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Preface

One November, Rice University hosted a group of thirty undergrad-
uate mathematics majors with the purpose of introducing them to
research mathematics and graduate school. The principle part of this
introduction was the series of talks and workshops, which all took up
some idea or theme from the calculus of variations. These were so
successful that the American Mathematical Society encouraged us to
present them to a wider audience, in the form you see here.

The calculus of variations is a beautiful subject with a rich his-
tory and with origins in the minimization problems of calculus (see
Chapter 1). Although, as we will discover in the chapters below, it is
now at the core of many modern mathematical fields, it does not have
a well-defined place in most undergraduate mathematics courses or
curricula. We hope that this small volume will nevertheless give the
undergraduate reader a sense of its great character and importance.

An interesting story motivating the calculus of variations comes
from Carthage in 900 BC, long before the discovery of calculus by
Newton and Leibniz. Queen Dido, as a result of a bargaining negoti-
ation, obtained "as much land as could be enclosed by the skin of an
ox." She had the ox skin cut into strips as thin as practically possible
and formed a long cord of fixed length. If her choice of land had
been restricted to fiat inland territory, then she would presumably
have chosen a large circular region. This is because the circle, among
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all planar closed curves of fixed length, encloses the maximum area.
But she had the choice of territory with a flat coastline and cleverly
chose a semi-circular region, with the cord's endpoints on the shore-
line. This gives more area and is actually the mathematically optimal
solution. A change or variation of the shape of the cord cannot give
a new region of greater area.

Calculus of Variations arises when one differentiates, in the sense
of the calculus of Newton and Leibniz, a one-parameter family of
such variations. This first occurs in the works by P.L.M. de Mauper-
tuis (1698-1759), G.W. Leibniz (1646-1716), Jakob Bernoulli (1654-
1705), Johann Bernoulli (1667-1748), L. Euler (1707-1783), and J.L.
Lagrange (1736-1813). It has historically largely been the study of
optimal paths, for example as a geodesic curve in a space or as a path
of least action in space-time. See the nice presentation in Chapter 1 of
The Parsimonious Universe: Shape and Form in the Natural World
by S. Hildebrandt and A. Tromba (Copernicus, New York, 1996).

In modern language, the birth of the calculus of variations occurs
in the transition from the study of a critical point of a function on
a line (as in calculus) to that of a critical curve or critical surface
for a functional, such as length or area, on an infinite-dimensional
space of such objects. As discussed in Chapter 1 by Frank Jones,
the condition of criticality for these objects leads to the important
partial differential equations of Euler and Lagrange. Various physical
problems also give rise to natural conditions constraining the space of
admissible objects. One such constraint involves a fixed boundary, as
with a classical vibrating string or a soap film spanning a wire. An-
other constraint is seen in Queen Dido's problem. Her problem may
be equivalently reformulated as the vsoperimetric problem of finding a
curve of minimum length enclosing a given fixed area. The analogous
two-dimensional isoperimetric problem of finding a surface of least
area enclosing a given volume (or volumes) occurs in soap bubble
models.

In Chapter 2 by Robin Forman, one considers the connection
between such critical or equilibrium points and the topology or ge-
ometry of the ambient spaces. Here is a quick elegant introduction
to the simple, but subtle, ideas of Marston Morse from the 1940s.
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Their generalizations involving infinite-dimensional spaces of paths
(or solutions of other PDEs) have had a profound influence on 20th
century mathematics. One here encounters critical paths that may
not be globally or even locally length minimizing. For example, the
"ridge trail" over a mountain range is a length-critical path that is
unstable. Some slight variation may give a (more dangerous) path of
shorter length.

Physicists and mathematicians have long been interested in un-
derstanding and modeling vibrating strings, as in bowed or plucked
instruments. Steve Cox discusses in Chapter 3 the cause of the ob-
served decay of the amplitude. Such decay is usually neglected in
introductory treatments in physics courses. His chapter well illus-
trates the full range and difficulty of scientific inquiry from acquiring
experimental data, to synthesizing data, to mathematical modeling,
to finding actual or approximate solutions. The discussion here in-
cludes a useful introduction and illustration of the classical "Principle
of Stationary Action".

The isoperimetric problem that a surface of least area in space
enclosing a single given volume must be an ordinary round sphere was
solved rigorously over 100 years ago. It was claimed by Archimedes
and Zenodorus in antiquity, but proved by H. Schwarz in 1884. At
the Rice undergraduate conference, Frank Morgan discussed the im-
portant Double Bubble Conjecture that a surface of least area enclos-
ing two fixed volumes consists simply of two adjoined spherical caps
joined by a third spherical interface (with radii determined by the
given volumes). In 1998, this conjecture was proven by M. Hutch-
ings, F. Morgan, M. Ritoré, and A. Ros. For Chapter 4 of the present
volume, Frank Morgan's original talk has been replaced by a reprint
of his excellent 2001 MAA article exposing this result.

Minimal surfaces occur in the calculus of variations as critical
points of the area functional and provide models for some soap films.
K. Weierstrass (1815-1897) showed that they also enjoy a mathemat-
ical representation in terms of complex-valued functions. Chapter 5
by Mike Wolf explains carefully this connection and gives a related,
recently discovered representation that allows the construction of sev-
eral rich new families of minimal surfaces. See the many beautiful
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illustrations here. This chapter is a great introduction to some of
the many important relationships among the calculus of variations,
complex analysis, and differential geometry.

Differential equations for modeling traffic flow are derived and
analyzed in the chapter by Barbara Keyfitz. The continuum model
derived here is natural, consistent, and leads both to many observed
familiar discontinuous phenomena such as shock waves and to many
important open mathematical problems. It is a great example of
the fruitful interplay between pure and applied mathematics. Proper
careful modeling not only gives better scientific applications but re-
veals beautiful often hidden mathematical structures.

On Saturday afternoon of the Rice conference, students also had
the opportunity to actively participate in Steve Cox's experiments
with vibrating strings (see the illustrations in Chapter 3) or with
Frank Morgan's soap films and soap bubbles or to hear from Robin
Forman about many recent open problems in mathematics. The for-
mat of the Calculus of Variations Conference worked well, and three
other similarly structured undergraduate conferences have since been
held at Rice: Low Dimensional Geometry and Topology, Geometric
Aspects of Combinatorics, and Mathematical Problems in Biology.

The editor appreciates the great patience and help of Ed Dunne of
the American Mathematical Society in assembling this book and the
suggestion of Carl Pomerance for the title "Six Themes on Variation".
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Calculus of Variations:
What Does "Variations"
Mean?
Frank Jones

The purpose of this brief introduction to our conference is to
explain some of the philosophy behind what is called "the calculus
of variations". I am not going to give any proofs, and I am going
to be very loose in my hypotheses. Furthermore, I am just going
to give a very small taste of what sort of problems are of interest
within this subject. I feel that this is justified here, as the audience
is sophisticated undergraduate students, and it is rare indeed for this
subject to be taught in any undergraduate course in mathematics.

The idea here is that the calculus of variations is more of a vague
area of mathematical analysis than it is a well-defined subject area.

In all of the following I restrict attention to a real-valued function,
and the sort of domain where the function is defined determines what
we call our analysis. The initial idea is that we want to figure out how
to locate points in the domain where the function attains a maximum
or a minimum value.

©2004 by the author
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I. The domain is one-dimensional

This is one of the most basic situations in all of calculus. If the
function f attains a maximum or a minimum value at a point x in
the interior of its domain, then of course the derivative is zero at that
point:

f'(x)=O.
As you know, this equation may be satisfied even if f does not attain
an extreme value at x. A point x which satisfies this equation is called
a critical point for the function f.

H. The domain is n-dimensional

We again suppose that the function f attains an extreme value at a
point x in and in the interior of its domain. In this case we intro-
duce a vector h (also in which serves as a direction for analysis
of the function. Then the point x + th, where t is a real number,
represents a point on the straight line through x in the direction h.
Thus the function of t given by the expression f(x + th) attains an
extreme value at t = 0. Therefore the situation given in part I shows
that

+ th)) 1t0 0

The quantity on the left side of this equation is often called the di-
rectional derivative of f in the direction h and is denoted

Dh 1(x).

The chain rule of multivariable calculus enables us to rewrite this
equation in the form

(1) >0f/0x3(x)hj = 0.

Since (1) must hold for every choice of the direction h, we may use
the n coordinate vectors h = (0, . . . , 0,1,0,. . . , 0) to conclude that
(1) is equivalent to

(2) Of/0x3(x) = 0 for all 1 <j <n.
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While all of this should be very familiar to you, there are some
important observations that we need to stress:

• A point x satisfying (2) is said to be a critical point for f.

• Just as in the case n = 1, any extreme point for f is a critical
point, but not conversely.

• The point x+th used in the analysis is said to be a variation
of the fixed point x. The idea is that is small, and it is
only the limiting behavior of f(x+th) as t 0 that interests
us.

• We proceed from (1) to (2) by making judicious choices of
h.

III. The domain is infinite-dimensional

Now we come to the actual situation of interest in the calculus of
variations. We try to analyze the critical behavior of a real-valued
function f whose domain is a certain space of real-valued functions.
Thus, for each such function u there is a corresponding value f(u).

We assume that f attains an extreme value at a certain function
u. Then for any function that is "admissible" in some sense, we
consider the variation u + of the function u. Then f(u +

t 0, so we conclude that the "directional
derivative"

= +

must equal zero. Thus we are led to the definition that u is a critical
"point" for f if

= 0 for all admissible functions

This is about as far as we can go without specifying just what sort of
function f is. I have chosen to demonstrate the ideas with the most
well-known situation.

IV. The Euler-Lagrange scenario

This is a situation that is encountered in a tremendous variety of
circumstances. Without being too specific about hypotheses, suppose
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that D is a "reasonable" bounded open set in with closure and
suppose g is a smooth real-valued function defined on D x Then
for any C' function 1) R we can form the integral

f(u) =

Usually it will be the case that u has to satisfy some restrictions on the
boundary (ID of D. These restrictions are called boundary conditions.
A common example is the so-called Dirichiet condition, in which the
restriction of u to (ID is a given function defined on (ID.

We are then going to try to investigate possible critical "points"
for f.

Since u must satisfy the boundary conditions, we are somewhat
limited in permitted variations u + of u. These variations will cer-
tainly be allowed if the functions we use are infinitely differentiable
on D and are zero near (ID. We call such functions test functions and
we write

For each such test function we can form the directional derivative

D(,Of(u) = It=o

=

I I
Next we integrate by parts to get rid of all the terms noting
that no integration over (ID is required, thanks to the fact that is

zero near (ID. The result is

= j {ôg/(Iu —

In case u is a critical point for f, then by definition we conclude
that

= 0
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for all test functions Here of course { — } denotes the expression
in the integrand of (3). This result is the precise analog of (1) in
Section II, and we would like to obtain the result similar to (2); that
is, we would like to conclude that { — } itself is equal to zero.

At this point we use a rather easy fact about integration. How-
ever, this is of such important historical significance that it actually
has the rather daunting name, The Fundamental Lemma of the
Calculus of Variations. This asserts that if (4) is valid for all test
functions then {—} = 0. The proof depends somewhat on the
assumptions. The easiest version assumes that the function {—} is
continuous. Then if it is nonzero at some point x0 E D, say it is
positive, then by continuity it remains positive in a neighborhood of
x0. Then we can select a test function which is � 0 on D, which
is positive at and which is identically zero outside a small neigh-
borhood of x0. Then is a continuous nonnegative function on
D which is positive in a neighborhood of x0, so that of course

>0.

This contradicts (4).

Thus we conclude that if u is a critical point for f, then

This result is called the Euler-Lagrange equation. Notice that it
is a necessary and sufficient condition for u to be a critical point for f.
It is therefore a necessary condition for f to attain an extreme value
at u, but nothing in the argument would even hint that it would be
a sufficient condition (and it is not).

Be careful of the strange notation The function g de-
pends on x, u, and n other independent real variables. Thus
is the partial derivative of g with respect to the argument that occu-
pies the slot where we have inserted
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V. Several classical examples

In this last portion of the talk we shall present a variety of beautiful
ancient examples of the use of the Euler-Lagrange equation.

A. Minimal surfaces. Given a closed curve in R3, the problem is
to try to find a surface of minimal area which "fills in" the given
curve. Let us restrict attention to the following situation. Given a
domain D in the (x, y)-plane with boundary OD, we assume that the
given curve has the form (x,y,-y(x,y)) for (x,y) OD, and that we
seek a corresponding surface of minimal area which has the explicit
description z = u(x, y), where u is the unknown function. Vector
calculus gives us the area of the surface in the form

IL + +

This is a perfect set-up for Euler-Lagrange, and the equation we ob-
tain is

_- _-
In other words,

(5)
0xk\V/1+u2Z+u2y)

This equation is often called the minimal surface equation. Perform-
ing the indicated derivatives puts it into the form

(5') (1 + — + (1 + = 0.

We now give three examples of solutions of this interesting partial
differential equation; notice that we are effectively ignoring the initial
desire to minimize surface area filling in a curve.

Example 1 (Plane). Clearly, u(x, y) = Ax + By + C is a solution
of the minimal surface equation, which is significant, but not all that
interesting.
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Example 2 (Sherk's surface). Let us seek a solution which has the
special form u(x, y) f(x) + g(y), where f and g are each functions
of a single variable. Then (5') becomes

(1 + g'(y)2)f"(x) + (1 + f'(x)2)g"(y) = 0.

This differential equation splits into two ordinary differential equa-
tions by separating the variables:

f"(x)
+

g"(y)
—o1+f'(x)2 1 +g'(y)2 —

so that there must be a constant c such that
f"(x) — g"(y) —

1 + f'(x)2 — 1 + 1()2 — C•

Each of these equations can be easily integrated. Thus

arctanf'(x) = cx (ignore the additive constant);

f'(x) = tan cx;

f(x) = — log
I
cos cxl (ignore the additive constant).

Likewise,
1

g(y) =

Thus the minimal surface example we obtain has the form

1 coscyz=u(x,y)=—log
c coscx

Example 3 (Catenoid). This is a surface of revolution which is also
a minimal surface. There are a couple of approaches to this. It is
not difficult to assume that u = u(r), where r = + y2, derive
the corresponding ordinary differential equation from (5'), and then
integrate it. The other approach is to regard this as a single-variable
problem, where the unknown function y = u(x) > 0 is regarded as a
curve to be revolved around the x-axis.

The resulting area is then
b

__________

2ir j us/i + u'2dx.
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Then the corresponding Euler-Lagrange equation is

- (uVi + u12) — (_(uv'i + til2)) =

This simplifies to

1 + U'2 — = 0.

This equation is fairly easily integrated, resulting in

u(x) = cosh(Ax + B),

where A > 0 and B are constants of integration.

B. Geodesics. We just mention this in passing. Given a smooth
surface in R3, there are calculus formulas for the arc length of a
curve lying on the surface. The problem of minimizing the arc length
of a curve on the given surface which connects two given points is
a calculus-of-variations problem. There is a corresponding Euler-
Lagrange equation, which is actually a system of two ordinary dif-
ferentiations, each of second order, in which the unknowns represent
the coordinates of a point on the curve.

In the elementary case of the (x, y)-plane itself, a curve given as
x = x(s), y = y(s) has length

b

_____________

f
This does not quite fit the Euler-Lagrange scenario, but the variation
idea of Section III leads to an equation

jb
v'(x'(s) + tço'(s))2 + (y'(s) + ds = 0.

That is,
1b +

— 0
'a + y'2 —

Here w(s) and are arbitrary, except they are zero at the end-
points. Integrating by parts then gives

1b f \' I \'
Ja + y12) +

+ y12) ds = 0.
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Now we can apply the fundamental lemma to conclude that the Euler-
Lagrange equation in this case consists of the two equations

I /
" x'
I 1=0 and I 1=0.

The easiest way to handle these equations is to use the parameter s
as the arc-length parameter for the curve, so that

x'2 + = 1.

Then the Euler-Lagrange equation becomes

= 0 and y" = 0.

That is, x and y are linear functions of s, so that the curve is a straight
line.

C. Isoperimetric problem. There is a host of problems of this
nature, but we give just one illustration. The example we are going
to handle can be stated this way: among all closed curves in R2 which
have a given arc length L, find one which encloses a maximum area

This problem has an interesting twist, in that a maximum is
sought under a constraining equation. In fact, this is reminiscent
of the Lagrange multiplier technique of finite-dimensional calculus.
Rather than approach the problem that way, however, we can rig
things to fit our pattern. Namely, the quantity A ÷ L2 is invariant
under a change of scale, and therefore that is the function we seek to
extremize.

Suppose we parametrize our closed curves in R2 as x =
y = y(s), OS s 5 so. Then from vector calculus we have

1
A = — / (xy' — yx')ds (assuming positive orientation),

2 j0

L = + y'2ds.

Then we want to find the variation in
A

L2'
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using x(s) + tip(s) and y(s) + We take the derivative of the
quotient of the corresponding A and L2, and then set t = 0. We
obtain, symbolically,

1 dA 2AdL
L2 dt L3 dt

0.

Thus, at t = 0,

dt dt
Therefore, just as in the calculations done in section B, we have

1
p80

J
(xII" + cpy' — —

—
[80 +

— Jo

Integrating by parts produces

1

— / (—x'i,b + tpy' + y'ço —
2 Jo

F F

(80 f \ f \
Jo

W+ 2) ds.

The fundamental lemma now gives

\V'x'2+Y'2J
One integration then gives

x—c1=A
VIXF2 + J,2

xl
y—c2=—A

+
But then we see that

(x — ci)2 + (y — C2)2 =

so our curve is a circle!
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VI. Important disclaimer

We cannot overemphasize that we have not accomplished as much as
we would like. In all the above we proceed under the assumption that
our problems actually possess solutions. The techniques we have given
then enable us to derive significant information about the solutions.

The problem of existence of solutions requires more-or-less sophis-
ticated techniques of geometry and especially analysis. For instance,
in our example of geodesics in the plane, it is rather elementary to
prove directly that a straight line segment is indeed the unique curve
joining two given points. None of what we have discussed is required
for such a proof.

To illustrate that some significant analysis may perhaps be re-
quired, consider the isoperimetric problem we have just talked about.
It would seem that for a general closed curve in the plane, A ÷ L2
is maximized in the case of a circle, for which A ÷ L2 equals ÷
(2irr)2 = 1/(4ir). Thus we should imagine that for a general curve in
the plane,

4irA <

This is the famous isoperimetric inequality. However, you surely re-
alize that we are not even close to proving such an inequality in this
talk. The inequality is indeed valid, but an actual proof requires much
different kinds of analysis.

In summary, the formal calculus of variations we have talked
about leads to very interesting mathematical objects and often paves
the way to knowing what to expect to be true.





How Many Equilibria
Are There?
An Introduction
to Morse Theory

Robin Forman

Our goal in this lecture is to investigate a way of counting the
equilibria of a dynamical system. Actually, we will not really count
the equilibria, but rather we will relate the number of equilibria to
the answer of a problem in topology that seems at first glance to have
little to do with dynamical systems. The connection between these
two subjects was discovered, at least in the form we will present,
by Marston Morse, and many of the ideas we will discuss were first
introduced in his fundamental works [Mo 1) and [Mo2], but we will
also refer to later insights. We warn the reader that this lecture is
in the form of an informal discussion. We will make some rather
vague comments along the way, with the goal of adding precision as
we go along. However, some points will remain imprecise throughout
the entire lecture. We hope only to give the reader an appreciation

©2004 by the author
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for the wonderful subject which now goes under the name of "Morse
Theory".

I. Dynamical systems
The first topic on the agenda for today is dynamical systems.

The sort of dynamical systems we have in mind are those in which a
system is acting so as to minimize its energy. Such systems are found
in abundance in nature. The equilibrium positions play an important
role in our understanding of such a system, because they are the only
states of the system that can be observed for more than a fleeting
moment. Let us begin our discussion with a simple example.

When I was a student, I would often amuse myself, while listening
to a boring lecture, by trying to balance the chair next to mine on its
two back legs. (Many friends of mine would balance the chair they
were sitting in on the back legs. It is significantly easier to balance
a chair on its rear legs if you are sitting in it, because you can shift
your own weight to help maintain balance. On the other hand, there
is much more at stake.) We all know that there is such an equilibrium
position. Now I have a question for you. Why is it that when we enter
a room filled with chairs, we never find that some of the chairs are
balanced on their back legs. Most of the chairs are resting on all 4
legs, and perhaps we see a few chairs lying on their side, but I have
never (yet!) come into a room to find a chair balancing on its back
legs.

I'm sure you all know the answer to this mystery. The position of
balancing on the two back legs is an unstable equilibrium. Even if we
did manage to get a chair balancing on its two rear legs, any movement
forward or back, no matter how small, would send the chair forward
to its standard position, or tipping completely over backwards.

Now let's go further. It seems pretty clear that there is an equi-
librium position for the chair in which it is balanced on a single rear
leg. Even my daredevil friends never tried that one. Why not? (I
am not asking this question in order to encourage you to try!) The
answer is that not only is it an unstable equilibrium, it is even more
unstable than the equilibrium position of balancing on two legs.
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What does it mean for one unstable equilibrium to be more unsta-
ble than another? How can we quantify levels of instability? Before
reading further the reader should think about this point on his or her
own.

Okay, perhaps that's long enough. I will now describe one way of
measuring the instability of an equilibrium point. If we are balancing
a chair on its two rear legs, there is only one component of motion, the
forward-back component, that we need to worry about. If the chair
is balancing on its two rear legs, unless there is a major disruption,
it is unlikely to tip over on its side. We say that the forward-back
component is an unstable component of direction. On the other hand,
if we are balancing a chair on a single rear leg, we have to worry
about two components of motion, the forward-back component, and
the left-right component, since we can easily tip over in any direction.
(Fortunately, with the combined help of gravity and the floor, we do
not have to worry too much about the up-down component.) In this
case there are two unstable components of direction.

With all this in mind, let us define the index of an equilibrium
position to be the number of unstable directional components. For
example, the index of any stable equilibrium is 0. As we said earlier,
our goal is to investigate the number of equilibria of a dynamical
system. One of Morse's great insights is that the problem becomes
easier if we keep track of the index of each of the equilibria.

