (*1%), ...} is
an infinite sequence of points which are all distinct because 0 is irra-
tional. Since U(1) is compact, some subsequence converges (Propo-
sition 4.24). This convergent subsequence must be Cauchy, which
means that for any € > 0, we can find integers n; < mg such that
dist(a™, a™) < e. Next, notice that for any integer m,

dist(a™*("2~m1) g™) = dist(a™a™a "™, a™)
= dist(a™a™™, ) = dist(a"?,a™) < €.

So the sequence {a("2~™) 2(n2=m) g3(nz=m1) | 1 takes baby steps of
uniform size < € and thus comes within a distance e of every element
of U(1) as it marches around the circle. Since € > 0 was arbitrary,
the lemma follows. O

For n > 1, we must choose a := (¢!%, ..., ¢!~) € T™ such that the
@’s are rationally independent, which means there are no equalities
of the form 2712:1 s = m, where s; are rational numbers. The
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proof that this works is found in [2, page 66]. An alternative purely
topological proof of Lemma 9.26 is found in [1].

Proof of Theorem 9.24. Let 7/ C G be a maximal torus. Choose
a € T' such that {a, a?,a?, ...} is dense in T". Choose g € G such that
gag™' € T. Since T is a subgroup, (gag™)™ = ga™g~! € T for every
integer n, so a dense subset of gT’g™! lies in T. Since T is closed,
gT’'g™1 C T. Since gT"'g! is a mazimal torus, gT'g~ ' =T. O

7. Who commutes with whom?

Let G € {SO(n),U(n), SU(n), Sp(n)}. In order to better understand
the group structure of G, we wish for each € G to describe the set
of elements of G that commute with . We first solve this problem
when z € T = the standard maximal torus of G. For a “regular”
z € T, we will show that £ commutes only with the other elements
of T. Remember that in Theorem 9.8, an element of T is described
by a list of angles 0y, ..., 0,,.

Definition 9.27. An elementx € T is called regular if its angles are
all distinct, and in the case G = SO(n), none are equal to 0 or «.

When G = SU (n), an element of T looks like
diag(ewl,...,ew"—l, e_i(61+"'+6"—1)),

and the “distinct angle” restriction in the definition includes the final
summed angle.

The identity I € T is as non-regular as possible. Also, if -1 € G
(as is the case for G = SO(2m) but not G = SO(2m + 1)), then
—1I € T and is very non-regular. Notice that I and —I commute with
every element of G and are contained in every maximal torus of G.

Proposition 9.28. If x € T s reqular, then z only commutes with
other elements of T, so T is the only mazimal torus that contains x.

Proof. In the proof of Theorem 9.8, we verified that T"is maximal by
showing that if g € G commutes with all of T', then g € T. We leave
it to the reader in Exercise 9.2 to modify this argument, obtaining the
slightly stronger claim that if ¢ € G commutes with a single regular
ze€T,thengeT. O
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Next, we show that the problem of determining who commutes
with z € G reduces to the case z € T

Definition 9.29. An element y € G is called regular if y = grg™*

for some g € G and some regular x € T'.

For example, an element y € U(n) is regular if and only if its
eigenvalues all have multiplicity 1, which means that the vector space
of eigenvectors associated to any eigenvalue is 1 (complex) dimen-
sional. :

Corollary 9.30. A regular element of G is contained in only one
maximal torus and commutes only with elements of that maximal
torus.

Proof. Let y € G be regular, which means y = gzrg~! for some
g € G and some regular ¢ € T. We claim that y commutes only
with elements of the maximal torus g7¢~!. This follows from the
previous proposition, since z € G commutes with z if and only if
gzg~ ! commutes with y. ' ' O

It is also straightforward to determine which elements of G com-
mute with a non-regular x € T and hence with a non-regular z € G.
In summary, basic facts about maximal tori empower us to completely
answer the question: who commutes with whom in G?

8. The classification of compact matrix groups

A major achievement of Lie group theory is the classification of com-
pact matrix groups. The only such groups we have encountered so
far are SO(n), O(n), U(n), SU(n), Sp(n), and products of these, like
for example SO(3) x SO(5) x SU(2). It turns out that there are not
many more than these.

Theorem 9.31. The Lie algebra of every compact matrix group is
isomorphic to the Lie algebra of a product G1 X Gg X - -+ X Gk, where
each G; is one of {SO(n), SU(n),Sp(n)} for some n, oris one of a
list of five possible exceptions.



9. Lie groups 159

The five “exceptional matrix groups” mentioned in the theorem
are named:

(1) G2, which has dimension 14;

) Fy, which has dimension 52;

) B, which has dimension 133;

(2

(3) Eg, which has dimension 78;
(4

(5) Es, which has dimension 248.

It is beyond the scope of this text to construct the exceptional
groups or to address the proof of Theorem 9.31.

We have seen that non-isomorphic matrix groups sometimes have
isomorphic Lie algebras. For example, U(n) is not on the list in
Theorem 9.31 because it has the same Lie algebra as SU(n) x SO(2),
by Exercise 4.21.

The problem of determining all matrix groups with the same Lie
algebra as Gy x G X -+ - X Gy is well-understood, but is also beyond
the scope of this text. Aside from this detail, the theorem gives a
complete classification of compact matrix groups!