Before moving on, let us spend a bit more time exploring the
concept of the index of an equilibrium point. It is important that we
come to grips with this idea, because it is central to the subject. Sup-
pose there is a ball rolling around on the one-dimensional landscape
shown in Figure 1. In this case, the ball is acting so as to minimize
its height (or equivalently, its potential energy due to gravity). The
equilibria are those points such that if we placed the ball there and
let go (so that the ball starts with zero velocity) it will stay there.
Another way to say this is that they are precisely the points such that
the tangent line to the landscape is horizontal. (Throughout this dis-
cussion we will assume that the height function is differentiable, so
that we may speak about tangent lines. Soon we will also assume
that the second derivative of the height function exists.) There are
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three such points, which we have labeled A, B and C. The point A
is a stable equilibrium, since if the ball begins at a point near A, it
will roll towards A. Therefore, point A has index 0. The point B is
clearly unstable, since if the ball begins near the point B, it will roll
away from B. This equilibrium has index 1, since it is unstable in the
left-right direction, and there are no other directions available to the
ball. How about the point C? It is stable to the left (since if the ball
starts slightly to the left of the point C it will roll towards C), but
unstable to the right (since if a ball is placed slightly to the right of
C it will roll away from C). What is the index of C? Should we say
it is stable or unstable in the left-right component of the direction?
There does not seem to be any correct answer to this question, so we
will simply say that the index of the point C is undefined.

I'm sure that this last paragraph reminded you a bit of some
discussions you had in your first calculus course. The point A is a
local minimum of the energy (= height) function, the point B is a local
maximum, and C is an inflection point. In fact, this entire discussion
is probably best carried out in the language of calculus. The equilibria
are those points where the tangent line to the graph of the height
function is horizontal. Those are precisely the critical points of the
height function. Now suppose that p is a critical point of the energy
function E, so that E'(p) = 0. If, in addition, E"(p) > 0, then we
know that p is a local minimum of E, so p is a stable equilibrium,
and hence has index 0. If E"(p) < 0, then we know that p is a
local maximum of E, so p is an unstable equilibrium of index 1. If
E"(p) = 0, then the second derivative test does not tell us the index
of p, or even if the index is well-defined. If E"(p) = 0 we say that p is

Figure 1. A one-dimensional landscape with three equilibria
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a degenerate critical point of E. Conversely, if E"(p) 0 we say that
p is a nondegenerate critical point of E. If all of the critical points of
E are nondegenerate, so that, in particular, all of the critical points
have a well-defined index that can be determined from the second
derivative test, then we say that the energy function E is a Morse
function.

In the example of a ball moving along the landscape, the set of
possible positions of the ball can be identified with the points on the
s-axis (i.e., if you tell me the s-coordinate of the ball, I know immedi-
ately where it is). The set of possible positions of a dynamical system
is called the configuration space of the system. In the previous exam-
ple, the configuration space can be identified with a one-dimensional
line. We will now consider dynamical systems with more interesting
configuration spaces.

Example 1: Suppose we have a pendulum on a rigid rod. The con-
figuration space for this system, that is, the set of possible positions
of the pendulum, can be identified with a circle (see Figure 2). The
equilibria are the points labeled A and B. The point A is a stable
equilibrium and has index 0, and the point B is an unstable equilib-
rium and has index 1. We will record this information as follows:

Configuration space = circle

Number of equilibria of index 0 = 1

Number of equilibria of index 1 = 1

Number of equilibria of index � 2 = 0.

Our discussion can also be carried out in higher dimensions. Sup-
pose we have a differentiable function E: R2 R. We can graph this
function in R3 and think of a ball rolling around on this landscape.
The equilibria are the points where the tangent plane is horizontal,
and these are precisely the critical points of the function E. In our
multi-variable calculus course, we are taught the second derivative
test for such functions. If p is a critical point of a function E, we
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Figure 2. A pendulum on a rigid rod

Robin Forman

consider the Hessian of E at p. This is the 2 x 2 matrix of second
derivatives

If both eigenvalues of this matrix are positive, for example if E(x, y) =
x2 + y2, and p is the origin, then p is a local minimum of the energy
function (Figure 3(1)). This implies that p is a stable equilibrium and
hence has index 0. If the Hessian has two negative eigenvalues, for
example if E(x, y) = —x2 — y2, and again p is the origin, then p is
a local maximum of the energy function (Figure 3(u)). This implies
that at p both the x and the y components of direction are unstable
components, so p is an equilibrium of index 2. If the Hessian has
one positive eigenvalue and one negative eigenvalue, for example if
E(x, y) = —x2 + y2, and again p is the origin, then p is a saddle point
(Figure 3(iii)). In this case, the x component of direction (indicated
by the dotted curve through p in Figure 3(iii)) is an unstable compo-
nent, since if we place a ball at p and then move it slightly in the x
direction and let go, it will roll away from p. On the other hand, p is
stable in the y direction (the solid curve through the point p in Figure
3(iii)), since if we place a ball at p and then move it slightly in the y
direction and let go, it will roll towards p. Therefore, there is precisely
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(I) E(x.y) = x2+ y2 (ii) E(x.y) = -x 2 2 (iii) E(x.y) = -x2+ y2

Figure 3. Examples of two-dimensional equilibria

one unstable component of direction at p, so p is an equilibrium of
index 1.

If the Hessian has a zero eigenvalue, then the second derivative
test does not tell us the index of p, or even whether p has a well-
defined index. In this case, just as in the one-dimensional setting, we
say that p is a degenerate critical point.

This discussion can be carried out in any dimension. Suppose
that the configuration space is rn-dimensional, and that near a critical
point p the energy function E has the form

(1) E(xi,x2,. ..,Xm) = — + . .

so that there are exactly i unstable components of direction (i.e.,
directions in which the energy is decreasing). Then the critical point
p has index i. Just as in the case of 2 dimensions, we can use the
second derivative test to detect the index of a critical point.

The second derivative test: Suppose that p is a critical point
of an energy function E, and the Hessian of E at p has no zero
eigenvalues. Then the index of E at p is precisely the number of
negative eigenvalues of the Hessian.

I have not labeled this statement a theorem because we do not
yet have a precise definition for the index. In fact, this statement is
often used to define the index of an equilibrium point. An alternate
point of view is that one can define a critical point p to have index i
if near p the energy function E looks like the function shown in (1).
If one takes this as the definition for the index, then one has to prove

p
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the above statement by showing that if the Hessian of E at p has i
negative eigenvalues (and no zero eigenvalues), then E looks like the
function (1). Here, we have been using a rather vague phrase "looks
like" in reference to functions. Unfortunately, I do not think that it
would be worth the effort to make this phrase precise. For a precise
statement of what we mean for a function to look like another in this
context, and a proof of the second derivative test stated above, see
"The Morse Lemma" (the name given to this second derivative test),
Lemma 2.2 in [Mill.

Now let us apply these ideas to some 2-dimensional examples.

Example 2: Suppose we start with a round metal globe. The math-
ematical name for this shape is a sphere, or a 2-sphere if we wish to
emphasize that it is 2-dimensional, and is often denoted by the sym-
bol S2. Now suppose we place a marble on its surface, and that the
marble is magnetized so that it stays on the globe as it rolls around.
The equilibria are those points with the property that if the marble is
placed there with zero velocity, then the marble will not move. These
are the points where the tangent plane is horizontal. There are 2
equilibrium points on the sphere (Figure 4), which we have labeled A
and B, and they clearly have indices 0 and 2, respectively.

Configuration space = sphere

Number of equilibria of index 0 = 1

Number of equilibria of index 1 = 0

Number of equilibria of index 2 = 1

Number of equilibria of index � 3 = 0.

Example 3: This time we start with a metal inner tube. The math-
ematical name for this shape is a torus. Now suppose we sit the metal
torus on one end (see Figure 5) and place a magnetized marble on its
surface. Here there are 4 equilibrium points, which we have labeled
A, B, C and D. The point A is a stable equilibrium, and has index 0.
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N

B

A

Figure 4. Equilibrium points for a magnetized marble rolling around
on a metal globe

D

Figure 5. Equilibrium points for a
on a metal torus

magnetized marble rolling around

The point D is a local maximum of the energy function and has index
2. The points B and C are a bit trickier. In fact, if one considers
a small piece of the torus near the point B, it looks very much like
the saddle point we drew in Figure 3(iii). The point B is stable in
the left-right component of direction, and unstable in the forward-
back component. Therefore B has index 1. The same holds true for
the point C except that C is unstable in the left-right component of

A
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direction, and stable in the forward-back direction. Therefore, the
point C also has index 1.

Configuration space = torus

Number of equilibria of index 0 = 1

Number of equilibria of index 1 2

Number of equilibria of index 2 = 1

Number of equilibria of index � 3 = 0.

II. Topology
We will now briefly leave the subject of dynamical systems and

begin a discussion of some topics in topology. You probably already
know something about topology. It is sometimes called "rubber geom-
etry" because we will say that two shapes are topologically the same
if one can be made into the other by stretching, pulling and twisting,
and other similar operations. No cutting or pasting is allowed. If two
shapes are the same in this way, we will say they are topologically
equivalent, or (using the fancy word) homeornorphic (homeo = same,

morph = shape). The sort of question we will be asking is typical in
all branches of science (and, in fact, in many other areas of human
endeavor). We will begin by describing a collection of simple objects,
the building blocks of the theory. The main problem will then be
to investigate how more complicated objects can be built from these
building blocks.

The building blocks in the theory we wish to discuss are called
cells, and there is one cell for each dimension.

The 0-dimensional cells are points (also called vertices).

The 1-dimensional cells are open intervals.

The 2-dimensional cells are discs (without their boundary). Since we
are working in the world of topology, we can stretch these discs, and
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we can draw them as squares, or triangles, if we like. They are all
2-dimensional cells.

The 3-dimensional cells are the inside of a cube, or the inside of a
sphere, or the inside of a pyramid, or ...

We illustrate these cells in Figure 6. The dotted lines in this
figure are meant to indicate that the cells do not contain the points
on their boundary.

0-dimensional 1-dimensional

3-dimensional

2-dimensional

Figure 6. Topological cells

We can continue, and define cells of every dimension, but we will
stop here. It is useful to introduce a bit of math shorthand. Instead
of writing out "0-dimensional cell" each time, it is traditional to refer
simply to a "O-cell". Similarly, we will sometimes refer to a 1-cell, or
2-cell.

Now let us return to the basic question. If we are given a shape,
how can we build it out of these building blocks?

Example 1: Let's try this in the case of the circle (see Figure 7).
It is pretty easy to see that if I remove a single point (i.e., a 0-
dimensional cell) from the circle, then what remains is (topologically)
an open interval (i.e., a 1-dimensional cell). Therefore, the circle can
be built from one 0-dimensional cell and one 1-dimensional cell. Let
us summarize this as follows.
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Example 3: This time we start with a torus. We can build a torus 
as follows (see Figure 9). If we take a circle out of the torus, what 
remains is a cylinder which does not contain its boundary circles. We 
can build this circle from one O-cell and one I-cell. We can build the 
cylinder from one I-cell and one 2-cell. Putting these constructions 
together, we have just shown how to build the torus from one O-cell, 
two I-cells, and one 2-cell. 

---tIIo- Q 

~ 
I 
I • 

0 0 

• 
0 (} 

Figure 9. Decomposing the torus into cells 

Topological space = torus 

N umber of cells of dimension 0 = 1 

N umber of cells of dimension 1 = 2 

N umber of cells of dimension 2 = 1 

Number of cells of dimension 2: 3 = O. 

Ill. Morse Theory 

By now I hope the reader will have noticed the remarkable simi­
larity between the examples in Section I and the examples in Section 
11. We first observe that the shapes considered in Section 11 are pre­
cisely the configuration spaces of the dynamical systems considered 
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in Section I. Moreover, the number of cells required to build the con-
figuration space seems to be the same as the number of equilibria of
the dynamical system, with the dimension of the cell corresponding
to the index of the equilibrium point. The main theorem of this lec-
ture is that this is a general phenomenon. We are going to state the
theorem using the precise mathematical terminology, all of which will
be explained in the remainder of this section. What follows is the
main theorem of Morse Theory.

Theorem: Let it! be a closed, compact, smooth submanifold of
Euclidean space (of any dimension). Let E: M R be a smooth,
reai-valued function on A!. Suppose that every critical point of E is
nondegenerate. Then Al can be built from a finite collection of cells,
with exactly one cell of dimension i for each critical point of index i.

Some of the words in this theorem need to be explained. I will
not give precise definitions, but only a rather vague description of
what the hypotheses are requiring. First note that the theorem refers
to Euclidean space (of any dimension). All of the examples we have
considered take place in R2 or R3, but the phrase in the theorem
means that everything can be placed in Rk for any k. A subset of a
Euclidean space Rk is a smooth submanifold if it has the property that
for each point p in the subset, the set of points in the subset which
are near p looks just like the set of all points near the origin in some
Euclidean space. In Figure 10 we show three subsets of R2 which are
not smooth submanifolds because in each case the point labeled A
does not satisfy this condition. Note that in Figure 10(iii), near the
point A the subset looks like the set of points near the origin in R'
in a topological sense, since in topology we can always straighten out
corners, but we actually need the space to look like Euclidean space
in a stronger differentiable sense so that we can make sense of the idea
of taking derivatives of functions on our space. In fact, we will need
somewhat more because we will need to take the second derivative of
our functions on Al.

We must now explain the meaning of the word compact. A subset
of Euclidean space is compact if and only if it satisfies two other



How Many Equilibria? 27

AJ\
(i) (ii) (iii)

Figure 10. Subsets of R2 which are not smooth submanifolds

properties. Namely, it must be closed and bounded. A subset M of
is closed if it has the following property. Suppose there is a point

q in Rk such that we can get as close to q as we want while staying in
M. Then q is required to be in M. For example, suppose we let M
be the subset of R' consisting of all of R' except the number 0. Then
M is not closed because you can get as close to 0 as you like while
staying in M, but the point 0 itself is not in M. The same problem
occurs if M is any open interval, for example, if M = (0, 1). Then
one can get as close as we like to the numbers 0 and 1 while staying in
M, but the numbers 0 and 1 are not themselves in M. The condition
that M is bounded means simply that it is possible to surround M by
a (possibly very large) ball in Rk, i.e., M does not go off to infinity
in any directions. For example, the x-axis sitting in R2 is closed but
not compact.

Note that the three examples we examined in Sections 1 and 2
satisfied the hypotheses. It is a very good exercise for the readers to
think about what can go wrong with the theorem if M is not required
to be compact.

I will leave the reader with one last note concerning the statement
of the theorem. We required that M be a subset of some Euclidean
space. In fact, that is irrelevant for the theorem. We do need M to
be a space on which it makes sense to take derivatives of functions.
Such spaces are called smooth manifolds. I stated the theorem in this
manner only because abstract manifolds, that is, those which exist on
their own, without reference to a surrounding Euclidean space, are
somewhat harder to describe and to imagine.
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IV. What the main theorem does not say
There is occasionally some confusion as to what the main theorem

actually says. It does not say, for example, that all energy functions
have the same number of critical points, or that the cell complex that
you get in this manner is necessarily the "best possible" (i.e., has
the fewest number of cells). Consider the example shown in Figure
11(i). In this case, our space is a topological circle. We see that
there are four critical points, labeled A, B, C and D, with A and C
having index 0, and B and D having index 1. Therefore, the main
theorem implies that the circle can be built from two 0-cells and two
1-cells. This is shown in Figure 1 1(u). The reader should compare
this example with Example 1 of Sections I and II.

B D

7'

/ ) )//
•

A

(i) (ii)

Figure 11. A configuration space which is a topological circle

V. The idea of the proof
The proof we are going to describe is due to Smale [SmlJ. I

apologize in advance that some details will be imprecise, and others
will be precise but will have unexplained terms. Still I hope that the
reader will walk away with some understanding of what is going on.

Suppose p is a critical point of index i. Draw a small piece of the
unstable directions near p. After adding the point p to this set, it
will be a small i-cell. This is true because a critical point has index i
precisely when there is an i-dimensional family of unstable directions.
See Figure 12(i) where we have done this for each of the critical points
of the function on the torus considered in Example 3 of Section I.
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closer to a critical point (here we are definitely using the compactness
of Al). The critical point the drop approaches is precisely the critical
point whose cell will eventually contain q.

This point of view enables us to give a concise description of the
resulting decomposition of It'l into cells. For each critical point p, let
U(p) denote the set of all points in M which, when flowing up the
manifold, flow towards p. We will include the point p in U(p) even
though it doesn't flow at all. The set U(p) is called the unstable cell
associated to p (or sometimes the descending cell associated to p).
The crucial observations are:

1) U(p) is a cell, and its dimension is the index of p.

2) If p and q are distinct critical points, then U(p) and U(q) are
disjoint.

3) M is equal to the union of all the U(p), where the union is taken
over all critical points p.

VI. What does it really mean to build a shape from cells?
So far we have been a bit cavalier with our language when it

comes to "building shapes out of cells". In fact, the sort of decom-
position into cells that is provided by Morse Theory has some special
properties, which we will now discuss.

Suppose we already have a shape, and we wish to add a 1-cell to
it. We know a 1-cell is an open interval, so that is what we are adding
to our space. However, I will now add an important restriction as to
how that 1-cell can be added. From now on, we are not permitted to
do this in any way we please. We must fill in the 2 endpoints of the
interval with points that are already in our space. In other words,
we begin with a closed interval, and glue the 2 endpoints to points
in our space, so that the only points we are adding to the space are
those in the open interval. It is important that we glue both points
to our original space. For example, in Figure 13 we illustrate the case
in which we begin with a 0-cell. In Figure 13(i) we show how to add
a 1-cell to the 0-cell. The drawing in Figure 13(u) is not permitted.
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Figure 13. Adding a 1-cell to a point

Adding a 2-dimensional cell is defined similarly. Instead of start-
ing with a 2-dimensional disc without its boundary, we think instead
of the 2-dimensional disc with its boundary. The boundary is just
a topological circle. To add a 2-cell to a space, we must glue every
point on that circle to a point in our space. Moreover, we must do
this in a continuous way.

Adding an i-cell, for i > 2 is defined similarly. A cell complex is
a space that can be constructed by starting with a single point and
adding one cell at a time in this manner.

The decomposition of M into cells which is provided by the Morse
Theorem has the important property of giving M the structure of a
cell complex.

Note that to give a space the structure of a cell complex, one
must start with a single point (which we count as a 0-cell) and then
order the remaining cells, i.e., declare which one to add first, which
one to add next, etc. How does this arise for M? Simply order the
critical points of the energy function according to the value at the
energy function at that point (ties can be broken arbitrarily). The
first critical point in line will be the minimizer of the energy. This
is always a stable critical point, and hence has index 0. This gives
us our 0-cell to start with. We then add the cells one at a time,
according to the value of the energy function at the critical point. In
Figure 14 we illustrate this process for the example of the torus with
the height function shown in Figure 4. In this case we add the cells
corresponding to the critical points A, B, C, D in that order.

We can now state a more precise version of the main theorem of
Morse Theory.
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Theorem: Let Al be a smooth compact submanifold of Eu-
dlidean space (of any dimension). Let E : M —' R be a smooth,
real-valued function on Al. Suppose that every critical point of E is
nondegenerate. Then Al is homeomorphic (i.e., topologically equiva-
lent) to a cell complex which has exactly one cell of dimension i for
each critical point of index i.

There is one last subtlety to discuss. There is not complete uni-
formity in the literature as to the definition of a cell complex. As
it is often defined, a cell complex is required to satisfy an additional
condition. We required that when we add a cell to a space, the en-
tire boundary of the cell must be glued to the space. There is often
an additional requirement. Recall that the space we are adding the
cell to is itself a union of cells. The additional requirement is that
the boundary of an i-cell can only be glued to cells of dimension less
than i.

Take a look at the construction of the torus as a cell complex
shown in Figure 14. This is not a cell-complex in this new, more
restrictive, sense, because the boundary of the second 1-cell we add
is glued to the first 1-cell, and this is not permitted. However, if
we just tilt the torus slightly before beginning the growing process
shown in Figure 12, then the second 1-cell would miss the first 1-cell
entirely, and the result would be a cell-complex in our new sense.
This always works. Given a Morse function E, if E does not give rise
to a good cell-complex, then a generic small perturbation of E will

Figure 14. The torus as a cell complex
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do the trick. (The word "generic" means that those perturbations
which will not work form a very small set.) Smale was the first to
investigate this issue, and energy functions which give rise to good
cell decompositions are now called Morse-Smale functions. (In fact,
somewhat more is required of a function before it is called Morse-
Smale. Not only must the boundary of an i-cell only meet cells of
lower dimension, but they must meet in a nice way. I will not say any
more about this. See [Smi] for details.)

VII. What now?
If all there were to Morse Theory is the main theorem we have

discussed, then I would still think it was a beautiful subject, but I
would probably not be making such a fuss about it. In fact, Morse's
work led to a veritable revolution in the study of the topology of
smooth manifolds. There is simply no time to give an overview of
the hundreds of applications of Morse Theory which have appeared
in the literature. There are many examples of results that have been
proved rather easily using Morse Theory and yet are quite difficult to
prove by other means. The book [Mill describes some of these ap-
plications. Here, I will simply briefly describe two very striking (and
historically significant) applications. I know that my brief remarks
will be insufficient to give the reader a true understanding of these
great works. I do hope that perhaps the reader will be sufficiently
intrigued to study these topics further.

We recall that the main theorem of Morse Theory relates the
number of equilibrium points of a dynamical system to the number of
cells required to build the configuration space. One of the wonderful
aspects of this theorem is that it has been very powerfully applied in
each direction. That is, sometimes one wishes to understand the num-
ber of equilibria of a dynamical system, so one studies the topology of
the configuration space and then applies Morse Theory. On the other
hand, sometimes one wants to understand the topology of a space.
One method is to put an energy function on the space. Information
about the critical points of this function can then be translated into
information about the original space.
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One of the first major applications of Morse Theory was Morse's
investigation of the number of geodesics between two points in a man-
ifold (see page 248 in [Mo2] and Part III of [Mu]). Very roughly
speaking, suppose we stretch a rubber string between two points in a
manifold and glue the endpoints of the string to those two points. If,
when we let go of the rubber string it stays exactly as it is (we are
assuming that it is restricted to stay on the manifold), then the path
followed by the rubber string is a geodesic (see, for example, Part II
of [Mu] for a precise definition). The rubber string moves so as to
minimize its energy, so this set-up is ripe for an application of Morse
Theory. Namely, the configuration space of our dynamical system is
the space of all possible ways for a rubber string to go from one point
to another, i.e., the set of all paths from one point to another. The
geodesics are precisely the equilibria of this dynamical system. Morse
studied the number of geodesics by investigating the topology of the
configuration space and then applying his theory. For example, he
was able to deduce that there are always infinitely many geodesics
between any two points in a smooth compact manifold. (We have
something more to say about this example a bit later.)

In Morse's work on geodesics, information about the topology of
the configuration space was used to deduce information about the
number of equilibria of the system. We now describe an example in
which the flow of information goes the other way. In [Sm2] Smale
used Morse Theory to prove the higher-dimensional Poincaré conjec-
ture. The Poincaré conjecture states that any manifold which "looks
like" a sphere, in some weak topological sense, is, in fact, topologi-
cally equivalent to a sphere (unfortunately, there is no time to explain
the conjecture in any more detail than that). Smale's method was to
put an energy function on the manifold and to then study the equi-
libria of the resulting dynamical system. He proved that if a manifold
(of dimension � 5) satisfies the hypothesis, then there is an energy
function which has only two critical points, namely the maximum
and the minimum. It then follows from a theorem of Reeb's that the
manifold is a sphere (see Theorem 4.1 of [Mu]). While Smale's proof
used Morse Theory quite extensively, he also used techniques from an
approach to topology known as "handlebody theory". In [Mi2]
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Milnor presents a proof which is entirely in the language of Morse
Theory.

A great place to read about Morse Theory, as well as some of
the earlier, exciting, applications, is Milnor's wonderful book [Mu].
The reader should be warned, however, that this book, like Morse's
early writings, does not take the same point of view we have cho-
sen, so some parts of the discussion may not look very familiar. Our
discussion is more in line with the philosophy of [Smi]. In addition
to Morse, Milnor and Smale, Raoul Bott is one of the great practi-
tioners of Morse Theory, and the reader should certainly take a look
at his beautiful survey article [Bo] for a look at some of the recent
developments in the theory.

Morse Theory has been extended and generalized far beyond what
we presented in this lecture. Again, we will have to be content with
just two examples. Some problems concerning the topology of spaces
which are not smooth manifolds have been successfully solved by de-
veloping versions of Morse Theory that can be applied to more gen-
eral spaces (see, for example, [GM] and [Fo]). Perhaps the most
exciting development has been the application of Morse Theory to
infinite-dimensional manifolds (!). It is interesting to note that one
of Morse's first applications of his theory, which we described above,
was to the study of an infinite-dimensional manifold, the space of
all paths connecting two points in a (finite-dimensional) manifold.
However, he studied this space by considering finite-dimensional ap-
proximations to the space, and applying the finite-dimensional theory.
Now we have the know-how to study the infinite-dimensional space of
paths directly (see, for example, [Pa], [Sm3]). More recently, Floer's
application of ideas from Morse Theory to some infinite-dimensional
manifolds ([F!]) has resulted in some extremely important advances
in mathematical physics and topology.

I must warn you that this lecture is not sufficient preparation
for reading most of the papers referenced in the previous paragraphs.
However, I wanted to mention them so that you could see that Morse
Theory has been a growing and vibrant subject ever since its introduc-
tion almost 75 years ago. I think that it is one of the most beautiful
mathematical developments of the last century. The study of Morse
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Theory has given me a lot of joy. and I am happy to have had this

occasion to share the subject with you.
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Aye, There's the Rub.
An Inquiry into Why
a Plucked String
Comes to Rest
Steven J. Cox

1. Introduction

Newton's first law implies that a plucked string will remain in motion
unless impeded by some additional force. Experience teaches that
the energy in the average pluck of a guitar string is dissipated within
10 to 20 seconds. Where does this energy go? Does the string rub
against itself and/or against its environment? I wish to identify the
nature of this dissipation. I take the broad view to identify is to
construct a mathematical model that is physically plausible and yields
a reasonable fit to experimental data.

Our first task will be to gather experimental data. In §2 we
measure the time and frequency response of a plucked string. We
build a preliminary model in §3 via the Principle of Least Action.
We augment this in §4 arriving at the damped wave equation. We

©2004 by the author

37



38 Steven J. Cox

determine, numerically, that the dissipative force that best matches
experimental data is concentrated at the string's ends, where it rubs
against its supports. As further demonstration, we place a magnetic
damper at the string's midpoint and show that our technique detects
both its strength and position. Along the way we shall invoke the
Discrete Fourier Transform, the method of Least Squares. the Calcu-
lus of Variations, and the solution of partial differential equations via
eigenfunction expansions.

2. Acquiring the data

Regarding equipment, I have followed, to a large extent, the advice
of Lord Rayleigh [R, Vol.1, § 125]:

"For quantitative investigations into the laws of strings. the
sonometer is employed. By means of a weight hanging over
a pulley, a catgut, or a metallic wire, is stretched across two
bridges mounted on a resonance case. A movable bridge,
whose position is estimated by a scale running parallel to
the wire, gives the means of shortening the efficient portion
of the wire to any desired extent. The vibrations may be
excited by plucking, as in the harp, or with a bow (well
supplied with rosin), as in the violin."

Rayleigh proceeded to estimate the string's natural frequencies by au-
ral comparison with struck tuning forks of known natural frequency.
I adopt the sonometer but substitute for ear and fork an electromag-
netic pick-up, analog-to-digital converter, and the Discrete Fourier
Transform. For hardware, with regard to the photograph in Figure 1,
I have used the WA-961 1 Sonometer (long object in foreground) and
the WA-9613 Detector Coil (small black box positioned under the
midpoint of the string) of PASCO Scientific and an AT—MIO-16E
Data Acquisition Card from National Instruments. The detector coil
returns a voltage that is proportional to the time rate of change of
the coil's magnetic flux, which in turn is proportional to the velocity
of the string in a neighborhood of the detector.
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Figure 1. The experimental apparatus

The chosen string possessed a uniform linear density of

(2.1) p = 0.0015 kg/m.

The distance between the two black posts provided an effective length
of

(2.2) F = 0.6 in.

Finally, suspending 0.55 kg from the lever in the right corner produced
a tension of

(2.3) T = 26.95 in kg/s2.

The small Lego object to the left of the detector is the magnetic
damper that I used in the experiment of §6. In a typical experiment
I would pluck the string, in the absence of the magnetic damper, and
sample the voltage. 10000 times per second, for about 15 seconds.
One would need a page at least 18 inches wide in order to produce a
meaningful plot of such a time series. We content ourselves therefore
with a plot of every tenth sample.
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Figure 3. Magnitude of the Discrete Fourier Transform of
the signal in Figure 2
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logarithm of the magnitude of (computed via the fit command
in Matlab) versus the frequency

(See Figure 3.)

k
Uk =

One sees immediately that the energy in v is concentrated at
integer multiples of about 111 Hz. We speak of these as the resonant
(or natural) frequencies of the string. In order to discern at what
rate(s) the associated resonant modes decay we attempt to fit our
voltage readings to a function of the form

(2.5)
m

Ø(t; p) = p3,' exp(p3,2t) cos(2irp,3t + P3.4)
j=1

parametrized by the m-by-4 matrix p. By 'fit' we mean to choose p in
order that the sum, over all samples, of the squares of the differences

co(Hz)
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frequencies decay 4 to 5 times faster than the lowest. Although p has
indeed captured the correct resonant frequencies, you may wonder
what the associated 0 looks like. Is 0.333 a good fit when N = 150,000

samples are used? We have plotted this in Figure 4. For ease of
comparison with Figure 2 we have again presented only every tenth
sample.

Content that we are on the right track we shall use p as the
descriptor of our string. Our goal is now to devise a mathematical
model that, at least, predicts behavior in line with the second and
third columns of p.

3. A mathematical model

Implicit in all of the above is the assumption that the string's mo-
tion is planar and purely transverse to its rest state. Leaving this
unchallenged (for the moment) we denote by ( the distance between
the string's two supports and denote a material point by (x, 0) where
XE At time t this material point lies at the point (x.u(x,t)).
Assuming the string to be taut we expect zero displacement at its
two ends, i.e.,

(3.1) u(0,t) = n(F,t) = 0, Vt � 0.

In addition, we suppose that the pluck uniquely specifies both the
position and velocity at each point in x at the initial instant of time.
In symbols this means

(3.2) u(x,0) = uo(x) and u1(x.0) = v0(.r)

where u0 and are known. Our task is to find and analyze the
equation satisfied by u(x, t) for x E (0. and all future time. Of the
many possible paths to the string equation the most venerable is the
one originating in the Calculus of Variations. The guiding principle
goes variously under the names Principle of Least Action, Princi-
ple of Stationary Action, and Hamilton's Principle. Though already
known to Leibniz and Euler the pronouncements of Maupertuis in
1746 in his "The laws of motion and of rest deduced from a meta-
physical principle," brought it to life. In the words of Maupertuis,
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"If there occurs some change in nature, the amount of ac-
tion necessary for this change must be as small as possible."

In order to actually apply such a principle one must first quantify
this mysterious 'action'. In the field of rigid-body mechanics, see, e.g.,
Arnold [A, p. 59] or Gelfand and Fomin [GF, §21], the action is the
time integral of the difference of the kinetic and potential energies.
The latter text, in §36, extends these notions to continua, such as
our string, and argues that such bodies satisfy the Principle of Sta-
tionary (but not Least) Action. As the action of the string is the
time average of the difference of kinetic and potential energies, the
Principle of Stationary Action says that, on average, any variation
in kinetic energy is balanced by a variation in the potential energy,
and vice versa. Let us now express these energies and the associated
action in terms of the string's displacement, u(x, t).

The string's kinetic energy is half the product of its mass and
the square of its velocity. The mass of the string is the product of
its density, p, and length, £. As u(x, t) is the height of point x at
time t, the velocity of the point is the time rate of change of u at x,
i.e., Ut(X, t). Summing over all points of the string we posit a kinetic
energy of the form

ft
T(u,t)

0

Next, the potential energy is the work (product of force and distance)
required to deform the string. The force in our context is the tension,
r, while the distance is the difference in lengths between the plucked
and unplucked states. As the plucked state is assumed to be a graph,
we arrive at a potential energy of the form

I
(3.3) U(u, t) = r + t) dx — £

I..
Jo

Left in place, the square root in U would clutter our application of
the Principle of Stationary Action. Are there grounds for replacing
the square root with something more agreeable? Even very strong
plucks of the 60 cm string on the sonometer of Figure 1 produced
maximal displacements of less than 1 cm. This suggests that 1/60 is
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a reasonable upper bound for 0)1. As time increases the pluck
travels along the string and then smoothes out and dissipates. That
is, is not likely to exceed 1/60 for any t � 0. As a result, we
may suppose that t) < 1/3600. As this is considerably smaller
than 1, we may use z 1 + z/2 in (3.3) to arrive at

(3.4) U(u,t) =
0

From T and U we now assemble the action

A(u) J {T(u,t) — U(u,t)}dt,
to

over the time window [to, ti]. The Principle of Least Action now
asserts that the actual motion, u, is the one that minimizes A among
all possible motions. The weaker statement that A is stationary at u
will finally provide us with an equation for u. In order to make this
precise let us compute the derivative A at u in the direction v,

/ A(u+hv)—A(u)
h

The direction v is chosen so that u + hv is indeed a possible motion.
By that we mean that u + hv and u should satisfy the same boundary
conditions with respect to both space and time. This means that

(3.5) v(0,t) = = 0 and v(x,to) = v(x,ti) = 0.

Now

A(u+hv)—A(u)
pt

= J
—i4})dxdt

to 0

ptj pt
= hJ J {putvt — + —

to 0

and so, after dividing by h and letting h tend to zero, we find
pti pt

(3.6) A'(u) . v
= J J (putvt — dxdt.

to 0

Now if u is indeed a stationary point of A, then (3.6) should vanish for
every possible direction v. The consequences of this vanishing would
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be easier to read off if v rather than its derivatives were to appear in
(3.6). To that end let us note that

UtVt = (UtV)t — UttV

and so, recalling (3.5),
pti çti

J ut(x,t)vt(x,t)dt
= J

((ut(x,t)v(x,t))t —
to to

t=t1 ft1
= ut(x,t)v(x,t)

—J
utt(x,t)v(x,t)dt

t=to to

= —Jto

Similarly,
pt

/ —
Jo Jo

On substitution of these last two eqautions into (3.6) we arrive at
pti ft

(3.7) A'(u) . v
= J J (pugt(x,t) —

to 0

If this indeed vanishes for every v on (0, £) x (to, t1) satisfying (3.5),
then necessarily the coefficient of v must vanish identically. This im-
plication is typically called the Fundamental Lemma of the Calculus
of Variations. Its application to (3.7) yields the so-called string equa-
tion,

(3.8) putt(x,t) — = 0 in (0,e) x (to,ti).

This linear partial differential equation possesses an infinite number
of independent solutions, namely

u(x,t)

where f and g are arbitrary twice differentiable functions. As f and
g describe waves with speed one often speaks of (3.8) as the
wave equation. One arrives at a unique solution to (3.8) by asking
u to obey the boundary, (3.1), and initial, (3.2), conditions. In the
absence of boundary conditions the reader may wish to check that it is
a simple matter to express f and g in terms of u0 and v0. Boundaries
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produce reflections and therefore a more complicated representation
for u. Our initial concern however is not with the exact values of u
but rather with the question of how, or indeed whether, it decays.

One typically measures decay by studying the, so-called, instan-
taneous total energy

ft
(3.9) E(t) T(u, t) + U(u, t) = / (pt4 + dx.

Jo

Now by decay we mean that E should be decreasing. On evaluating
its time derivative we find however that

Pt Pt
E'(t) = 2] (puttut + dx = 2] (putt — dx = 0.

0 0

That is, the energy in the initial pluck is conserved throughout time.
This of course condemns (3.8) as a model of what we observed in
Figure 2. Recalling however that that signal was essentially a linear
combination of damped sinusoids we might ask whether or not the
string equation at least gets the frequencies right. This will require
us to actually solve (3.8).

4. Solving the wave equation

By analogy to solving linear second-order ordinary differential equa-
tions we write (3.8) and (3.2) as the first-order system

(4.1) V(O)=(
\ V0

where

and
Ut

and u is still assumed to satisfy the boundary conditions (3.1). This
A is a matrix differential operator that acts on vectors composed of
displacements and velocities. We define an inner (or dot) product for
two such vectors, V and W. Namely, for two such vectors V and W
we define

ft
(4.2) (V, W) J + pV2W2} dx,

0
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where W denotes the complex conjugate of W. This definition is
'natural' in the sense that if V = W = (u ut)T, then (V, V) coincides
with our earlier definition, see (3.9), of the instantaneous total energy
of u. We shall denote by e the set of vector-valued functions V for
which (V, V) <oo. (This 'finite energy' space has been well studied.
In fact, it is the Hubert Space x where the latter is
the collection of square integrable functions on (0, £) and the former
is the collection of square integrable functions that vanish at 0 and £
and whose derivative is also square integrable.)

As in the ordinary matrix case one solves (4.1) in terms of the
eigenvectors of A, i.e., the solutions of

It is not difficult to recognize these in the doubly infinite sequences

(4.3) ( =
£ p

where n = 1,2 We have, for convenience, chosen to have
unit length, i.e., = 1 in E. On substituting the values of
p, r and £ associated with the string of §2 we find the eigenvalues

= ±in(701.83) = ±i2irn(111.7).

These are in remarkable agreement (being close to integer multiples of
111) with the experimentally obtained resonant frequencies displayed
in Figure 3. The fact that A has purely imaginary eigenvalues jibes
with the fact that it is skew adjoint. Can you show that indeed
(AV,W) = -(V,AW)?

A further consequence of skew adjointness is that the eigenvec-
tors, of A constitute an orthonormal basis for the space
e. As a result, the full solution to (4.1) may be expressed as

(4.4) V(t) =
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where each encodes the projection of the initial pluck onto the
respective eigenvector, i.e.,

= (V(O), 0) dx

Ut(X, 0) dx.

Although the V of (4.4) is composed of terms that oscillate (at the
right frequencies), none of them exhibits any decay.

5. The damped wave equation

Of the many ways that one may elicit decay, perhaps the simplest,
by way of the analogy of adding a dashpot to a mass-spring system,
is to introduce into the wave equation a term that is proportional to
velocity, that is, to consider

(5.1) putt — + = 0

for some constant a, in units of kg/rn/s. Retaining our same notion
of total energy we ask whether E now decreases when u satisfies (5.1)
rather than (3.8). Note that its time derivative

ft ft
E'(t) = 2 / (putt — dx = —4a / dx

Jo Jo

is negative so long as a > 0. That is, positive a produces decay of
energy, E. So far so good, let us determine the effect of a on the
eigenvalues and eigenvectors of the previous section.

With regard to the associated first-order system, (4.1), the A
operator now takes the form

10 I
rd2 —2a

-7-
As a is constant the eigenvectors of A(a) are exactly as in (4.3). The
eigenvalues become, however,

(5.2) = —a/p ± — (n7r/€)2r/p
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and hence, so long as

irIF kg
a < 1.057—,£yp ms

the real part of each eigenvalue is —a/p. The solution to (4.1) with
A now replaced by A(a) remains (4.4) with the )¼ now given by (5.2).
Although this indeed produces decay, it produces it in a far too uni-
form fashion. More precisely, each term decays at precisely the same
rate, namely a/p. If we trust the larger variations in decay rates
reported in the second column of (2.7), then we should search for a
generalization of (5.1) that can exhibit such variable rates of decay.
We now wish to argue that it suffices to let a vary with x.

When a varies with x, although expansions like (4.4) are still
valid, we no longer have explicit expressions for the eigenfunctions
and eigenvalues. For that reason we turn to their numerical approxi-
mation. More precisely, we solve

(5.3) A(a)W = A'I'

by supposing 'P to be a linear combination of the first 2m modes of
the undamped problem. That is, we suppose

(5.4) 'P = +

where the are specified in (4.3). On substituting (5.4) into (5.3)
and taking the inner product of each side with one of these low un-
damped modes we arrive at

(5.5) =

A moment's reflection now permits us to see in this the matrix eigen-
value problem

(5.6) G(a)r = Al'

for

1' = (FYi V2 ... Y-i 'V-2 ..
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where C(a) is the 2m-by-2m matrix with elements

C
ifm<j�2m,

(A(a)'Z'm_k,4j) if! <j <in, m < k 2m,
(A(a)4m_k, m m < k � 2m.

The inner product remains the one defined in (4.2). I hope that this
notation does not obscure the relatively simple computations required
to assemble C(a). Perhaps we should write out in full what is going
on in, say, the first line. If 1 � j m and 1 � k m, then

A(a)4k =
1

( 0

—2a(x) sin(kirx/€)

and so

2
= — J a(x) sin(kirx/e) sin(j7rx/f) dx

— f a(x) dx,

where 5j,k is zero unless j = k, in which case it is one. So, at bottom,
G(a) is composed of integrals of the damping against products of
sine functions. Upon constructing G(a) we may use the eig routine
in Matlab and arrive at the 2m matrix eigenvalues,
As C(a) inherits from A(a) the property of eigenvalues appearing in
complex conjugate pairs we may, without loss, order them according
to their imaginary parts, i.e.,

0< < ... A_3 = A.

Our goal now is to produce an a such that these matrix eigenvalues
fit the second two columns of (2.7), namely the complex vector

(5.7) p; P3,2 + i2irp3,3.

In the interest of practicality we limit our search to a finite-dimen-
sional class of dampings. In keeping with the above choice of basis
we suppose that

a(x) = sin((2k — 1)irx/f).
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Our limitation to odd sine terms reflects our belief that the 'proper' a
ought to be symmetric with respect to the midpoint, x = £12. Finally,
to fit the A,(a) to the is to solve

(5.8)
m

mm Ip* — A3(a)12.QERnLd 2

j=1

Of course, as the p constitute only 16 real parameters we may only
hope to find a unique minimizer when n 16. Asking for the most,
we take n = 16 and solve (5.8) in Matlab via leastsq. We have
plotted the resulting a in the figure below.

This result indeed exposes the sought after rub (see Figure 5).
Namely, a is large at the two ends, signifying that through rubbing
against its supports the string eventually sheds the energy delivered
by the pluck.

Of course one should not accept the veracity of a model based on
the result of a single experiment. Rather than simply replucking the

0.01

0.3

x(m)

Figure 5. The rub
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same string, however, we wish to see whether our methods might be
able to distinguish the presence of an artificial damper.

6. Discerning the presence of additional
damping

It is not unnatural to attempt to identify the magnitude and position
of dissipative mechanisms. As a simple example, engineers seek means
by which the size and location of a leak in a cable may be discerned
from measurements taken near the cable's ends. We therefore add a
dissipative mechanism, a pair of attracting magnets at the center of
the string (recall Figure 1), and attempt to detect it by the eigenvalue
matching method used above.

On placing the detector 15 cm to the right of the magnetic
damper, we pluck the string and record the data plotted in Figure 6
(top).

Comparing this to Figure 2 we note that the magnetic damper
has indeed increased, or accelerated, the decay. To ascertain the as-
sociated natural frequencies we again turn, see Figure 6 (bottom),
to the Discrete Fourier Transform. Comparing the latter with Fig-
ure 3 we note that, although the resonant frequencies are essentially
unchanged, the peak associated with the lowest frequency is severely
diminished. That the lowest frequency is indeed the one that suffers
the greatest dissipation is borne out by fitting the response of Figure
6 (top) to the sum of damped sinusoids referred to as 4; recall (2.5).
The p that solves (2.6) in this case is

—0.0059 —1.3034 107.3376 —1.6096

—0.0228 —0.2567 224.1213 —1.4830

—0.0048 —0.4860 335.2361 —1.0603

—0.0027 —0.2835 448.5797 —2.6720

0.0012 —0.5176 560.4651 —5.5950

—0.0074 —0.6233 673.8908 —7.3395

—0.0017 —0.7285 786.0627 —10.1866

—0.0008 —0.9328 898.1001 —10.7800

Notice that the decay, p(l, 2), of the lowest frequency, is 2 to 5 times
greater than that of the next few. From this p we build the in
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(5.7) and solve (5.8). Finding little improvement in the fit for n> 8
we plot in Figure 7 the best fit for n = 8.

Even with its ups and downs, this result is a strong indication
that a dissipative device has been placed near the midpoint of the
string.

7. Concluding remarks

In my attempt at flushing out the rub I have invoked techniques and
results from a number of fields. In the interest of both always keeping
the goal in sight and actually producing an 'answer' you may accuse
me of having taken giant leaps or, perhaps worse, having pursued
my quarry without regard to rigor. Given the additional constraints
of space, I can only answer these criticisms by directing you to the
relevant literature.

Figure 7. The magnetic rub
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Regarding §2, even after more than 100 years, Rayleigh's text
remains modern. It serves as a fascinating (and inexpensive) sup-
plement to an introduction to partial differential equations. The en-
gineering field of identifying dynamical systems by their modes of
vibration is called Modal Analysis. Along these lines I highly recom-
mend the text of Ewins [E].