9. Lie groups

Lie groups have proven to be among the most fundamental objects in
mathematics. ‘

Definition 9.32. A Lie group is a manifold, G, with a smooth group
operation G X G — G.

In other words, a Lie group is a manifold which is also a group.
One often adds to the definition that the “inverse map” G — G, send-
ing g — g~!, is smooth; however, this turns out to be a consequence
of the smoothness of the group operation (g1, g2) — g1 - go-

In Chapter 7, we proved that matrix groups are manifolds. It is
straightforward to see that the group operation is smooth and there-
fore that matrix groups are Lie groups.

Not all Lie groups are matrix groups, but at least it has been
shown that: '
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Theorem 9.33. Fvery compact Lie group is smoothly isomorphic to
a matrix group.

All important structures of matrix groups carry over to Lie groups.
For example, the Lie algebra g of a Lie group G is defined as you would
expect:
8= T]G.
Forevery g € G, the conjugation map Cy : G — G sending x — gxg~
is smooth, so one can define:

Adg :=d(Cy)r: g — g

1

Next, the Lie bracket operation in g is defined as you would expect:
for A,B g,

d
[4,B) = 2| AduB,

where a(t) is any differentiable path in G with a(0) = I and with
a’(0) = A. It turns out that this operation satisfies the familiar Lie
bracket properties of Proposition 8.4. Next, the exponential map
exp : g — G is defined with inspiration from Proposition 6.10: For
A € g, the path t — e means the integral curve of the vector field
on G whose value at g € G is d(L,)1(A) € TyG, where L, : G — G
denotes the map z +— g - z.

Further evidence that Lie groups are only slightly more general
than matrix groups is provided by the following non-trivial theorem:

Theorem 9.34. The Lie algebra of any Lie group is isomorphic to
the Lie algebra of a matriz group.

For readers with more advanced topology background, we men-
tion that every simply connected Lie group is smoothly isomorphic to
a matrix group.

10. Exercises

Ex. 9.1. In Theorem 9.10, prove the remaining cases G = SU(n),
G = 80(n), G = Sp(n).

Ex. 9.2. Prove Proposition 9.28.
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Ex. 9.3. Prove that the standard maximal torus of SO(3) is also a
maximal torus of GL3(R). Do its conjugates cover GL3(R)?

Ex. 94. If T3 C G, and T» C G, are maximal tori of matrix groups
G1 and Gy, prove that T7 x T3 is a maximal torus of G; X Ga.

Ex. 9.5. Prove U(n)/Z(U(n)) is isomorphic to SU(n)/Z(SU(n)).

Ex. 9.6. Let G € {SO(n),U(n),SU(n),Sp(n)}, and let g denote
its Lie algebra. Characterize the elements X € g that are regular,
meaning that X is tangent to only one maximal torus and commutes
only with other vectors that are tangent to that maximal torus.

Ex. 9.7. Use maximal tori to find a simple proof that if A € U(n),
then

det(e‘d‘) — etrace(A) )

This is a special case of Lemma 6.15.

Ex. 9.8. Let A = diag(1,1,...,1,—1) € O(n). An element of O(n)
of the form gAg~?! for g € O(n) is called a reflection. '

(1) Show that R4 : R* — R"™ fixes span{es,...,en—1} and can
be visualized as a reflection across this subspace.

(2) Show Rgg4-1 : R™ — R™ fixes span{e19™*,...,en_197 '} and
can be visualized as a reflection across this subspace.

(3) Prove that every element of O(2) —SO(2) is a reflection, and
every element of SO(2) is the product of two reflections.

(4) Prove that every element of the standard maximal torus of
SO(n) is the product of finitely many reflections.

(5) Prove that every element of O(n) is the product of finitely
many reflections.

Ex. 9.9. Identify Sp(1) with the unit-length quaternions $* C H.

(1) Prove that the conjugates of the standard maximal torus
of Sp(1) are exactly the intersections of S§* with the 2-
dimensional R-subspaces of H that contain 1.

(2) Prove that two elements a;+b1i+c1j+dik, ag+bai+cgj+dak
in Sp(1) are conjugate if and only if a; = as.
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(3) Prove that two elements of SU(2) are conjugate if and only
if they have the same trace.
Hint: Consider the isomorphism ¥, : Sp(1) — SU(2).

Ex. 9.10. If H C G is a subgroup, define the normalizer of H as
N(H):={g€ G| gHg ' = H}. Prove that N(H) is a subgroup of
G and that H is a normal subgroup of N (H).

Ex. 9.11. Let G € {SO(n),U(n), SU(n), Sp(n)}, let T be the stan-
dard maximal torus of G, and let 7 C g denote their Lie algebras.

(1) Prove that if X € g commutes with every vector in 7, then
X € 7. In other words, 7 is a “maximal abelian” subspace.

(2) Prove that the Lie algebra of N(T') equals 7.
Hint: Use part (1) and also Ezercise 8.15.

(3) Conclude that N(T') is comprised of finitely many noninter-
secting subsets of G, each diffeomorphic to 7.

Ex. 9.12. Prove that the normalizer of the standard maximal torus
T of Sp(1) is:

N(T)=TuU(T-}).
Ex. 9.13. Prove that the normalizer of the standard maximal torus

T of SO(3) is:

cosf sind 0
NI =TU! [sing —cosd 0 ‘ae[o,zx)
0 0 —1
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