For more on the history and application of the Principle of Least
Action the best two sources are the lovely text of Hildebrandt and
Tromba [HT] and the lecture of Feynman [FLS]. For an alternate
derivation of the wave equation I recommend the text by Knobel [K].

For a more careful derivation of the eigenvalues and eigenvectors
of the undamped and damped wave operators I recommend the text
of Weinberger [W]. You will also find there a study of strings that
may undergo longitudinal as well as transverse motion. For those
with a solid grounding in analysis, the text of Treves [TI establishes
the properties of the finite energy space, E, and the operator, A,
necessary for a rigorous interpretation of (4.4).

To learn more about the approximation of operator eigenvalues
by matrix eigenvalues, as practiced in §5, I would turn to the text of
Chatelin [Ch].

Finally, you may ask, do the eigenvalues of the damped wave
operator, A(a), indeed uniquely determine the damping a? We have
offered here no more than numerical evidence in support of the conjec-
ture. The proof, see Cox and Knobel [CKJ, relies on the clever imple-
mentation by Yamamoto of the so-called Gelfand—Levitan transform.
For the role of this transform in resolving questions of the type posed
here I recommend the text of Levitan [U.
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Proof of the Double
Bubble Conjecture
Frank Morgan

1. The news. In 2000, Hutchings, Morgan, Ritoré and Ros ([11]; see
[4], [13]) announced a proof of the Double Bubble Conjecture, which
says that the familiar double soap bubble of Figure 1 provides the
least-area way to enclose and separate two given volumes of air. The
two spherical caps are separated by a third spherical cap, all meeting
at 120 degree angles; if the volumes are equal, the separating surface
is a flat disc. This result is the culmination of ten years of remarkable
progress by many mathematicians, including undergraduates.

2. The planar double bubble. It all started when the 1990
Williams College NSF "SMALL" undergraduate research Geometry
Group [6] proved the Planar Double Bubble Theorem: the standard
double bubble of Figure 2a, b provides the least perimeter way to en-
close and separate two regions of prescribed area in the plane. Perime-
ter counts every piece of curve once, whether it is on the exterior or
the interior.

This article is reprinted from Amer. Math. Monthly 108 (2001), 193—205 with
permission.
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Figure 1. The standard double bubble provides the least­
perimeter way to enclose and separate two prescribed volumes. 
Copyright John M. Sullivan, University of Illinois; color ver­
sion at www.math.uiuc.edu/-jms/lmages. 

The group leader, Joel Foisy, in his subsequent undergraduate 
thesis, apparently gave the first statement of the Double Bubble Con­
jecture in R3 as a conjecture. Plateau [14, pp. 300-301] had studied 
the double bubble over a hundred years earlier, and Boys [1, p. 120] 
had spoken of the conjecture as a fact, as it was widely accepted for 
many years. 

3. Proof of the Planar Double Bubble Theorem. The major 
difficulty in the proof is showing that each region and the exterior is 
connected. Although it may seem obvious that having several com­
ponents scattered throughout the bubble as in Figure 2c, d, e could 
not minimize the perimeter, this turns out to be not so easy to prove. 
Of course we prefer to prove, rather than to assume, that the regions 
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a

Figure 2. The standard planar double bubble (a and b),
and not some exotic alternative with disconnected regions
or empty chambers (c, d, or a), provides the least-perimeter
way to enclose and separate two regions of prescribed area, as
proved by the 1990 undergraduate research Geometry Group
[6, Figs. 1.0.1, 1.0.2].

are connected. Besides, in higher dimensions a minimizer with dis-
connected regions could arise as a limit of regions connected by thin
tubes as the tubes shrink away.

The original ingenious proof has undergone several simplifica-
tions, largely due to Michael Hutchings. The simplest argument starts
with any competitor and deforms it to a standard double bubble while
decreasing the perimeter. Unlike the original proof, it does not need
to assume that a nice minimizer exists; it does not depend on the
general existence and regularity theory.

During the argument it is convenient to work in the category of
the "overlapping" bubbles of the 1992 Geometry Group [2, 3], smooth
immersions of finite embedded planar graphs, in which the faces may
overlap as in Figure 3.

In Section 4 we show that for prescribed areas there is a unique
standard double bubble. consisting of three circular arcs meeting at
120 degrees; if the areas are equal, the separating curve is a straight
line segment.
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FIgure 3. In this "overlapping" bubble, components of the
regions R1 and R2 overlap. Copyright 2000 Frank Morgan.

FIgure 4. Vertices of degree four or
Copyright 2000 Frank Morgan.

more may be reduced.

Given areas A1 and A2, consider any, perhaps overlapping, double
bubble with areas at least A1 and A2. We may assume there is no
such bubble of fewer faces with smaller perimeter. We may always
assume that all vertices have degree at least three.

First we claim that there are no empty chambers (bounded com-
ponents of the exterior). Otherwise we could delete an edge, incorpo-
rate the empty chamber into the neighboring region, and reduce the
number of faces.

Second we claim that there are no vertices of degree greater than
three. Otherwise two of the faces at the vertex both belong to the
first region, to the second region, or to the exterior. You can always
combine these faces while reducing the perimeter and maintaining
areas, as suggested in Figure 4.
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Consider the dual graph formed by placing a vertex inside each
face of the two regions, with an edge between vertices of adjacent
faces. Because the exterior is connected, this dual graph has no cycles.
Hence there is some face F that lies at an endpoint of the dual graph.
This face F must have exactly two edges and exactly two vertices, as
in Figure 5.

Unless the bubble is already combinatorially the standard bub-
ble, take out F and one neighboring edge e, flip it over end to end,
and reinsert it as in Figure 5. This operation produces a possibly
overlapping double bubble with a vertex v of degree four, a contra-
diction. We conclude that the bubble is combinatorially the standard
bubble, consisting of three edges meeting at two points.

Replace the three edges by circular arcs, maintaining areas. By
the isoperimetric property of circles and circular arcs, any such re-
placement reduces perimeter. Now we may assume that the bubble
is embedded.

Next minimize the perimeter in the category of three circular
arcs enclosing given areas. We claim that the edges must meet at
120-degree angles. Otherwise you could deform the bubble a bit so
as to preserve areas and decrease length. After this deformation the

e

R2

FIgure 5. Flipping a face of two edges and an adjacent edge
creates a vertex of degree four. Copyright 2000 Frank Morgan.
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edges would not be arcs of circles, but you could replace them with
circular arcs, so as to decrease the length even more.

Now we have a standard bubble of areas at least A1 and A2. Since
by reducing either area you can reduce the perimeter, the standard
bubble of areas exactly A1 and A2 has even smaller perimeter.

Thus starting with any other competitor, we have reduced the
perimeter and arrived at the standard double bubble, which must
therefore be perimeter minimizing.

Before going further, we verify that there is a unique standard
double bubble in any (n � 2).

4. The standard double bubble. For prescribed volumes v, w,
there is a unique standard double bubble in consisting of three
spherical caps meeting at 120 degrees as in Figure 1.

Proof Consider a unit sphere through the origin and a congruent
or smaller sphere intersecting it at the origin (and elsewhere) at 120
degrees as in Figure 6. There is a unique completion to a standard
double bubble. Varying the size of the smaller sphere yields all volume
ratios precisely once. Scaling yields all pairs of volumes precisely once.

Figure 6. Varying the size of the smaller component yields
all volume ratios precisely once. Copyright 2000 Frank
Morgan.
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5. Existence and regularity. Proving the existence of a perimeter-
minimizing double bubble of prescribed volumes in R" is no easy
matter. Classical spaces of surfaces are not compact, especially if
there is no a priori bound on topological complexity or how the pieces
fit together. Furthermore, one cannot consider only bubbles with
connected regions, because they might in principle disconnect in the
minimizing limit as thin connecting tubes shrink away.

Geometric measure theory (see [13]), as developed in the 1950s
and 1960s by L. C. Young, E. De Giorgi, H. Federer, and W. Fleming,
provides very general compact spaces of surfaces of bounded diameter
in RT'. Soap bubbles provide additional difficulties, because there is
no easy a priori bound on the diameter. In 1976, F. Almgren provided
a general proof using geometric measure theory of the existence of
perimeter-minimizing soap bubble clusters, and with J. Taylor proved
that in R3 they consist of smooth constant-mean-curvature surfaces
meeting in threes at 120 degrees along curves, which in turn may meet
in fours at equal angles of about 109 degrees (cos'(—1/3)).

The following key symmetry theorem is based on an idea of Brian
White, written up by Foisy [5, Thm. 3.4] and Hutchings [12, Thm.
2.6]. Since it reduces the Double Bubble Conjecture to questions
about curves in the plane, it was the main reason for mistakenly
considering the matter settled.

6. Symmetry Theorem. A perimeter-minimizing double bubble B
in RVZ is a surface of revolution about a line.

Proof sketch, case n = 3. First we claim that there are two orthogonal
planes that split both volumes in half. Certainly, for every 0 0

there is a vertical plane at angle 9 to the xz-plane that splits the first
region in half. These planes can be chosen to vary continuously back
to the original position, now with the larger part of the second region
on the other side. Hence for some intermediate 0, the plane splits both
volumes in half. Turning everything to make this plane horizontal and
repeating the argument yield a second plane, as desired. Hence we
may assume that the xz- and yz-planes bisect both volumes.

Actually, we need to modify the process a bit. After obtaining
the first plane, reflecting the half of B of least area yields a bubble
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of no more area. It must therefore have the same area, and either
half would work. If the original B were not a surface of revolution,
neither is some such half plus reflection. Hence we may assume that
B is symmetric under reflection across each plane, and hence under
their composition, rotation by 180 degrees about the z-axis. Hence
every plane containing the z-axis splits both volumes in half.

We claim that at every regular point, the bubble B is orthogo-
nal to the vertical plane. Otherwise the smaller or equal half of B,
together with its reflection, would be a minimizer with an illegal sin-
gularity, which could be smoothed to reduce area while maintaining
volume. Now it follows that B is a surface of revolution.

Hutchings realized that the symmetry proof could be generalized
to prove the following monotonicity result. which is not as obvious as
it sounds.

7. Monotonicity [12, THM. 3.2]. The least area A(v,w) of a
double bubble of volumes v. w in is a nondecreasing function in
each variable.

Proof sketch, case n = 3. We prove that for fixed w0, A(v, w0) is
nondecreasing in v. If not, then there is a local minimum at some
v0. For simplicity, we treat just the case of a strict local minimum.
Consider a minimizing double bubble B of volumes v0, w0. By the
Symmetry Theorem 6 and its proof, B is a surface of revolution about
a line L = P1flP2, where P1 and P2 are planes that divide both regions
in half. Choose a plane P3 near P2 that divides the second region in
half but does not contain L. We claim that it divides the first region
in half. Otherwise, the half with smaller or equal area, reflected
across the plane, would yield a bubble of no more area and slightly
different volume, contradicting the assumption that v0 is a strict local
minimum. Therefore P3 splits both volumes in half. Now as in the
proof of Symmetry 6, B is symmetric about the line L' = Pi fl P3
as well as about L. It follows that B consists of concentric spheres,
which is impossible. Therefore A(v, w0) must be nondecreasing as
desired.
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8. Corollary (Connected Exterior) [12, THM. 3.4]. An area­
minimizing double bubble in R n has connected exterior ("no empty 
chambers"). 

Proof If the exterior has a second, bounded, component, removing 
a surface to make it part of one of the two regions would reduce the 
area and increase the volume, in contradiction to Monotonicity 7. 

Symmetry and Connected Exterior are the primary lemmas for 
the following structure theorem. 

9. Hutchings Structure Theorem [12, THM. 5.1]. An area­
minimizing double bubble in Rn is either the standard double bubble 
or another surface of revolution about some line, consisting of two 
round spherical caps with a toroidal innertube, successively layered 
with more toroidal innertubes, as in Figure 7. The surfaces are all 
constant-mean-curvature surfaces of revolution, "Delaunay surfaces", 
meeting in threes at 120 degrees. 

Figure 7. A nonstandard area-minimizing double bubble in 
Rn consists of a central bubble with layers of toroidal bands. 
Copyright 2000 Yuan Y. Lai. 



68 Frank Morgan

Comments on the proof Once the exterior is known to be connected,
there are not many possibilities for a double bubble of revolution. A
contraction argument given by Foisy [5, Thm. 3.6] shows that the
bubble must intersect the axis.

There can be at most two spherical caps and at most one toroidal
innertube directly on the spherical caps. Indeed, if there were a band
of a third sphere S between two toroidal innertubes in the first layer,
the rest of the bubble would consist of two big pieces, which could be
rolled around S to touch each other and create an illegal singularity.

Combinatorial finiteness follows from the following bound.

10. Hutchings component bound. Consider a minimizing double
bubble of volumes v, 1 — v in . Then the number k of components
of the first region satisfies

2A(v, 1 — v) — A(l) — A(l — v).

Here A(v) is the surface area of a single bubble (round sphere) of
volume v, and A(v, 1 — v) is the (unknown) area of a minimizing
double bubble, which fortunately is bounded above by the area of the
standard double bubble.

Proof sketch. The decomposition suggested by Figure 8 gives a lower
bound on A(v, 1 — v) when the first region has a small component
of volume x. Furthermore, Hutchings generalizes Monotonicity 7 to
show that A(v, w) is strictly concave in both variables. Now the
desired component bound follows by just a little algebra.

Remark. Mathematica graphs of the bound (1) on the number of
components k for R2, R3, R4, and R5, with A(v, 1—v) replaced by the
larger or equal area of the standard double bubble, appear in Figure 9.
Some results are summarized in Table 10. In particular, in R2 both
regions are connected, from which the Double Bubble Conjecture in
R2 follows easily. The bounds are elegantly deduced from the
Hutchings Bound 10 by the 1999 Geometry Group [10, Prop. 5.3).

The following conjecture [10, Conj. 4.10] would provide an ele-
gant way to prove the numerical bounds rigorously, a task otherwise
quite awkward.
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2 =

Figure 8. This decomposition gives a lower bound on A(v, 1—
v) when the first region has a small component of volume
x. Each piece of surface on the left occurs exactly twice on
the right. Drawing by James F. Bredt, copyright 2000 Frank
Morgan.

Figure 9. A bound on the number of components of the first
region in a minimizing double bubble of volumes v, 1 — v in
R2 through R5. Figure by Ben W. Reichardt [10, Fig. 2].

Bounds on number of components in
R2 R3 R4 R5

1 1 1 2 3

larger or equal region
Bounds on number of components in 1 2 4 6

smaller region

Table 10. Bounds on the number
perimeter-minimizing double bubble.

of components in a

fi— 5

0
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Figure 11. Conjecture: The pictured curvatures sati3fy H2>
(Ho+H1 )/2. If true, this conjecture would provide an elegant
way to prove the bounds of Table 10. Copyright 2000 Frank
Morgan.

11. Conjecture.1n R", let H0, H1, H2, respectively, denote the
mean curvature of a sphere of volume w, a sphere of volume w + 1,
and the exterior of the second region of the standard double bubble of
volumes 1, w as suggested by Figure 11. Then

2H2>H0+H1.

Note that the Hutchings Bound implies that for equal volumes,
each region of a minimizing double bubble in R3 is connected. In
1995 Hass and Schiafly exploited this information to prove this case
of the Double Bubble Conjecture by computer.

12. Theorem ([7], [9]). For equal volumes in R3 the standard double
bubble uniquely minimizes the perimeter.

Proof sketch ([9] and [8]). For equal volumes in R3, the Hutchings
theory says that both regions are connected (Table 10) and that a min-
imizer consists of a central bubble with a toroidal innertube around it
as in Figure 12. The innertube need not be centered around the waist,
but there is at most a 2-parameter family of possibilities. Hass and
Schiafly used a computer to recursively divide the parameter domain
into cases and subcases, always seeking some contradiction. Often
the volumes fail to be equal. Sometimes there are unstable pieces of
surface, as in Figure 13. Sometimes the pieces just do not fit together.
In all computations, the values are bounded above and below by exact
computations in integer arithmetic. If no contradiction appears with
the required accuracy, the case is subdivided into finer subcases. If

Marilyn Daily apparently recently has proved Conjecture 11.

H0 H1
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Figure 12. For equal volumes in R3, the Hutchings theory
says that a perimeter-minimizing double bubble consists of
a central bubble with a single toroidal innertube around it.
Copyright John M. Sullivan. Color version at www.math.uiuc.
edu/-jrns/Images.

eventually every case terminates in a contradiction and the computer
program halts, the theorem is proved. In fact, in 1995 it finished on
a PC in about twenty minutes, having computed 200,260 numerical
integrals.

For arbitrary volumes in R3, the Hutchings Bound (Table 10)
says only that a minimizing double bubble has at most three compo-
nents, as in Figure 14, much too complicated a family of possibilities
to be handled by current computer technology. The computer-free
2000 proof uses a new instability argument.
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Figure 13. Candidates with large oscillations may be elim-
inated as unstable. Copyright Joel Hass, Jim Hoffman,
and Roger Schlafly. Color version available at www.math.
ucdavis.edu/-has8/btibbles.htinl.

13. Theorem [11]. For given volumes in R3, the standard double
bubble of Figure 1 uniquely minimizes the perimeter.

Proof sketch. The idea is to show that any nonstandard candidate
is unstable; that is, it can be deformed so as to reduce the area
while preserving both volumes. The desired instability is obtained
by rotating different pieces of the double bubble, such as the left and
right halves of Figure 15, in different directions or at different rates
wi around a carefully chosen axis A.

In general, maintaining the volume constraints requires two extra
degrees of freedom, requiring four rather than two pieces. To avoid
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Figure 14. A minimizing double bubble in R3 has at most
three components. Copyright John M. Sullivan, University
of Illinois (color version at www.inath.uiuc.edu/-jms/Iinages);
second image from [11].

ripping the bubble apart, the bubble must be tangential to the rota-
tional vector field where the pieces meet. Figure 15 could be divided
into the four quadrants.

Of course, if every wi = 1, the whole bubble just rotates, and the
second variation of perimeter vanishes. If, as we assume to obtain
a contradiction, the bubble is stable, so that no choice of wt's yields
a negative second variation, it follows that every choice of wi yields
a vanishing second variation, corresponding to the solution to some
partial differential equation. If there are (at least) four pieces, then
the rates of rotation w1, w2, w3, w4 can be chosen to maintain the two
volumes, with at least one but not all of the wt's equal to 0. Since
one wt vanishes, by unique continuation for solutions to nice partial
differential equations, all the variations must vanish and the relevant
pieces of the bubble must be spherical, which leads to a contradiction.

Can you always find an axis A of rotation so that the curves
where the bubble is tangential divide the bubble into four pieces?

We carefully choose the axis A perpendicular to the axis of rota-
tional symmetry, the x-axis. The surface is automatically tangential
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Figure 15. Rotating the two halves of this bubble in opposite
directions about a new axis A stretches the top, shrinks the
bottom, and reduces the area. Copyright 2000 Frank Morgan.

in the plane normal to A, so we always have at least two pieces, top
and bottom.

If as in the case of equal volumes the bubble always had just
two components as in Figure 16, a suitable axis A is provided by
the perpendicular bisector of the two vertices V1, V2: at the closest
and the most distant intermediate points, p1 and the radius vector
from A meets the bubble orthogonally, so that the bubble is tangential
at each p2 and at the whole circular orbit of p2 around the s-axis. The
bubble divides into the four requisite pieces. This proves the Double
Bubble Conjecture for the case of equal volumes.

For the general case of three components, the Euclidean geome-
try is much more complicated but manageable. One considers cases
according to the relative position of parts of the bubble, as in Fig-
ure 17.

14. Higher dimensions. In an amazing postscript, the 1999
Williams College "SMALL" Geometry Group, consisting of Ben Re-
ichardt, Cory Heilmann, Yuan Lai, and Anita Spielman, has extended
the proof of the Double Bubble Conjecture to R4 and certain higher
dimensional cases.
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Figure 16. If the bubble has just two components, a central
bubble and toroidal innertube, a suitable axis of instability A
is provided by the perpendicular bisector of the two vertices
V1, V2. The places "—" where the rotational vector field
is tangent to the surface divide the bubble into four pieces.
Copyright 2000 Frank Morgan.

Figure 17. If the bubble has three components, one has to
find the axis A of instability case by case, according to the
relative position of parts of the bubble. Drawing by James F.
Rredt, copyright 2000 Frank Morgan.
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15. Theorem [15, THMS. 9.1, 9.2]. In R4, the standard double
bubble is the unique minimizer. In for prescribed volumes v > 2w,
the standard double bubble is the unique minimizer.

Proof sketch. In these cases, the Hutchings theory implies that the
larger region is connected. Since there is no bound on the num-
ber of components of the second region, the case-by-case analysis of
Figure 16 must be broken down into more general arguments about
constituent parts.

16. Open questions. Hutchings et al. [11, Intro.] conjecture that
the standard double bubble in R" is the unique stable double bub-
ble. Although the conclusion of their proof shows the final competitor
unstable, earlier portions such as Symmetry 6 assume area minimiza-
tion, so that there could be unsymmetric stable bubbles, for all we
know.

Sullivan [16, Prob. 2] has conjectured that the standard k-bubble
in (k � n + 1) is the unique minimizer enclosing k regions of
prescribed volume. There is also the very physical question in R3
of whether the standard double bubble is the unique stable double
bubble with connected regions; by [11, Cor. 5.3], it would suffice to
prove rotational symmetry.

Acknowledgments. This article is largely based on the new Chap-
ter 14 of the 2000 edition of [13], where further details and references
may be found. This work was partially supported by a National Sci-
ence Foundation grant.
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Minimal Surfaces,
Flat Cone Spheres
and Moduli Spaces
of Staircases

Michael Wolf

My formal goal in this chapter is to show you the proof of the
existence of some new minimal surfaces discovered by my collabora-
tor, Matthias Weber of Universität Bonn, and myself in 1996. I say
"formal goal" because my secret principal goal is to wander through
several areas of classical mathematics and several concepts in contem-
porary mathematics and show you how smoothly they fit together.

I should explain this perspective a bit more carefully before we
really set out (as it is a bit different from a typical introduction to a
subject). To really understand all of the details of the proof, you'd
need a pretty substantial background in geometry and complex anal-
ysis, much more than we are assuming in this book. On the other
hand, the outline of the proof is not only accessible to readers who
are in the middle of their undergraduate careers, but I think it also

©2004 by the author
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serves as an introduction to modern mathematical study. One of the
most enchanting aspects of mathematics research is how the study
of a single problem will force you to travel from one field of math-
ematics to another and another. How, then, can you possibly ever
prepare for the study of a problem? It seems as though you'd have
to have taken a serious course in most aspects of mathematics, and
you'd spend all of your life preparing and none of your life actually
participating. The answer is that most of the time you learn what
you need — and maybe a little bit more as you go along, and that
is how I'm structuring this chapter: we will describe the context and
statement of one result and then develop the architecture of its proof
as we follow a meandering path through several fields of mathematics
in which you may or may not have a complete background — for the
purposes here, it doesn't matter so much if you don't. I hope we also
encounter some ideas and concepts that are important in present-day
mathematics — these are ideas that are often not met in undergrad-
uate and beginning graduate classes. So my caveat is that I do not
plan a balanced and comprehensive introduction to minimal surfaces;
see [0ss86], [DHKW92J for that. Instead, I plan a path through
interesting terrain towards a site in minimal surface theory of interest
to me.

1. Minimal surfaces
Let's begin with the notion of a minimal surface. It's natural to begin
here, as this is a topic informed by physical experiments on soap films,
most notably those by the (then blind) 19th century Belgian physicist
Plateau. A minimal surface is a surface E in the Euclidean 3-space
E3 which locally minimizes area. That description is mathematical
shorthand for saying that if you begin with the surface E, focus your
attention on a small portion Il C E of it, and then perturb the position
of E only on Il and just a little bit, then the resulting area of the
perturbed surface will not be lower — more precisely, thinking of the
perturbation as resulting in a family of surfaces beginning with
the original surface E (now called Eo), we require that the time t
derivative at t = 0 of the area of should vanish. See Figure 1.
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Here are some examples. In most mathematical subjects, there
is a trivial example, and the subject of minimal surfaces is no ex-
ception: any portion of a plane in E3 is minimal, because if you
perturb a small neighborhood on a plane, then the projection of that
perturbation back onto the plane pretty clearly both lowers the area
of the perturbation and provides a comparison with the area of the
deformed planar region.

For the next examples, let's first assert that portions of soap films
are good models of minimal surfaces, up to negligible effects of the
downward drag of gravity, the thickness of the frame off of which the
film hangs, some physical properties of the soap solution, etc. see

the wonderful book (HT85] by Hildebrandt and Tromba for a careful
and gentle discussion.

But if you accept that intuition, then you can begin to visu-
alize minimal surfaces through some imagination experiments. For
instance, imagine taking two circular pieces of wire, holding them
parallel to each other (one just above the other) and dipping the pair
into a bucket of soapy water (if you ever do this for school children, use
10 parts water to 1 part Joy or Dawn and then add a few tablespoons
of glycerine for very sturdy bubbles). When you pull the pair of circles
out of the bucket, you'll find the pair spanned by a curved cylinder

Figure 1. Deformation of a surface E0.
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- from the point of view of imagination, the cylinder wouldn't have
flat walls, because one could save some area by slightly pulling the
cylinders towards the center of the circle. Later on, I will convince
you that this film is idealized by a surface of revolution (that part
is maybe evident already) called a catenoid, generated by the profile
curve Z = cosh X in (X, Y, Z) space. See Figure 2.

Figure 2. The catenoid.
Figure by Matthias Weber.

In fact, our primary interest today is in complete minimal sur-
faces, i.e., those on which there are no arcs of finite length on the
surface that leave the surface; informally, such surfaces E extend in-
definitely.

As usual, the first example is pretty trivial - it is just an entire
plane in E3; note that any curve on E that starts at a point of E
and leaves any compact set it enters must have infinite length. The
next example is found via a thought experiment as follows. Take a
pair of circles and dip them in a soap solution as before to make a
catenoid. Now take a pair of circles of larger radius, hold them fur-
ther apart and dip them in a soap solution to make a bigger catenoid.
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You should be able to find a distance at which to hold them so that
the old smaller catenoid fits exactly as a small piece of the new larger
catenoid. Continue this process of fitting larger catenoids to extend
the smaller catenoids: the distances between the bounding (huge) cir-
cles grow increasingly (and arbitrarily) large, and the limiting object
has no boundary at all. Mathematically, it is the entire surface of
revolution of the profile curve Z = cosh X in (X, Y, Z) space.

In Figure 3, all arcs on the surface have infinite length. Here you
regard the surface as continuing in its pattern in all horizontal direc-
tions. This is actually the famous doubly periodic minimal surface of
Scherk. Here, you should imagine leaving the picture in three ways:
either vertically by going up or down along the nearly vertical almost
planar regions, or horizontally, by following the diagonal straight lines
out, or by weaving your way around the curvy pieces. Incidentally, if
you were to look straight down onto this surface from above, you'd
see an infinite checkerboard.

Figure 3. Doubly periodic minimal surface of Scherk.
Figure by Matthias Weber.
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In Figure 4, you see a different sort of example: here the arc I'1
leaves the region in finite length, and the arc r2 falls into a hole in
finite length.

Figure 4. On this surface, the arcs and F2 are of finite length.

2. Some history
The subject of minimal surfaces was one of the earliest areas of study
of modern geometry, with the catenoid being discovered in the 18th

century. In that century, a third (in addition to the plane) minimal
surface was discovered — it is called the helicoid and is described
as follows. Thice a ruler and hold it at arm's length, parallel to the
ground. Rotate the rod (still parallel to the ground) and begin raising
your arm (and rod). If you manage to both raise your arm and rotate
the rod at constant rates, then the surface which the rod is describing
is a helicoid. From this description, of course, you can easily find a
precise parametrization of the helicoid. See also Figure 5.

I am describing these surfaces so carefully because of an astonish-
ing piece of mathematical history. For two centuries, minimal surfaces
were intensively studied by differential geometers, and those two ex-
amples of the plane and the catenoid were the only examples known
which were complete without self-intersections (it turns out to be
pretty easy to produce examples with self-intersections) and which
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didn't repeat (the helicoid repeats.) Some mathematicians took this
historical failure of attempts to find different examples as evidence

Figure 5. The helicoid.
Figure by Matthias Weber.

Figure 6. Costa's surface.
Figure by Matthias Weber.
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that there were no additional examples, and indeed there are a num-
ber of proven obstructions to the existence of examples. Yet here's
the amazing part: in 1982, a Brazilian graduate student named Celso
Costa [Cos84] produced a new example of a complete, embedded
minimal surface in E3. It also had other properties; for example, its
group of self-symmetries was finite. But most remarkable, and what
makes it natural for its discovery to have taken so, long is that it was
topologically non-trivial. While the helicoid and the plane are topo-
logical disks, and the catenoid is topologically but a punctured disk,
Costa's surface was a thrice-punctured torus. See Figure 6. Costa's
surface changed the perspective we have on this subject: now we
know that there are many more complicated but geometrically nice
complete minimal surfaces in E3 than we suspected twenty years ago,
and we can hope to find ways to classify them. This is a subject very
much in its infancy.

3. The Weierstrass representation
In this chapter, we are aiming to prove the existence of some mini-
mal surfaces in space. There are roughly two standard methods, the
first from a real analysis perspective, and the second from a complex
analytic, almost algebraic, point of view. Let me describe the first
method very vaguely, almost as a cartoon. My goals in doing this
are first to expose you, ever so slightly, to a deep and powerful area
of mathematics, and second to provide some contrast to the second
method on which I will focus for the rest of this talk; most of all, I
include this discussion because omitting it would be horribly mislead-
ing to a student who might be meeting the subject of the calculus of
variations for the first time.

3.1. Direct method. With those caveats done, here is a method
from real analysis. You want to prove the existence of a minimal
surface in space that "looks like" a certain surface E C E3 that you
have in mind. Okay, so consider "the space 13 = {E} of surfaces
E that are like E0." Obviously, it is a non-trivial matter to clarify
that intuition so as to define the space 13 properly. But let's pretend
that we've done that (and like this whole approach, this defining
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process has been done successfully many times in the course of proving
remarkable results), and we've even endowed B with a topology (so
that we know when two surfaces E B and E' E B are "close").
Since each surface E E B has an area, or possibly a modified area,
we can then consider a sequence (E,1) C B so that the areas (En) are
tending to a minimum or a critical point. Then, we attempt to prove
that this sequence has a subsequence which converges nicely, in some
sense, to a nice limit. Good places where you might read about this
method are [Mo85] and [Str88}.

3.2. Intrinsic vs. extrinsic geometry. The method we will focus
on comes from complex analysis and goes by the name "Weierstrass
representation". I will summarize this method in a moment, but first
let me distinguish for you between two types of geometry; begin by
noting that a surface C E3 has a geometry of lengths and angles
that comes from how it sits in E3. If we then remove E from E3
and study this geometry of E without further reference to how it
sits in E3, we are studying its intrinsic geometry. If we also want
to study the embedding of E C E3, for instance, how it curves in
space, then we are studying its extrinsic geometry. For example,
because you can roll a paper towel onto a tube, as well as lay it
flat, a portion of a plane and a portion of a cylinder have the same
intrinsic geometry but different extrinsic geometry. It's a bit harder
to see that portions of a catenoid have the same intrinsic geometry
as portions of helicoids (but they do), but it is easy to see that they
have different extrinsic geometry. To formally prove that the extrinsic
geometries are different, you might observe that the catenoid contains
no straight lines, while the helicoid is a union of straight lines. On
the other hand, the map which identifies the intrinsic geometry of
a portion of the helicoid with the intrinsic geometry of the catenoid
takes one of the defining straight lines of the helicoid to a planar curve
in the catenoid which connects its two ends.)

With that distinction made, we can say (glibly) that the Weier-
strass representation method for producing minimal surfaces is just
to write them down explicitly; a more careful summary is that we
understand the intrinsic geometry well enough to be able to create
functions corresponding to the extrinsic geometry so that an explicit
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minimal (local) embedding may be found. This is a very useful per-
spective to take when seeking critical points E C 13 for area which are
not local minimizing; you can see from the chapter of Robin Forman
how easily a minimizing sequence for a Morse function can "pass
right by" critical points on a manifold M which are not local minima,
and the same phenomenon holds at least equally well for spaces such
as B. That is a very vague outline of the point-of-view the Weier-
strass representation school takes; we'll now clarify this by precisely
describing the Weierstrass representation. We have assumed very lit-
tle background in real differential geometry or complex analysis, so
this will take some time.

3.3. Riemann surfaces. One can view a surface E C E3 in space
as having either a very flabby structure or a very tight structure, de-
pending on the context in which you encounter the surface. That is
pretty vague, but what I mean is that if you are studying topology,
then all homeomorphic surfaces in space may be equivalent for you,
and certainly small perturbations of the surface are immaterial for
you. If you are a Riemannian geometer, then those slight perturba-
tions change the surface entirely for you, as you only identify surfaces
E, E' C E3 if there is maybe a congruence between them, or at least
a way of matching up their intrinsic distance and angle functions.

There are many notions of middle ground between these two
extremes, and one is particularly important for our study of mini-
mal surfaces. We will regard two surfaces, E, C E3 as equiva-
lent if there is a way of identifying them, say by a diffeomorphism

E E' which preserves angle measurements. This is, of course,
stronger than just requiring the surfaces to be homeomorphic, but it
also is weaker than requiring that both the angles and the lengths
agree. For instance, if we begin with a catenoid C C E3 and then
replace each point (X, Y, Z) E C with a new point (7X, 7Y, 7Z) to get
a new catenoid C' = {(7X, 7Y, 7Z)

I

(X, Y, Z) E C), then the map
S: C C' which takes (X, Y, Z) '—p (7X, 7Y, 7Z) distorts distances
by a factor of 7, but preserves angles. This is the most trivial kind
of angle-preserving, length-destroying transformation, but there are
many others.



Flat structures for minimal surfaces 89

A surface endowed with a notion of angle at each point (or if
you prefer, with an equivalence class of (Riemannian) distance func-
tions, where the equivalence requires preservation of angles) is called
a "Riemann surface".

It turns out that to define a minimal surface, one only needs to
consider the Riemann surface underlying the minimal surface; the in-
trinsic geometry relating to measures of distances is largely irrelevant.

3.4. Some real differential geometry. We are interested in char-
acterizing minimal surfaces, i.e., surfaces for which small perturba-
tions of small subsets of the surface result in a new perturbed surface
whose area is at least as large as the area of the original surface. Be-
cause we have so many choices of sets on which to perturb and allow-
able perturbations on that set, this condition is a geometric condition
at each point of the surface. What should that condition be? Well,
part of the power of the well-developed machinery of the calculus is
that you never need to think about that answer you can just com-
pute the Euler-Lagrange equation for the area functional, and you
can find the answer in the article of Frank Morgan in this volume.

But of course, if you choose, you can think about it and reason out
the answer by geometrical arguments. For instance, try the thought
experiment: can a minimal surface have a portion that is concave
down like the arctic cap of the world? Certainly not, because we could
always reduce the area of that cap by flattening a portion of the cap:
a planar disk with the same boundary as the cap has less area than
the cap. A slightly more subtle example in the same direction is that
of a high mountain ridge, such as you niight get by balancing a pillow
along an edge. (Mathematically, consider the graph {(x, y, z)

I
z =

5 — x2}.) Here we can reduce the area of the ridge by pushing down
slightly in the center; here we increase the length of the ridge line
(the line {(O, y, 5)} in the example) slightly but decrease the lengths
of all of the orthogonal directions to more than compensate, so that
the total area declines.

By a few more experiments along these lines, you can conclude
(and this does take some thought, so don't be discouraged if it takes
you some time to see it) that the condition for minimality is that,
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informally, the surface bends up as much as it bends down. Thus
every point of the surface looks like the seat of a perfectly balanced
horse saddle, with the curvature of the curve from the horse's head
to its tail being equal (but opposite in direction) to the curvature of
the orthogonal curve from the left side of the horse over its back to
the right side.

Let's be a bit more formal. In this paragraph, I'll assume you
remember from your multivariable calculus class the meaning of the
curvature of a plane curve 'y at a point p E it is the
reciprocal of the radius of the osculating circle C, for at p,

=

Now for a surface C E3, pick a point p E E and consider a normal
il to E at the point p E. There is a whole circle's worth of planes
through E at p that contain il, and each one, say P9 (where 9 denotes
a point in the parametrizing circle), meets E in a planar arc, say
through p. Let denote the (signed) curvature of at p, where the
sign of is positive if the normal fi points into the osculating disk
and negative if the normal ñ points out of the osculating disk. There
is some angle 9, say at which the curvature function is least,
and another angle 9, say 9min, at which the curvature function icg is
most.

You might guess, at this point, that the two curves and
along which the curvatures have the maximum kmax and the

minimum are orthogonal; this is true, and I invite you to prove
it, both geometrically and analytically.

The mean curvature H(p) of at p is described by

1
H(p) = (Kmax + 'cmjn).

(Recall that given a curve in the plane, there is a unique circle that
is both tangent to the curve and has the same second derivative: by
this I mean that if we travel along -y away from p a distance €, then
the circle is at a distance proportional to This circle is called the
osculating circle for y and p.) Then the curvature and our
previous thought experiments on area have led us to the conjecture
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that a minimal surface must satisfy the condition that =
i.e., that

H(p) = 0

for each point p on a minimal surface.

A word of warning: while it is true that = are in
balance, we are not saying that (or 'cmjn) is constant. The
beauty of soap film lies in the curvatures being balanced at every
point, and changing from point to point.

In fact, a stronger statement is true. Suppose you have a surface
E and a function on E which vanishes outside a small set of E.
Then you can consider a (continuous) perturbation E via the
formula (using vector addition in E3)

= E +

where is a choice of unit normal field on E, and t is a small time
parameter varying in an interval through time t = 0 (corresponding
to E = You can ask how the area changes with t,
and we get an answer for the first derivative of

L=0 Area(Et.,) =
— fJ Area

where H is the mean curvature function defined in the last paragraph.
(This is a pretty straightforward computation, of the sort described
in the Frank Jones chapter: we move the operator into the integral
sign to get an integral involving derivatives along the surface of the
deformation function The standard method is then to integrate
by parts to end up with an integral (against some function built out
of derivatives of the original surface eo). From this formula, you see
that a surface is minimal if and only if its area doesn't change to first
order under any perturbation and that holds if and only if the mean
curvature H of E vanishes entirely on E.)

3.5. Digression on complex analysis. It is, of course, obvious that
these surfaces we are talking about here are two-dimensional, i.e., an
ant crawling around on them thinks he is on some warped version of
a piece of R2. But, of course, it is often very convenient to regard the
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2-plane R2 as the complex numbers C: instead of writing coordinates
for a point p E R2 in terms of a pair (x, y) of real numbers x and
y, we write the coordinates for p E R2 as a single complex number

I do want to use a bit from the subject of complex analysis here. If
you've had a course in that, then you're well-prepared for my remarks.
if not, then resolve to take one — the mathematics you'll learn is
both beautiful and, coincidentally, fundamental — and here are a few
remarks to help you follow and appreciate the rest of the chapter.

Of course you know that a function f on R2 (either real-valued
with f : R2 R, or complex-valued with f : R2 C) can be written
as f = f(x, y). A little bit of algebra will convince you that we might
also write f = f(z, 2) where z = x + iy and the complex conjugate
2 of z is written 2 = x — iy. This makes sense as x = + 2) and
y = — 2), using that —i(i) = = —(—1) = 1. Now complex
analysis begins by focussing on the study of functions f = f(z, 2)

which, informally, do not depend on 2.

This requires some explanation. The basic point is that we want
to be able to define the derivative of f in the way in which we've been
accustomed since calculus, i.e.,

f'(z)
f(z) f(a)

where here we compute subtraction and division according to the
natural rules for complex numbers that came out of the definition i2 =
—1. Tty a couple of examples, such as 1(z) = 2 or 1(z) = (Rez)2,
and you'll see that (1) is a very strong condition: for instance, if we
take f(z) = 2 = in the natural notation, then the difference
quotient at zero will be

f(z) — 1(0) — 2 — re's
— e_219

z—0 z re'9 —
so that as z 0, the limit depends on the direction of approach to
zero.

This is pretty unsatisfying, since we'd like a complex derivative of
a function f on C to be a function on C itself, assigning to each point
of C a single, well-defined complex number and not some family of
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values depending on paths of approach. So we need a rule that assigns
to each point z C a complex number f'(z). Let's require the limit
(1) to exist everywhere; this rules out the vast majority of smooth
functions 1: R2 R2. Indeed, the only functions that remain satisfy
a pair of differential equations on their real (Ref = + J)) and
imaginary (Imf — J)) parts:

= -(Imf)

= —-(Imf).

These equations, like most new equations, are a bit daunting at first,
but you get used to them. Here's a way to simplify the presentation
somewhat. Consider the differential operators

01(0 .0

0 1(0 .0
and

(Yes, I got the signs right: note that = = 1 while =
= 0.) Then the equations (2) are just the real and imaginary

parts of the equation

and this justifies the remark that complex analysis is, at the outset,
a study of functions f = f(z, : C —' C that depend only on z and
not on

In fact, (2) or equivalently (4) is a very restrictive system of
partial differential equations, and the functions that satisfy (2) in a
domain called holomorphic functions on or (complex) analytic
functions on Il have many interesting and surprising properties. In
particular, all such functions admit a representation in terms of a
convergent power series in the variable z, the real and imaginary
parts of a holomorphic function are harmonic functions (i.e., satisfy

Ref = 0), and the path integrals f, f(z)dz
depend only on the endpoints of 'y, and not on the particular path
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'y between the endpoints. We will have more to say about the last
two of these properties a bit later. Let me just append one additional
piece of terminology: a function f is called meromorphic if it is a
holomorphic map to C = C U {oo}. This means that the function
f takes on the value oo at some isolated places {z2}, and at only
those places, there is a well-defined infinite limit f(z) = 00

(or, equivalently for the topology of C = C U {oo}, we have that
If(z)I = oo). These points z8 are called the poles of f.

3.6. From real differential geometry to complex analysis. I
want to take a parametric approach to this minimal surface problem.
You see, all along we have been talldng about a surface E C E3 con-
tained in E3 and how E3 induces on this surface a way of measuring
angles. Now I want to separate psychologically the surface E with its
intrin8ic notion of angles (called a conformal structure) from the way
it lies within E3. So now imagine a surface E that comes equipped
with a well-defined notion of angle: this makes E into a Riemann
surface — we will change the way we denote the surface from E to
1?. to emphasize that the surface has this extra structure of angles on
it. Also imagine a mapping u : '7?. so that the image set u(1?.)
lands on E and the way we measure angles on 1?. at a point p 1?.

agrees with the way Euclidean space E3 forced us to measure angles
at u(p) on E = u(1?.). The mathematical terminology that describes
this situation is that the map it is a conformal (i.e., angle-preserving)
map of the Riemann surface 1?. onto E.

Now, since 1?. has a way of measuring angles, we observe that there
is a natural way of rotating a vector by 90° to another vector. It turns
out that in 2 real dimensions, the fact that we have a continuous way
of rotating vectors by 90° implies that there is a consistent way to
regard open sets on 1?. as open sets in C. In other words, we can
define a notion of (complex) analytic function on the surface; i.e., a
Riemann surface is a valid domain for complex analysis.

[This is actually a strong statement: imagine two tori of revolu-
tion1 one, say T0, generated by revolving the circle (x — 1)2 + y2 = a2

and one, say Tb, generated by revolving the circle (x — 1)2 + y2 = b2

around the z-axis in E3. (Now we cannot talk about holomorphic



Flat structures for minimal surfaces 95

functions on these tori, as it turns out that any globally holomorphic
function on a compact boundaryless Riemann surface is a constant;
but we can talk about meromorphic functions on Ta and Tb, i.e., func-
tions which are holomorphic off of a set of punctures and whose abso-
lute value goes to infinity as we tend towards the puncture.) It turns
out that there is no angle-preserving way of mapping the first torus
homeomorphically onto the second torus, so the space of meromor-
phic functions on Ta is quite distinct from the space of meromorphic
functions on Tb.J

Let's return to our map u : 1?. —+ E3. Now, there is usually no way
to put a global coordinate system in a surface: if you think about a
torus, for instance, it is likely that if you were to follow the x-axis of a
coordinate system far enough out, you would end up returning to near
where you started. So how can we do calculus or complex analysis on
a surface? We would seem to need to be in a piece of the plane for
that. Actually, that's the answer: we imagine the surface being made
up of "patches" of the plane, and we are careful to be sure that no
answer we obtain depends critically on what patch we use. We will
now proceed with one such piece of analysis on a patch. Begin with
the understanding that patches on can be identified with patches
on C, so it is useful psychologically to confuse the two patches and
think of having a complex variable z on a patch of As usual, write
z = x + iy, and as long as we're setting notation, let ii = (X, Y, Z).
(In other words, on a small bit of R., we impose (x, y) coordinates
written as z = x + iy, and we regard u as assigning to z a position
in space: here space has the standard coordinates (X, Y, Z), and so
u can be written concisely as u : z u(z) : (X(z),Y(z),Z(z)). We
translate the geometric condition that the map u is angle-preserving
to the equivalent analytic conditions that

oiz —

— ay
(5a)

On
and —.—=O.

Ox Oy
As geometers, we like to compute geometric quantities; indeed, since
our choice of patch is arbitrary, we cannot really trust answers or
operators in coordinates that we can't explain in a geometric way
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without coordinates. It is always interesting in geometric analysis to
find the Laplacian of natural geometric quantities, and now is not an
exception. So we ask, what is equal to?

Well, = + is a natural operator because, as it is invari-
ant under rotation of coordinates (x, y) '—. (x*, ye), it is geometric in
a strong sense. Thus, is geometric in a strong sense: our result
should be a vector, and one whose coefficient is both geometric and a
sum of second derivatives in orthogonal directions. The point is that
one can pretty much guess the answer with some thought, or with
less thought recognize that the actual answer that

where is the normal vector, is not a great surprise; there are no
other vectors naturally connected with other than and no
natural functions associated to an embedding of a patch by ii which
involve the required sum of second derivatives other than the mean
curvature function H.

Of course, for a minimal surface, we know that H 0, as this is
the defining property for minimal surfaces. We conclude that we have
two conditions for our conformal minimal immersion iZ: 7Z E3 of
the R.iemann surface u must be angle-preserving as in (5a) and

(5b) = 0.

Note that if we write the map u : R. —' E3 in its E3 coordinates, i.e.,
u = (X, Y, Z), then (5b) is really three equations. It's convenient to
assign the three equations the same label:

(5b)

Now let's bring complex analysis into our discussion. Using the
complex differential operators and defined in (3), we can rewrite
the Laplacian as

02 02 00
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and then (5b) can be written as

ôziOz j
(6b) =0,

-0
—

The wonderful fact is that (5a) can also be rewritten in a very clear
way in terms of the same bracketed objects in (6b), as

\2 \2 \2
+ + =0.

8z t9z

Look at (6a) and (6b) together: the set of equations (6b) says that
the objects and are all holomorphic as (6b) is the
defining equation (compare (4)) for holomorphicity, and (6a) is an
algebraic relation among those three terms.

Through all of this work on finding and rewriting necessary condi-
tions for the minimal mapping U: 1?. —. E3, don't lose sight of the goal
of writing down a map u, preferably in coordinates as u = (X, Y, Z).
Keeping this goal in mind, notice how close we are to finding a solu-
tion: the quantities for which we are now writing conditions, i.e.,

are just the derivatives of those coordinate functions we seek.
In particular, ifwe find nice solutions A = B = and C =
then we can recover the map u = (X, Y, Z) by just integrating as in
first semester calculus:

X(w)=
jW =

Y(w)=

Z(w)=ReJ Cdz=PtsJ —.
p p äz

In fact, if all we want to do is minimally embed a small disk
D c R on we almost just need to find three holomorphic functions
A, B, and C on D with the property (6b) that A2 + B2 + C2 = 0 on
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D, and then use (7) to write the map u: D C E3. Let me defer
discussion of the word "almost" until section 3.9.

I was careful in that last paragraph to work within a small disk
D c IZ. Why is this? The reason is that I have not been paying close
attention so far to what "tensor type" the A, B, and C should be.

This requires some explanation — especially if you find the word
"tensor" intimidating. Basically, in geometry we are interested in geo-
metric objects where by this I have in mind not only functions but
vector fields, line elements (i.e., objects you integrate along curves
to assign a length to the curve), area elements (i.e., objects you in-
tegrate over sets to assign an area to a set), etc. These are natu-
ral objects to picture (especially, e.g., vector fields), but how do we
compute with them (especially on shapes such as the sphere or the
torus on which it's impossible to impose a single global coordinate
system)? When you write down such an object in coordinates, its ex-
pression depends on coordinates: for instance, the vector field on the
plane consisting of unit eastwardly pointing vectors might be writ-
ten as (1,0) everywhere, but if you change coordinates from (x, y)
to (u, y) (2x, y), then in terms of (u, y), you would want to write
that field as (u, y) = (2,0). The idea, then, of tensors is just to write
out a geometric object in coordinates together with an explanation
of how the expression changes when you change coordinates. (This is
sometimes a bit much to swallow on the first reading. For the sake of
correctness of exposition, I am going to proceed writing as if you've
understood all of the above. If, however, this is your first encounter
with tensors, and you're still not comfortable with them, then please
don't get stuck here: I don't think you'll lose too much just replacing
all of the tensoral language such as "one-forms" with mental language
such as "geometric objects that are locally like functions that it makes
sense to integrate." I've been focussing just on the algebra and con-
tenting myself to work within a small disk D C R. where I can just
take A, B, C to be functions this prevents me from getting into
any trouble if they happen to be of a different tensor type. Looking at
them more carefully though, you observe that, for instance, we wrote
A = and since z is a choice of coordinate on a domain C 1?.,

we need to consider how A would transform if we were to choose a
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different coordinate, say (, on the domain ft Imagine, for example,
how A would transform if we were to choose C, = 5z. In particular, we
want the coordinate X = Re f Adz to remain invariant under such a
change of coordinate from z to The solution to these anxieties is
simply to note that we should really be imagining A as the coefficient
of a "one-form a"; i.e., in coordinates,

The "dz" on the end tells you how to change coordinates from, say,
z to (: since the chain rule says that dz = we see that when
we rewrite a = Adz in terms of a different coordinate (, we should
write it as a = Adz = A transforms to
under the change of coordinates z '—i (. Why is this important? Well,
now not only will a transform properly under a change of coordinates
from z to but then also the expression Re f a will make sense with
respect to any choice of coordinate on R.. (Generally speaking, "one-
forms" are dual to vector fields: when you apply a one-form at a point
to a vector at that point, you just get a number. Sometimes I even
like to say that one-forms are the geometric objects that eat vectors
and return numbers.)

Let's summarize: we require (i) "meromorphic" one-forms a,
say (in coordinates)

ox
a = —dz,

Oz

(7b)

oz
=

oz
with (ii) the property that their squares (often called "quadratic dif-
ferentials") a2, and -y2 sum to zero:

(7a) a2+82+y2=O.

3.7. The Weierstrass representation. Let's solve the pair of
equations (7a) and (Th). Of paramount importance in our solution to
these equations is that our solution be both (i) simple and (ii) geomet-
ric. Here's the solution from the 1860s called the Weierstrass-Enneper
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representation: find a meromorphic function G and a meromorphic
one-form dh (not necessarily exact, but more on that later) and set

/3=

= dh.

Of course, since C and dh are meromorphic, these forms a, /3 and
are also meromorphic, and then it is also quite easy to check that

a2 + /32 + = 0. The expression a2 + /32 + y2 is quadratic, so the
expression (8), while maybe appearing a bit complicated at first, is
about as simple as one could hope for. But where is the geometry?
First off, remember how everything fits together: the map u : 1Z. E3

is now given as
(9)

(Ref /3,Ref
p p p

(Re
fz

— C) dh, rte f + G) dh, Re f dh)

(where p E R. is just some arbitrarily chosen point that will map to
(0,0,0) E E3). Look now at the last coordinate, Ref dh. We see
that Z = Re f dh, so that by taking the derivative of Z, we see that
the real form dZ can be expressed as dZ = Re dh (by the funda-
mental theorem of calculus), and so dh is obtained by taking dZ and
then "complexifying" the one-form (adding times the conjugate
differential, for those who have studied a semester of complex anal-
ysis). Informally, we think of dh as d"height", and this explains its
geometric meaning.

The function C is maybe a bit more subtle. Remember that on
the surface E = u(R), there is a single naturally associated vector, the
normal vector We can then think of a function which associates,
to a given point p on E, a unit vector (Really, there are two
choices, the first being the negative of the second, but we can just
pick one at a point Po, and if the surface E is orientable and if we
assume that is continuous on E, then we'll have completely
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determined the choice of everywhere.) What is the range of this
function Well, it associates a unit vector to a point p E E, so the
range is the unit sphere S2 = {(X, Y, Z) E E3 X2 + Y2 + Z2 = 1}.
There is a natural map, called stereographic projection S : S2 —'
C2 = Cu {O}, that connects the surface S2 to complex analysis. The
construction (see Figure 7) is as follows: put the unit sphere S2 on
top of the complex plane C, with the south pole S sitting at the
origin. Then shoot off a ray in E3 from the north pole n to another
point q E S2 on S2. The ray continues past q down to the plane
C, meeting C at a unique point S(q) e C = C U {O}. The process
is completely reversible, and so the map S : S2 — {n} C is an
identification of S2 — {n} with C. This is actually a great way of
seeing the topology of C (compare the end of §3.5): as we move out
further in the complex plane, the preimages under S become more
and more northerly. Thus, it is natural to say that S(n) = oo, i.e.,
the north pole stereographically projects to oo, and that S :S2 —' C
is a homeomorphism (tautologically giving the topology of C, if you
haven't already encountered it). So this map : E —. S2 is

pretty clearly very geometric, and the map C is just the parametric
and complex analytic rendering of it:

If you like vector calculus and computations, you should probably at
this point check out whether I'm right or not: using (9) and inverse
stereographic projection, find the unit normal map (Finally, a
small technicality that is buried here is that we must "orient"
that G preserves orientation.)

Figure 7. Stereographic projection.
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3.8. Examples. After all this hard work to develop the Weierstrass
representation (9), it's time to reap the rewards by just choosing
functions G and dh.

Example 1. Enneper's surface (see Figure 8). The simplest choice
(more about this in the next section §3.9) is to pick R = C, and
G = z and dh = zdz. This gives a complete immersed (but not em-
bedded) surface known as Enneper's surface (1868). You can "build"
it this way: take a coathanger bent to follow the seams on a baseball.
Dip this in a soap solution to get a soap film. This film is not a
portion of Enneper's surface. Break the film and dip it again; there is
some chance that you'll get a different surface, but if you don't, then
blow gently on the surface you do get and it will jump to a differ-
ent surface which, in some sense, clings near to the other side of the
baseball. The point is that there are two stable films that span this
coathanger, so we expect an unstable surface on some path connecting
them. (This is the notion of a "mountain pass" : imagine on the land-
scape G of the space of all possible spanning surfaces, where height is
given by area, that there are two valleys representing neighborhoods
of the pair of stable surfaces. Then look at all the paths in this land-
scape of surfaces connecting the two valleys, and find the path whose
maximum elevation is least. This is the path that takes you over the

Figure 8. Enneper's surface.
Figure by Matthias Weber.
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mountain pass, and the point at its highest elevation represents an
(unstable) minimal spanning surface to the wire — here it is a portion
of Enneper's surface, if you properly bent the coathanger.)

Example 2. The catenoid; see Figure 2. Here take 1?. = C — {O},
C = z and dh = Note the function-theoretic symmetry z in
the data that mirrors the reflection of the catenoid about the plane
through its waist.

Example 3. The helicoid; see Figure 5. Here take 1Z = C — {O},
C = z and dh This one is a bit funny. Note that

Z= Ref dh

=Re[
Jp=1 Z

= Re{ilogz} by our choice of p = 1

= Re{i log re'°}

= Re{ilogr —0)

=-e.
So as our path wraps around the origin, we steadily climb, and so this
surface is not well-defined on our domain of C — {O}. Yet it is still
minimal: it simply has the topology (as the image surface u(R) C
described in §2) of R2 and not of 7Z. = C — {O}, as our representation
suggests. In our next section, we consider more carefully the perils of
our defining forms and in (9) having integrals, around closed
paths in R., whose real parts do not vanish.

3.9. Some restrictions. After this beautiful formula (9) and the
easy examples in §3.8, we come to the bad news: you just can't pick
1Z, C and dh arbitrarily. There are some restrictions — one quite
severe, and one mild.

The mild restriction is the explanation of the use of the word
"almost" in the paragraph after (7). The surface = u(1Z) has
induced on it from E3 an element ds of arclength. (If this language is
unfamiliar, think of the ways of measuring arclength from first year
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Put simply, the issue is that we want the map u : —+ E3 to be
well-defined, i.e., for each point p E 1?., there should be exactly one
point P E E3 for p E R. to map to via u. This is of course second
nature to us: one of the first pieces of mathematical theory most of us
learned is that functions are rules, and so are unambiguously defined.
Yet look again at the definition of u : 7?. E3 in the Weierstrass
representation:

U: Z (Ref + G)

Here p is just some arbitrarily chosen point, and we can see that since
along the trivial path from p to itself, we have = fj3 = y =
0, we must be defining u(p) = (0,0, 0). But what happens if the
path r from p to itself is not just the trivial constant path? What
if it loops as a cycle in some homologically non-trivial way? (Here
a path r is "homologically non-trivial" if it is not the boundary of
a subsurface — the idea behind invoking this hypothesis is to avoid
situations where F bounds a subsurface E5 C E. This allows us to
avoid situations where we might apply Stokes' theorem to the subsur-
face to find that Jr6 = 0 for any one-form 5 which when restricted
to ES is then also holomorphic on that surface E5) If F were to be a
non-trivial loop, then we could have problems, because, for example,
it might happen that Jr — C) dh is not purely imaginary, i.e.,
Re fr — C) dh 0. In that case, we would have no unambiguous
definition of u(p); by parametrizing F as a path F(t), say from t = a

to t = b, we would obtain a path u(r) by writing

u(F(t))=

but that path would not close up in E3, since at least the first coor-
dinate Re — C) dh of the image at the end of the path would
differ from zero, and the first coordinate of the image at the outset
of the path would differ from the first coordinate of the image at the
end of the path.
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Thus the major restriction of a Weierstrass representation u
R. —p E3 is the requirement that

Ref — c) dh = 0,

Ref dh= o

for any homologically non-trivial cycle a C 1Z. See Figure 9.

Figure 9. The global problem with the Weierstrass representation
is the well-definedness around homologically non-trivial cycles.

Notice, for example, that the helicoid, represented as in Figure 5
in §2, violates the third item in (11) for any cycle that winds non-
trivially around the origin in R. = C — {0}.

4. Some recent non-trivial examples

4.1. The problem and some history. While the Weierstrass rep-
resentation is more than a century old, the subject of minimal surfaces
in space is quite young. Why? The reason is that the century
mathematicians didn't solve (either for lack of technique or lack of
interest) the period problems on Riemann surfaces R. with some han-
dles. They also didn't know how tractable some of the function theory
would turn out to be; see, e.g., [0ss64], [Cos841, [HM82]).
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In the rest of the lecture, I would like to solve for you a par-
ticular problem in minimal surface theory that I recently worked on
with a colleague, Matthias Weber, from Indiana University (then at
Universität Bonn). I will of course only sketch the proof, but you can
find full details (assuming a substantial background in differential ge-
ometry, minimal surfaces and complex analysis) in [WW98]. More
precisely, I will fairly carefully describe the architecture of the proof,
as the architecture involves many common elements of arguments in
contemporary geometric analysis, but I'll get much vaguer at the end,
when the details become a bit too particular to this case.

Before I begin, let me recall again some very brief historical con-
text for our work. Remember that startling history: here is a list of
the first few known complete embedded minimal surfaces which are
not formed by repeating a basic pattern. The first is the plane, known
since antiquity of course. The second is the catenoid, discovered in
the eighteenth century. The third was found in the early 1980's by a
brilliant Brazilian graduate student named Celso Costa [Cos84]; see
also [HM9O]. It is a torus with two catenoid ends and one planar
end, and it is already pictured in Figure 6. This spectacular find fu-
eled an already burgeoning interest in the subject, and people began
to try to see what examples they could create.

(For instance, Hoffman and Meeks quickly saw how to add addi-
tional handles, as pictured in Figure 10.)

In rough outline, most of the construction techniques followed a
pattern. First, dream up, either through imagination or computer
graphics or a combination of both, a good picture of a complete min-
imal surface you think might exist. Then, and this is a critical step,
assume that the surface has lots of symmetry; indeed, assume enough
symmetry so that if you looked at the quotient of the surface by
the group of isometrics, you would be left with a very, very sim-
ple surface — commonly a surface topologially covered by a three-
punctured sphere. Then study carefully the complex function theory
of that simple surface — this is often quite difficult, as you need to
know fairly precise information to solve the period problem and
use that study to prove that there is a solution to the period problem.
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Call this number of times that C maps E over S2 the degree d of
Here's our question:

Question 1. If E C E3 is a complete, immersed minimal surface of
genus g in E3, what is the least possible degree d for its Gauss map
N?

It is known [JM83] from some geometric topology that

d � g + 1,

so our question becomes

Question 2. Are there any complete minimal surfaces E in E3
whose Gauss map has degree d = g+ 1 exactly?

This is the question that Weber and I answered, and that I will
discuss here. It is very important that I be very clear about the his-
tory: independently of us, a Japanese mathematician named S. Sato
also answered this question, and his initial manuscript [Sa96] ap-
peared several months before ours did (with a very different proof).
Thus he gets first credit for the general theorem. Other mathemati-
cians had earlier produced examples in genus g = 1, 2, and 3. so they
get credit for those.

Theorem A. Chen-Gackstatter [CG82] g = 1, 2; Do Espirito-Santo
[DoE94] g = 3; [Th94] Experimental Evidence for g 35; S. Sato
[Sa96]; Weber-Wolf ['WW98]. There is such a surface for each genus
g � 0; it has one infinite end which is asymptotically congruent to
Enneper 's surface.

Here "asymptotically congruent" means that one could place a
copy of Enneper's surface near the end of one of the surfaces from the
theorem, and the two ends would have a distance between them that
goes to zero as one travels out either end.

We give a computer image of a possible solution surface in Fig-
ure 11.
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Figure 11. An image of a surface of genus 4 with one Enneper-like end. 
Figure by Matthias Weber. 

4.2. The proof. 

4.2.1. Revision of the period problem. In this section I want 
to begin the proof of Theorem A. First, we rearrange the algebra 
of the period conditions (11) to suggest a different approach to the 
Weierstrass representation (9). In particular, we observe that if we 
focus our attention on the pair of one-forms Gdh and bdh (instead 
of the meromorphic function G and the one form dh), then we may 
express the period conditions (4) as 

j Gdh = j ~dh for all cycles "y c n 

and Re j dh = 0 for all cycles "y c n. 

This seems counterproductive because now it seems that we need to 
track periods of Gdh, bdh, and dh as before, but in fact it will turn 
out that the third condition will be trivially satisfied, so this change 
in algebraic perspective really will clarify some issues for us. 

Next comes a construction that will appear to be completely with­
out motivation. In fact, I could explain how to pass from a picture of 
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a minimal surface you want to create to the following construction, 
but it would require me to develop a bit more complex analysis here 
than space allows. (You can find a pretty careful description in §2.3 
of [WW02] that should be accessible to you if you know a semester 
of complex analysis theory.) It is possible, however, to discern much 
of the motivation from the discussion that follows the construction, 
especially if you review it backwards from where it ends, and I'll add 
a brief explanation at that time . 

... // .. // 

// ... // IlNE 

Figure 12. A staircase. 

4.2.2. Staircases and flat surfaces with cone points. Here's 
the construction. Consider a polygonal arc in the plane with 2g + 1 
finite vertices that is symmetric with respect to reflection about the 
line {y = x}, and, as in Figure 12, alternates between left- and right­
angled turns beginning from the positive y-axis. Call such a curve a 
"staircase" S. 

A staircase S divides the plane C into two complementary do­
mains, which we will label as the northeast domain nNE and the 
southwest domain nsw: 

Focus for example on the northeast domain nNE, and think of it 
as a flat piece of C, like a piece of steel, with a staircase-like boundary. 
In fact, take two copies of nNE, the second oriented oppositely to the 
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first, lay them exactly on top of each other and weld them together
along the staircase boundary in C to get a new geometric object,
SNE.

What is SNE? Well, if you interpreted the construction correctly
and welded the two copies of the point oo to each other, then SNE is
topologically a sphere. But here the geometry is much more interest-
ing than the topology: to begin, notice that the vertices of the stair
case S = become, on the sphere SNE, distinguished points,
where somehow the geometry is different. At all other points, the
geometry of a neighborhood of a point is the geometry of a neighbor-
hood in a flat plane. This claim is pretty obvious at points in the
interior of one of the old but it is also true for neighborhoods
of non-vertices on = S. You see, these points have neighbor-
hoods on each that individually look like half a disk, and when
you weld them together along their common boundary in the
union has the intrinsic geometry of a pair of welded half-disks, i.e.,
the intrinsic geometry of a flat disk. Thus, SNE is a flat sphere with
some distinguished points at the images of the vertices.

What about the vertices? Well, they are "cone points". To see
this, let's examine a cone C of slant height 1. Cut C along a straight
line L from its vertex to its boundary: the cone will now lay flat on a
plane and will look like a disk with a sector of vertex angle 9 removed,
and the line L appears as the pair of boundary rays of that sector
(see Figure 13). Thus the cone C is really the identification space of
a sector of angle K = 2ir — 9, where the identification is of the pair

Figure 13. An extrinsic and synthetic view of a cone.
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this then means that one-forms are the natural tensor for integration
along smooth curves, as at each point, they eat the tangent vector
to the curve and the integral becomes the (generalized) sum of the
resulting numbers. Now look at this one-form dz, restricted to the
domain 11NE which is northeast of the staircase S. This form "lifts"
to the covering surface MNE because MNE is just made out of copies
of on which dz is defined (and after a bit of discussion, which
I'll leave to you to fill in, about how the lift works near the images of
S). We'll call the resulting one-form, lifted from dz on 11NE, on MNE
by the suggestive name Gdh.

There's a similar construction for the "southwest side of 8", say
after copying it all out again, we find ourselves with a one-form,

lifted from dz on on the genus g surface Msw. We'll call that
one-form by the suggestive name

Figure 15. A rotated staircase and images of a cycle

After all of this constructing, here comes the payoff. It's easier to
follow if we rotate S by 45° so that all of its sides now have slope either
+1 or —1, and alternate between the two. See Figure 15. Pretend
for a moment that MNE is the same Riemann surface as Msw, i.e.,
MNE = Msw = R. (a Riemann surface), and let a be a cycle on
(We'll discuss at greater length what this equality really means in
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the next subsection. If we did it now, it would distract us from the
basic plan.) Then has images on C that might look as indicated in
Figure 15. (As in Figure 15, assume that S has a reflective symmetry
about a horizontal line through its middle vertex.) Then the two
images and on 11NE and (respectively) are directed
arcs that are conjugates of each other (after a rotation of by 7r).

Then

L Gdh = j dz as this is the definition of Cdh and

= f dz by construction of Figure 15 and (12)
"SW

= j by the definition of and

So we seem to have solved the period problem (11) for the minimal
surfaces whose data G and dh combine to determine the Gdh and

one-forms described here. In fact, those are the surfaces of The-
orem A, where the Enneper-like end is represented by the vertex at
infinity to see this, one just studies pictures like Figure 11, and in-
terprets the geometry of C and dh in terms of only a bit more complex
function theory than we can describe here.

For the more advanced student, let me insert here a brief ex-
planation, written with a slightly more advanced terminology. From
pictures like Figure 11, we can determine all of the points with ver-
tical normal vectors. If we identify via stereographic projection the
upward pointing normal with oo and the downward pointing normal
with 0, then we have found the divisor of C, at least at the finite
points (i.e., not the ends) of the minimal surface. The Weierstrass
data for the model of the ends, in this case the end of an Enneper sur-
face for the asymptotically Enneper ends, determines the divisor at
the points on the surface corresponding to the ends. (It is a wonder-
ful and deep theorem of Osserman [0s64] that minimal surface ends
of finite total curvature correspond to punctures on the underlying
Riemann surface, and not holes or slits or anything else larger than
a point.) Also, from the picture, or maybe by comparison with the
divisor of C and using (10), we can determine the divisor of dh. From
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these divisors, we can determine the divisors of the forms Gdh and
using just the arithmetic rules for divisors. Now, the divisor of

a meromorphic datum a, say a = Gdh or a = determines that
datum up to a constant; yet even with that ambiguity, we can still
determine the flat singular metric say = lGdhl or =
That flat metric "develops" into the flat plane E2, by analytically
continuing any initial local isometry of a patch into E2. The devel-
oped image like carries a natural one-form dz, which puils
back by the developing map to the original one-form a. This is the
procedure we secretly followed with one quarter of a surface such as
that in Figure 11 to find the domains and It is a bit of
an accident that, in this case, the period conditions (10) force the two
domains to fit together along their common boundary staircase S.

4.2.4. The period problem gets rephrased as a mapping
problem. I said "we seem to have solved" in the last paragraph,
rather than "we have solved," because there's still a big problem: in
the discussion, we pretended that A'INE = Msw = But this is not
necessarily so.

First observe that what we mean by "=" in MNE = Msw is that
(1) both MNE and !tfsw are Riemann surfaces, so that we have a
way of measuring angles in both MiNE and Msw, and (2) there is a
homeomorphism from A'INE to Msw which comes from taking
to in a finite vertex-preserving way, and that homeomorphism
is also angle-preserving.

The problem is, what if there is no such map? That is, what if
MNE and Msw are topologically the same, but measure angles in a
fundamentally different way?

In fact, this can happen. Probably by now you've seen the con-
struction of a torus as an identified parallelogram, as in Figures 16.
But in the square torus, the angle between the diagonal curves is 90°
while in the rectangular torus, it is not 90°. One can prove, though it
takes just a bit more than I'm providing here, that this angle between
diagonals is a number that is characteristic of the Riemann surfaces
represented here by the square torus and the rectangular torus (and
their presentation here as a square and rectangle, but that's a bit more
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subtle, and we shall ignore this point completely). So the square torus
and the rectangular torus are different Riemann surfaces.

We are left to consider the case of complementary domains
and of a staircase S. For most staircases 5, it turns out that
the resulting Riemann surfaces MNE and Msw are different Riemann
surfaces. More concretely, there is usually no conformal (i.e., angle-
preserving) homeomorphism from to that takes finite ver-
tices of S to finite vertices of S.

-. III -

—— III
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I
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I
I

S. I
S. I

S.,
'S.

• I S.

• I S.

/ S.

I S.I S.

I S./ S./ S./ S.

Figure 16. A square torus and a non-square torus.
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But notice that we have lots of freedom in how we draw 8: thus
Theorem A is proved by the above discussion if we can solve

Problem B. Find a staircase S (symmetric as in Figure 12) so that
there is an angle-preserving map from to 11sw which takes finite
vertices to finite vertices.

4.2.5. The moduli space of staircases. Our new Problem B is
phrased in a very common way if one adopts the point of view of what
is known as moduli space theory. You see, each symmetric staircase
with 2g + 1 finite vertices S can be ("almost") described in terms of
g — 1 real numbers, called moduli; we commonly refer to the space
M {S} of symmetric staircases with 2g + 1 finite vertices as a

— 1)-dimensional moduli space" of symmetric staircases.

There's a good chance that you've never heard of a "moduli
space". That's fine as I noted at the outset, much of my moti-
vation for writing this article was that it afforded me the opportunity
to introduce slightly advanced concepts such as moduli spaces well
before they would naturally arise in standard coursework. Here's the
idea: we are often interested in a collection of geometric spaces that
are identical in some ways but not in all ways. Such a collection
is called a moduli space, and invariants that we use to distinguish
elements of the collection are called the moduli of those elements.
The most famous moduli space is perhaps Riemann's moduli space of
Riemann surfaces of genus g: this is the set of closed (boundaryless)
Riemann surfaces all of which have the same genus (number of han-
dles), but are different in that for any pair of distinct elements in the
space — remember that this paper represents two Riemann surfaces
of the same genus there is no angle-preserving map between those
surfaces. That is, each point on the space represents all the Riemann
surfaces of genus g for which there is an angle-preserving map, but
two different points really measure angles differently.

There are many other interesting (and famous) moduli spaces in
geometry and mathematical physics. It is often interesting to study
what shape these moduli spaces have and what geometries they admit,
as that often reflects back to the geometry of the elements of the space.
In fact, at the very end of this article, we will reduce our problem to
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the study of a certain function on a moduli space. We will end up
being very interested in how the moduli spaces of small staircases fit
into the boundary of moduli spaces of large staircases.

We return now to our basic problem. Before we try to solve Prob-
lem B, let's get the count right — explaining the word "almost" above

for there's a slightly subtle point here. Remember that our real
interest is in the domains and which are complementary
to a symmetric staircase 8, and in fact, we only care about the way
IZGdh records angles the way one measures distances in it is ir-
relevant. So if we start with a staircase S and then rescale it by a
constant, say 7, to get a new staircase 8' = 78, then since the new
complementary domains and are just rescalings of the old

and (respectively), we really haven't changed the angle-
measuring properties of the complementary domains. So we don't
want to distinguish between S and S' in our moduli space. More
trivially, we don't want to distinguish between congruent staircases,
i.e., those differing by a rotation or translation.

It turns out that this scaling is the only way that two non-
congruent staircases can give rise to equivalent complementary do-
mains, where here "equivalent" means that there is an angle-preserving
homeomorphism between and and another angle-preserving
homeomorphism between dh and dh• So our moduli space M
should be thought of as a space of equivalence classes of staircases,
where an equivalence class [8] consists of all those staircases 8' which
are a combination of rotations, translations and rescalings of S.

So let's draw a staircase S and keep track of how much freedom
we have. Up to rotation and translation, we can assume that the
first finite vertex is 0, with the staircase containing the positive y-
axis. The next finite vertex is on the real axis, so we can rescale it
so that it occurs at the point 1. After that, we have normalized as
much as possible, so the next g — 1 finite vertices are determined by
any choice of g — 1 distances. Thus, we have determined the first
g + 1 of the 2g + 1 finite vertices, culminating in the choice of the
"middle vertex". But all of the remaining vertices are determined by
the symmetry about the 45° line through that middle vertex; thus
the staircase is determined by g — 1 positive real numbers.
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Thus M is a very simple moduli space, in that it is topologically
trivial, and even naturally parametrized by = { (x1,. .. , x9. i) E

I
x2 > O}.

So how does this perspective help us solve Problem B? Well,
instead of trying to write down the Weierstrass data for Theorem A,
we use very soft methods that we learned in calculus (these ideas are
also preparatory to Robin Forman's lecture in this volume). We create
a function H : M R on M that somehow measures, for a given
staircase, how close 11Gdh and dh are to admitting the appropriate
angle-preserving map; alternatively, this function measures how badly
the angles in 11Gdh might be distorted by a good mapping from
to

We then prove three features of this "height" function H : M

1) We prove that H(S) � 0 and H(S) = 0 if and only ifS solves
Problem B.

2) We show that if S is a sequence of staircases that is not
contained in a compact set K C M, then

H that if H(S)
0, then VH 0.

If we can engineer the creation of such a function H : M —' R,
then Problem B is solved: Property (2) would guarantee the existence
of a staircase with VH(50) = 0, and then property (3) would
imply that H(So) = 0. By property (1), we would see that So solves
Problem B.

At this point, I'd like to show you the construction of the height
function H : M —' R, and the detailed proofs of (l)-(3), but this re-
quires too substantial a background in complex analysis and moduli
space theory. Besides, my purpose in this chapter was just to ex-
pose you to several contemporary fields and constructions in modern
geometry, and the details of the proofs would take us in a different
direction into the techniques of a subject called Teichmüller the-
ory. Of course, while you can read about the details of the proofs
in [WW98J, I bet it's a bit unsatisfying after such a long journey
to get not even a glimpse of the whole picture. So I'll conclude this
article by steering a middle course: I will give a vague summary of



122 Michael Wolf

the construction and the techniques of proof, but not give a complete
description. I hope that will be a bit more satisfactory.

Basically, there is a notion of a length of a class of curves that
makes sense on a Riemann surface. This may be a bit confusing,
since we said earlier that Riemann surfaces have only a well-defined
notion of angle, not length, but the idea of the "extremal length" of
a class of curves gets past that by considering a "best" length among
all possible versions of lengths defined by metrics on the Riemann
surfaces whose measurement of angles is compatible with that of the
Riemann surface.

It turns out that if we pick the right g — 1 curves, then these ex-
tremal lengths completely determine the domain 11Gdh, or the domain

The function H is defined to compare corresponding extremal
lengths on 12Gdh and and we can arrange the comparison so
that H � 0. For most choices of these g — 1 curves, the domains
QCdh and will solve problem B if and only if H = 0, and so this
proves property (1). If the curves intertwine properly, then property
(2) will follow (surprisingly) from the fact that 1ZGdh turns left at a
vertex if and only if turns right at the corresponding vertex.
(The argument is long and technical, but that lack of correspondence
is the crucial feature.) Finally, property (3) follows because of the
way the domains fit together, and crucially from induction (!) on g.
Basically, if we know we have a solution for genus g — 1, then (by us-
ing the Implicit Function Theorem) we can add a small corner at the
middle vertex of S and get a staircase for genus g. What's important
about this genus g staircase is that it almost solves H = 0; because it
was born out of a solution for the g — 1 problem, and g = (g — 1) + 1,
all but one of its relevant extremal lengths are already in agreement.
Thus, we find ourselves with but a one-parameter problem which is
easily solved by moving a simple edge just back or forth. The tricky
part in this final step is understanding how moduli spaces fit to-
gether. Certainly, since we can think of the genus g moduli space
M = we can think of the genus g — 1 moduli space as a face

of = M. But it is a bit more technical to understand
how the important functions on extend to I think I have
to leave those details to the paper, though.
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Figure 17. Doubly-periodic Scherk surface
whose quotient surface has genus 4.

Figure by Matthias Weber.

Figure 18. A Costa-esque surface with a top catenoid end, two
middle planar ends, a bottom catenoid end, and genus 4.

Figure by Matthias Weber.

Let me conclude with some comments about where this work led
Weber and me. It turned out that in the years between the time
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this conference was held and this paper made it to final form, we
understood our proof much better. We also saw how, with some
modifications, we were able to use it to add handles to surfaces other
than Enneper's surface. In Figures 17 and 18, there are images of the
doubly periodic Scherk surface with handles, and the Costa surface
with additional handles and fiat ends. A present challenge, now that
we are beginning to understand how to prove the existence of some
of these surfaces, is to understand what properties characterize them
uniquely.

Finally, a substantial breakthrough occurred in 2001, when Mar-
tin Traizet (Tr02] produced an example of a complete embedded min-
imal surface with no symmetries at all.
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Hold That Light!
Modeling of Traffic Flow
by Differential Equations

Barbara Lee Keyfitz

1. Introduction: A continuum model for traffic
flow

I begin this paper with a disclaimer: I am not a traffic engineer, nor
an expert in the use of the model I am about to present to you. How-
ever, the basic model here, developed by Lighthill and Whitham [221,
and by Richards [27), is well-regarded, at least by academic traffic
engineering researchers. It has been presented in a number of ele-
mentary and advanced textbooks, for example [6, 9, 21, 29], as well
as in introductions to mathematical modeling [5, 11]. The expository
article by Gazis [8] briefly mentions this model, and the model is still
used in traffic engineering research to treat certain situations such as
bottlenecks, as in a technical paper by Newell [24).

My motivation in this paper is to show you something of the way
applied mathematics works, by deriving a differential equation from
physical principles and common sense, solving the equation, and then
interpreting the answer as it refers to the phenomenon being mod-
eled. In the example here, the equation can be solved by elementary

©2004 by the author a
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Figure 1. The control section for one-way traffic

methods: we do not get a closed-form solution, but we get enough
information to visualize the solution.

There is a second reason for introducing the traffic flow model.
It illustrates a widely-used approach to dynamic problems, an ap-
proach which often leads to systems of partial differential equations
in the form of conservation laws. The approach is to act as though
a quantity which one wants to monitor is continuously distributed in
space, rather than being a discrete variable. In the case of my ex-
ample here, the quantity is cars on a highway — traffic which is
quite obviously discrete. However, for the sake of argument, suppose
that we are not interested in the motion of individual cars, but only
in some averaged quantities for example, the carrying capacity of
the road, which is the maximum number of cars per hour which the
road can accommodate, or the number of times a car keeping up with
the traffic will be stopped by a red light on a given stretch of road. In
cases like this, one gets a good approximation, which appears to agree
with the data, by considering, instead of individual cars, a continu-
ously distributed quantity, p, the linear density of traffic on the road,
measured in cars per mile. We suppose there is only one road, that it
is straight and uniform, and that traffic moves along it in one direc-
tion (left to right): a straight one-way highway with no intersections.
Other embellishments can be added.

Now, the equation describing the dynamics of traffic on this road
is very simple to derive: it is the law of conservation of cars, which
is a statement that the way the amount of traffic on a section of the
road changes in time is simply by a net flux, that is, the difference
between the rate at which traffic enters the section of road and the
rate at which traffic leaves. We may take the road to be the x-axis,
and examine a control section between x and x + h, as in Figure 1.
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Assume the density is a function of x and of time, denoted by t.
Since the amount of traffic in the control section is the integral of the
density, the fundamental equation is

d px+h
(1) p(y,t)dy=q(x.t)—q(x+h,t).

x

The quantity q is the linear flux of traffic. Flux may not be as familiar
a concept as density. In this example, it is natural to think of it as
the number of cars passing the point x in a unit of time. Of course,
we are not looking at individual cars, so one should properly think of
the units of q as the amount of traffic per hour, measured in cars per
hour.

We have a simple way of relating the flux to more familiar quan-
tities in traffic: if the speed of the traffic is v, in units of miles per
hour, then the amount of traffic passing a given point x is just pv cars
per hour. Of course, if you think of actual traffic, composed of a lot of
vehicles of different sizes, all traveling at different rates of speed, then
v is a composite quantity which might be difficult to calculate. But in
this simple model, just as there is a single quantity which represents
density, so there is a single velocity, v(x, t), at each point x and time
t.

Applying the mean value theorem for integrals to the left side of
(1), we obtain

= q(x + h,t) — q(x,t),

where the change in notation from an ordinary to a partial derivative
with respect to t follows convention. The value f is a point in the
interval (x, x + h). Divide by h to get

* — q(x+h,t)—q(x,t)
h

and finally take the limit h —+ 0 to obtain the fundamental conserva-
tion principle in the form of a partial differential equation:

— Of.? O(pv)
— 0

Ox —
where we have substituted q = pv to get the second form.
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Figure 2. Idealized velocity and flux curves

Now, the reasoning here was straightforward, and, as long as you
accept that p represents an averaged quantity, and v the velocity that
corresponds to it, we have not made any approximations: the total
amount of traffic is exactly conserved, and that is all equation (2)
says.

On the other hand, we have obtained only an incomplete model,
because (2) is a single equation in two unknowns, p and v. For partial
differential equations, as for any other kind of equation, you cannot
find a satisfactory solution unless the number of equations is the same
as the number of unknowns. It is an interesting fact that modeling
with conservation laws almost always brings one to this same place: it
is straightforward in many physical situations to reason that certain
quantities are conserved mass, momentum, energy, and so on —
but it always turns out that the number of unknowns is greater than
the number of equations. In this example, the only physical quantity
which is conserved is mass, which is why we obtain a single equation.
A comparison with fluid dynamics modeling is given in Section 4.

To obtain a solvable model from (2), one invokes a closure as-
sumption. To be specific, in this case we assume that the velocity is
a function of the density, that is, v = v(p). This is a statement that,
on this particular road, the speed at which traffic moves is completely
determined by its density. Such a model is an oversimplification of
actual traffic, as it does not take into account the variations of individ-
ual drivers or different kinds of vehicles. However, when we examine
what the model predicts, we find it quite realistic in some respects.
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There is no theoretical basis to determine the shape of the curve
v(p). The following postulate is intuitively reasonable: v is a mono-
tone decreasing function of p, with a maximum at p = 0. At some
value Po, v becomes zero: P0 is a critical density above which traf-
fic cannot move. For single lane traffic, this has been measured at
about 225 cars per mile [29, page 68]. The flux, q(p) = pv(p) is

thus zero at p = 0 and p = P0. Some experimental data are quoted
by Haberman [11, page 286]. A number of functional relationships
have been proposed to approximate this empirical relationship; see [9,
page 57]. We shall assume, because it makes the problem much sim-
pler and because it is what the data show, that q is concave down:
q" = 2v' + pv" <0. We get a qualitative picture (this model is due
to Greenshields [9]) by letting v decrease linearly with increasing p;
we can choose units of measurement so that v = 1— p and q = p —

as in Figure 2. The illustrations and examples will use this function.
The theory, however, is exactly the same for any v(p) which leads to
a concave flux q.

Notice a feature of any concave flux function: to each value of
q below the maximum, there correspond two values of density, one
lower and one higher, and two values of velocity, one higher and one
lower. That is, a road can process a given volume of traffic in one
of two modes. At the lower density and greater vehicle speed, an
individual driver will complete the trip more rapidly, and this is con-
sidered preferable by most of us. Section 3 gives an example of how
a traffic configuration can slip from the more desirable mode into the
other.

Now, with q(p) a known, differentiable function of p, equation
(2) becomes an example of a first-order quasilinear partial differential
equation in conseruation form, otherwise known as a scalar conser-
vation law. Equations of this form were examined in the 1940s and
1950s for several reasons. First, Jan Burgers [4] had proposed a re-
lated equation as a model for the formation of coherent structures in
turbulent fluids. Burgers' equation has the form

Ou 2'\ 02u
(3)
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which differs from (2) in that the flux function is convex rather than
concave this is an inessential difference, as one can replace u by —u

and, more substantially, in having a second-order term on the right-
hand side. The parameter v in Burgers' model is proportional to the
viscosity of the fluid. Burgers was interested in features of turbulence
which appeared at very small viscosities, and so considered the case

= 0, which is just our traffic flow equation after a simple change
of variables. A mathematical theory for scalar conservation laws was
developed by Hopf [121, Lax [19, 20], Oleinik [25] and others.

In the next section, we will use this example to develop prop-
erties of solutions of first-order partial differential equations and of
conservation laws. The mathematical properties have appealing in-
terpretations as features of traffic flow.

2. Some conservation law theory

As a first step, we rewrite (2), carrying out the differentiation:

ap0—

Now a(p) = dq/dp is another known function of the density, called
the wave speed. Let us see why.

Consider first an unrealistic special case: suppose our traffic has
the property that v is independent of p: that is, v = v0 for all p and
q = pt,o. Then a v0 and the equation becomes

op Op
— +vo— =0.

Ox

This is a linear equation (which means simply that the principle of
superposition holds and the solutions form a vector space). The fol-
lowing proposition is easily demonstrated.

Proposition 2.1. Every differentiable solution of (5) is of the form

p(x,t) = po(x — vot)

for a differentiable function Po of one variable. Furthermore, every
choice of P0 yields a solution of the equation.
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p

V0 I

- t>O

x

Figure 3. Density profiles for the linear equation

Proof. After a change of independent variables

y—x—vot, s=t,
the equation becomes

ap
ôs

so the solution in the new coordinates must be a function of y alone.
Direct differentiation shows that every function of y satisfies the equa-
tion. 0

What information about traffic is conveyed by this solution? The
message is that any pattern of densities simply moves to the right with
speed v0, as in Figure 3. The function P0 corresponds to a distribution
of densities along the road at a particular time; for example, if po(x)
is the density at position x at time t = 0, then p(x, t) p0(x — vot)
is the solution of the initial value problem consisting of equation (5)
and the initial condition

p(x,O)=po(x),

Another way of picturing the way traffic patterns change is by
means of a space-time diagram, as in Figure 4. The lines x — v0t =
const. are contours of constant density. What Proposition 2.1 shows
is that the lines x — v0t = const. play a special role in solving the
equation. These distinguished curves are called characteristics for
the equation.
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FIgure 4. Characteristics for the linear equation

We return now to equation (4). This equation is not linear;
rather, it is quasilinear, a word which refers to the fact that it is
linear in the derivative terms, Op/8t and Op/Ox, but the coefficients
may depend on p. The method of characterzstics can be used to solve
this equation, by seeking curves x(t) with special properties. In fact,
if we differentiate p with respect to t, assuming x to be a function of
t, we obtain

d dx
= +Pt

(where subscripts denote partial derivatives) and now, comparing
with (4), we see that if we choose x(t) to satisfy dx/dt = a(p), then
this becomes

d
t) = Pt + a(p)pr = 0,

so that p is constant along the curve x(t), which then must be a
straight line (since its reciprocal slope is a(p), which is also constant).
In fact, if (x0, to) is any point on the line, and the value of the density
is p0 there, then the equation of the line is x(t) = + a(po)(t — to),
and p = p0 at every point on the line. If we suppose a function po(x)
given by means of an initial condition (6), then to = 0 and we can
write the solution by means of an equation

P(xo + a(po(xo))t, t) = p0(xo),

which gives p(x, t) implicitly as long as we can solve the equation

x = + a(po(xo))t

to find as a function of x (for fixed t). This we can do if x is
a monotonic increasing function of (again for a fixed value of t).
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Now,
dx

= 1 + a p0t,

by the chain rule, where a' = a'(po(xo)) and = At t = 0

the right side of the equation equals unity, and so the expression
remains positive, at least for small t.

Although p(x, t) cannot be found explicitly as in the linear case, it
is possible to visualize how the densities evolve with time by means of
a diagram analogous to Figure 4. Given an initial density distribution,
po(xo), from each point x0 on the x-axis draw the straight line (8),
as in Figure 5. Notice that a(po) is the slope of the line drawn in
a conventional (t, x)-plane (that is, with the t-axis horizontal). The
convention in partial differential equations is to make the x-axis the
horizontal axis; a further convention in traffic engineering is to draw
the t-axis downward (so you can see a as the slope if you rotate the
picture). For reference, the initial density distribution that was used
to draw the picture is sketched above the x-axis: it contains a density
wave, with a peak value near the maximum value p = 1, in the center.
The concentration is initially symmetric front to back, decreasing to a
value p = 1/3 at the edges of the picture. If we assume q(p) = p —

so a(p) = l—2p, then the slopes dx/dt vary between 1/3 and —1. The
evolution of the density wave with time is shown in Figure 6. One sees
that the wave remains a wave, but it no longer preserves its shape.
The peak moves more slowly than the wave as a whole; in fact, the
peak may even move backwards. After some time, a wave that was
originally symmetric, front to back, has become skewed. it is steeper

Figure 5. Characteristics for the quasilinear equation
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Figure 6. Density profiles for the quasilinear equation

Figure 7'. Vehicle velocity and wave velocity

at the back (engineers call this a compression wave) and slopes more
gently at the front (this is called a rarefaction). Remembering the
assumption that denser traffic moves more slowly, we see that the
picture is a simple consequence of the modeling assumption. A patch
of traffic in which congestion is greater at the rear will gradually
stretch out, as the cars at the front race away, while a situation in
which low-density traffic is spread out behind a slow-moving traffic
jam will tend to become more concentrated as the cars in the back
catch up with the crowd.

It is time to say a word about what is moving in the wave. In our
first, linear model, the line x = x0+v0t in space-time represented both
the position at any time of the car which had been at x0 at the initial
time, and the position of the point on the wave (peak, front, back)
as it evolves in time. Such is no longer the case in the quasilinear
model. In fact, every point in the wave with density p > 1/2 is
actually moving backwards in time, but every car is moving forward
or at worst standing still! Recall that at a given density p, the velocity
of a car is v = q/p, in terms of the flux function q, while the velocity of
that part of the wave (that is, the part with value p) is a = q' = v+pv',
which is less than v if q is not constant. See Figure 7, in which both

p
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speeds are depicted as slopes. This brings up an interesting point,
which is central to the study of wave motion: what travels when a
wave moves? Think, for example, of the waves that fans make in
a sports arena: the wave travels around the arena, but the arms
that generate it move up and down. It might be reasonable to say
that what is traveling is information. Indeed, traffic modeling that
takes into account individual drivers and their reaction times reaches
the same conclusion about wave motion by postulating that drivers
react to a patch of dense traffic just ahead by slowing down (thus
contributing to increasing density of traffic and passing the signal on
to drivers further in the rear). It is not difficult to trace the route of an
individual driver through the density wave shown in Figures 4 and 5.
A sample space-time path is shown by a dotted line. Wave motion in
which points in different parts (or phases) or the wave have different
velocities is said to have a dispersive character (Whitham [29]).

However, examination of the situation in Figure 5 for times be-
yond the end of the drawing shows that the theory in particular,
the implicitly given solution (7) will fail eventually. For the straight
lines in Figure 5 are not parallel, and so they must intersect. (The sole
exception is the case of data where all the lines are spreading apart.)
Fortunately, this does not mean a collision, since the lines are not
the trajectories of individual cars, but it does mean that the mathe-
matical function obtained by the method of characteristics no longer
solves the problem. The resolution of this difficulty is interesting, and
is at the heart of the subject of conservation laws. To understand it,
one must go back to the beginning of the derivation of the model,
to the calculus assumption under which the differential equation (2)
was derived from the integral equation (1). In writing the differential
equation we assumed, without stating this explicitly, that p and q
were differentiable functions of x and t. But there are discontinuous
functions for which (1) holds. For example, the piecewise constant
function
(9)

1 p0, x < st I qo, x < st qi — qop(x,t) q(x,t) = , s =
I. Pi — P0
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ix

FIgure 8. Piecewise constant solution; profile and characteristics

solves equation (1) exactly. This function also represents a traffic
configuration; its profile is shown in Figure 8, along with the space-
time diagram of the characteristics in the case Po <p1 (we shall see
shortly why this is the only interesting case).

What is the interpretation of a discontinuous solution like this?
The discontinuity, called a shock, is a demarcation line between re-
gions of heavy and of light traffic. For example, if cars are backed
up behind a red light, then Po = 1 and = 0; the corresponding
fluxes in our model are qo = = 0, so s = 0 and traffic sitting at
a light is a solution to the equation. It is conventional to refer to
discontinuous solutions as weak solutions, because they do not satisfy
the differential equation (2) in the classical sense, but instead satisfy
the equation (1). (An even more general notion of a weak solution is
conventionally used, but will not be needed in this paper.) The situ-
ation 0 < Po <p1 < 1 also admits an all-too-familiar interpretation:
cars free-wheeling on the expressway suddenly come upon a patch
of dense slow (or stopped) traffic, slam on their brakes and join the
queue. Depending on the relative densities of cars before and behind
the shock, the discontinuity may move forward or backward, or stand
still.

As the graph of the characteristics in Figure 5 makes clear, one
does not expect there to exist a differentiable solution of (4) for all
t > 0 if the initial data look like a wave with a density maximum in
the center. In fact, the implicitly defined solution given by equations
(7) and (8) ceases to exist at the first time where dx/dxo = 0, which
is the smallest positive value of —1 Typically, the profile p de-
velops a vertical tangent at this value of t, which grows into a shock
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for later t (the precise development of this singularity is interesting
and was studied by a number of people; for a recent description, see
Nakane [23]). Far away from the shock, the method of characteristics
still gives a valid solution, but after a while more and more charac-
teristics run into the shock and terminate; the size of the jump in p
also grows initially, but then stops growing and begins to decrease,
as sketched in Figure 9. (The asymptotic form of the wave for large
t, often called an N-wave, is given by Lax, [20].)

We now consider a final feature of solutions of conservation law
equations, which must be resolved by mathematical theory. Let us
return to the initial-value problem with piecewise constant data

x<0
I P1, x>0

with P0 > Pi• This type of data is called Riemann data in the field of
conservation laws. (We saw that P0 = 1 and = 0 might represent
cars stopped at a red light. One could set t = 0 at the moment the
light turns green. You can imagine an interpretation for other values
of pj: perhaps a flagman has been slowing the traffic and has just
walked away.) We saw that the piecewise constant function p given
in equation (9) is a solution. But when P0 > P1 there is a second
solution, as you can check:

1 x<(1—2p0)t,
(10) (1—2p0)t<x<(1—2p1)t,

1. x>(1—2p1)t.

The solution profile and characteristic lines are shown in Figure 10.
This fanlike solution is called a centered rarefaction wave. It is an ide-
alized portrait of an everyday phenomenon: when a line of congested

increasing t

Figure 9. Development and decay of a shock
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p0

'.10

Figure 10. A centered rarefaction wave

traffic is faced with an emptier road ahead, the congestion breaks
up as the first cars race off into the open space; the opportunity to
accelerate gradually moves back through the line.

Mathematically, the existence of two solutions for the same initial
condition is a sign of ill-posedness: the problem is badly or incom-
pletely specified. In fact, much modeling, especially of complicated
situations, results in ill-posed problems, and much effort in applied
mathematics goes into finding satisfactory resolutions of the dilem-
mas which result. An ad hoc fix is available here: reasoning from the
situation faced when a light turns green, one sees that the two solu-
tions represent different cases: the traffic remains at the intersection
(the shock wave), or begins to move (the rarefaction). The second
is what actually happens (the 'physical' solution). A good deal of
research has gone into finding what are called admissibiLity condi-
tions for shocks — conditions which will, ideally, be strong enough
to eliminate spurious solutions but not so restrictive as to eliminate
all solutions.

Peter Lax has given a condition which tells which discontinuities
are admissible for our model (the condition can also be extended to
systems of conservation laws). Called the geometric entropy condi-
tion, Lax's condition states that shocks are admissible if the charac-
teristics on either side run into the shock in the direction of forward
time. Thus, the shock in Figure 8 is admissible, but a shock drawn in
the situation of Figure 10 would not be, because the characteristics
on either side flow away from each other. A heuristic argument for
why this is a reasonable condition is that, under this condition, every
point (x, t) in space-time, except points that are actually on shocks,
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can be connected to the initial data by a unique characteristic line,
and hence the solution is uniquely given there. As long as most points
are not on shocks, then this is enough to determine a weak solution,
since the integral equation satisfied by a weak solution is not affected
by the values of p at a discrete set of points.

To justify the model, one wants a theory that gives both ex-
istence and uniqueness. For the traffic-flow model, and in fact for
any scalar conservation law, such a theory exists. It was first de-
veloped by Lax [19, 20] for a convex flux function and extended by

[25]. When q is neither convex nor concave, new phenom-
ena appear; see also [13]. A complete theory for a single equation
was given by [17] in 1970. There is also extensive theory
for systems; the first existence theorem was given by Glimm [10] in
1965. Recent work by Bressan and co-workers [3] is finally tackling
questions of uniqueness, but many problems remain open.

Let me state, without proof, Lax's theorem for the system exam-
ined in this paper.

Theorem 2.1. The solution to

p(x,0)=po(x),

for t > 0 is given by

p(x, t) =
— S Yo)

where Vo is the value of y at which the function

1 (x— )2
G(x, y, t)

= j po(s)ds + (x — y
— )

achieves its minimum. Provided that the integral of po exists, this
formula gives the solution at almost every point (x, t).

it is straightforward to verify that this formula gives the function
(7) defined by the method of characteristics, for times before the first
shock forms. One can also check that any shock solution given by
this formula will satisfy Lax's condition. Lax's proof in [20] that the
formula gives a solution for all time, and for all integrable data, uses
a connection between the traffic-flow equation and Burgers' equation,
(3).
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At this point one can establish, via several steps, a connection
with the calculus of variations. First note that if we define a new
quantity u by

u =

p u will satisfy

Ut +q(ux) = 0.

An equation of this form is called a Hamilton-Jacobi equation. The
calculus of variations provides an elegant method for solving (11),
from which the formulas of Theorem 2.1 can be derived. An excellent
exposition can be found in the text of Evans [71. The last third of
Evans' book also contains extensions of this example problem. The
relation with Burgers' equation, (3), plays a role in the theory of
viscosity solutions of Hamilton-Jacobi equations, as is also discussed
in['T].

3. An application of the model: The timing of
traffic lights

One of things this model can do is predict, again under rather ideal-
ized conditions, what will happen at a red light, and how lights should
be timed, depending on how heavy the traffic is. It also explains why,
for an individual driver, there is no perfect staging of lights. The
calculation was done by Richards [27J, one of the originators of the
model, and has been reproduced since, for example in Haberman [11]
and Whitharn [29).

Let us consider, first, a single traffic light which is red for a time
interval TR and then green for an interval of duration TG. The den-
sity of traffic everywhere on the road can be calculated explicitly if we
make a few simplifying assumptions: assume that the incoming den-
sity has the constant value p0 and that the velocity-density relation
is linear, v = 1 — p. Assuming that traffic is running free when the
light changes, the red cycle is described by the first picture in Figure
11: cars back up behind the light, and a shock forms and moves up
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RED

Figure 11. The traffic light cycle
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the street with speed

— qo8=
— P0

When the light turns green, traific begins to move at the light, and
a rarefaction forms; if we take this instant to be the origin of time,
then the rarefaction is centered at the origin, and has head and tail
speeds 1 and —1 respectively. The tail of the rarefaction runs into
the shock at

P0tO=
1— P0

TR,
— Po

and now the speed of the shock changes. If we let denote the
position of the shock, then the shock speed is s = d<b/dt and satisfies

(xe,. to)

GREEN
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the differential equation

since the density to the right of the shock, is given by equation
(10). Rearranging terms gives a linear, first-order ordinary differential
equation

d4) 4) 1

which we can solve. Applying the initial condition 0(t0) = = —to
we get

4)(t) =

as the equation of the arc the shock describes in space-time. If �
that is, if the road is at greater than half its carrying capacity, then
the shock continues to move to the left for all time. Thus, even if the
light never turns red again, the effect of the delay propagates back
up the road forever. (The influence does, however, decay.)

On the other hand, if Po < the shock speed eventually becomes
positive, and the shock crosses the point x = 0 at a time

—
tr

1 2

provided the light is still green.

It turns out to make a big difference whether the shock gets
through the intersection or not before the light changes again. The
discovery of this effect, and its quantification (which can be improved
from the calculation here by taking a more realistic velocity-density
equation) are a major contribution of the model. From a mathemati-
cal viewpoint, this example illustrates a difference between nonlinear
and linear models. Linear problems "scale up": if the effect of dou-
bling the density is to multiply the waiting time at a light by a factor
K, then quadrupling the density multiplies it by 2K, and proportion-
ally smaller changes will have smaller effects. But in this model, the
effect of increases in the density is small until a threshold is reached,
after which the nature of the traffic flow changes dramatically.

To see how, and why, look again at the density-flux diagram,
Figure 2, and recall that a desired traffic flux which is less than the
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maximum value of q can be realized at two different densities. From
the point of view of the road, the service factor is the same, but
individual drivers will notice a great difference in the time it takes
them to make the trip.

Let us first suppose that the incoming density, po, and the timing
of red and green lights are such that the shock crosses the intersection
before the light turns red again; that is, � If we assume that
the cycle of lights is fixed, this means that

(12)

Since the density behind the shock is again P0 when the light turns
red again, then in this situation after the red-green cycle we have the
same initial condition as before, and to the left of the light the flow is
periodic in time. It is also periodic beyond the light, and the average
density a short distance downstream must also be p0: the effect of the
light is to impose on the traffic a temporary slowdown, from which it
recovers.

However, let us now suppose that the shock does not get through
the intersection. We can make the following calculation of the flux
at the light itself: during the green cycle, the density is precisely
(since it is the center of the rarefaction) and so is the velocity, while
during the red cycle the flux is zero, so the average flux over a period
is

- 1 TRq=
4TR+TG

Now, this must be the average flux anywhere along the road (since
there are no sources or sinks), and so the average density is found by
solving p — p2 = This equation has two roots, but the smaller is
precluded by the fact that inequality (12) is violated. Hence we have

- if I TR

I\VT+T
as the value of the average density. The effect of a small change in
incoming density from a value satisfying (12) to one just violating it
has been to move the average density from the lower to the upper
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half of the density-flux diagram, greatly increasing the travel time for
drivers.

The actual numbers are dramatic: Richards [27] points out that
if TR = TG, then the greatest incoming density that permits free flow
at the light is (1 — .15, while the average density when the
shock does not get through the light is (1 + .85.

A second feature of roads with traffic lights, also familiar to dri-
vers, can be derived from this model. This has to do with the timing
of successive lights along a road. If we look at the flow behind a well-
timed light, then it is periodic in time, with period TR+TG. However,
beyond the light the mass that has crossed the light in a single green
cycle (which corresponds to a set of drivers, as well) spreads out, since
the velocities vary between 1 and 1 — 2po• See Figure 12. If there is
a second light on the road, and its cycle has the same period, then
the only way to arrange its cycle so that the entire mass gets through
the second light on a single cycle is to make the ratio TG/TR greater
for the second light. Even then, this works only if the second light
is sufficiently close to the first. Realistically, a series of lights will be
timed so that only a part of this packet will get through later lights.
Which part? Reasoning on the basis of the fluxes, it is optimal to
plan so that the later part of the packet, where the density is greater,
will cross the second light without waiting. Thus it is to be expected
that the first drivers through a green light will get caught at the next
light. A light that is timed for the benefit of the first phalanx of

x

light cycles

t

Figure 12. A road with more than one light
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drivers will have the effect of cutting off the last drivers through the
previous light, as in the title of this paper.

4. Extensions and other models

One source of interest in the continuum traffic flow equation is its re-
semblance to the compressible Euler equations used to study the dy-
namics of gases. A simple version of the equations, for one-dimension-
al flow, is

Pt+(PV)x = 0,

(Pv)t+(pV2+p)x 0.

The first equation represents conservation of mass for a gas with den-
sity p and velocity v, and it is exactly the same as the traffic flow
equation, except that we no longer assume v to be a function of p.
The second equation is conservation of momentum and is the expres-
sion, in a continuum, of Newton's law of dynamics, F = ma. (Models
in which v is postulated to be a function of p, instead of being de-
termined from a second equation, are called kinematic, as contrasted
with dynamic.)

One sees, in this system, that there is again a closure problem:
the two equations contain a third variable, the pressure, p. Under
some conditions (roughly that there is not much energy exchange in
the flow), one can establish p as a function of p from thermodynamic
principles. One then has a system which can be written in the form

(13)

u u the flux vector.
This system can also be written in quasilinear form,

(14)

where A is the Jacobian matrix, Of/c7u. Just as for the single equa-
tion, it is useful to look at the linear problem one obtains on replacing
A by a constant or by a known function of x and t.

When do the methods established in the previous sections help
in solving equation (13) or (14)? The system behaves like the scalar
equation in important ways precisely when it is hyperbolic, that is,
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when the matrix A has real eigenvalues and is diagonalizable. In
fact, it is a simple exercise in linear algebra to show that if A is
constant and P' AP = D is diagonal for a constant matrix P, then
in a new coordinate system. w = P'u, equation (14) separates into
a set of uncoupled equations, each of the form of the scalar linear
equation, (5), with an eigenvalue of A playing the role of velocity.
The eigenvalues are called characteristics for the system, and using
this change of coordinates one can write down the general solution
for this linear, constant-coefficient system. In the nonlinear case, the
system does not decouple in any coordinate system, and there is no
analogue to the implicit formula (7) for the solution to an initial-value
problem. However, one can show that in many ways the solutions to
a system behave like solutions to the equation we have studied: waves
steepen, shocks form, and disturbances propagate through the flow,
with velocities equal to one of the characteristic speeds.

It may not be immediately apparent that a system with com-
plex eigenvalues behaves differently. For example, Laplace's equa-
tion, + = 0, when written as a first-order system for
u = (vi, is a coupled linear system with eigenvalues ±i. Laplace's
equation is a perfectly reasonable equation and serves as a model
for many physical processes. However, none of these involves time
explicitly; a difficulty arises, not with the equation itself but with
the problem of trying to solve it along with data given on one axis,
say y = 0. This prototype example is known as Hadamard 's coun-
terexample and can be found in most partial differential equations
textbooks, for example, Evans [7, page 233]. It is simple to demon-
strate that data of small amplitude and high frequency (functions like
sin nx/n) lead to solutions of very large amplitude for non-zero values
of y (functions like sin nx sinh ny). In the limit n oo the data tend
to zero but the solution does not. Thus, the solution does not depend
continuously on the data, which is another way an equation can be
ill-posed.

Extension from a scalar equation to a system of conservation
laws, so important for gas dynamics, also occurs in modeling traffic
flow. First, there have been attempts to find two-equation models
for the one-way traffic flow problem we have been describing. This is
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-

FIgure 13. Variables in the two-way traffic model

motivated partly by a desire to find solutions that agree better with
actual traffic. In addition, the velocity-density relation which closed
the single equation model does not have a theoretical justification, and
people have sought a more scientific way of deriving it. A recent paper
of Aw and Rascie [1] surveys the progress of this attempt and offers a
new suggestion. A related use of two-equation models is to provide a
reduction to the single-equation model by the use of what are called
relaxation method8, as is done by Lattanzio and Marcati [18). (A
different attempt find v(p) was made by Prigogine and Herman [26],
using ideas from statistical mechanics and kinetic theory. Their book
is an engaging introduction both to traffic theory and to statistical
mechanics.)

However, I would like to close this paper by mentioning a very
simple two-equation model, which is closely related to the one-way
model we have been discussing. Bick and Newell [2], almost forty
years ago, proposed to extend the continuum model to two-way traffic
on a road, by supposing that a density for traffic in each direction
can be assigned, with a corresponding flux function, and that the two
directions of traffic interfere with each other in some way.

Here is the two-way traffic model. (See Figure 13.) Changing
notation somewhat, we let p(x, t) and q(x, t) be the densities of east-
bound and west-bound traffic, respectively, and let u and v be the
respective velocities. We assume that there are no U-turns, so con-
servation of mass holds for each direction of travel separately, and we
obtain the system

= 0,

qt+(qv)x = 0.
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If we assume that each lane completely ignores the other and acts as
a one-way road, then the closure assumptions from before are appro-
priate:

u=u(p)=l—p, v=v(q)=—(l—q),

where v is negative since the west-bound traffIc moves in the direction
of decreasing x. This system is hyperbolic; in fact, the characteristic
speeds are 1 — 2p and 2q — 1. The system is not strictly hyperbolic;
that is to say, the speeds are not everywhere distinct. They coincide
when p + q = 1; if we think of (p,q) as a point in a phase space,
then the characteristics coincide on a line in two-dimensional phase
space. However, the system remains hyperbolic there, since there is
no eigenvector deficiency.

Now, the idea explored by Bick and Newell was to suppose that
the two lanes of traffic interfere with each other. No specific mech-
anism need be mentioned; perhaps passing is inhibited, perhaps a
sense of crowding discourages higher speeds. To study the effect of
this assumption, we can look at the simplest type of dependence:

u=u(p,q)=1—p—8q, v=v(p,q)=—(1—q—8p),

where is a small coupling parameter. The equations are coupled if
fi> 0. In addition, the feasible region of phase space, which had been
a square {0 p < 1,0 � q � 1} now becomes a quadrilateral bounded
byp=0, q=0,p+13q= 1, andq+flp= 1. Butthemostsignificant
difference is that the coupled system is not hyperbolic for all states:
computing the eigenvalues of the Jacobian matrix A(p, q) shows that
there is a region near the line p + q = 1, elliptical in shape, with
width of the order of fi, in which the eigenvalues of A are complex
conjugates. Bick and Newell performed some studies on this system;
they identified some of the shocks and solved some Riemann problems.
However, they could not explain away this surprising feature, nor
solve the problem for all initial conditions. More recently, Vinod,
while a graduate student at the University of Houston, explored this
problem further, and showed that in a number of cases one could find
solutions for /3 > 0 which approached the easily calculated solutions
for the uncoupled case, /3 = 0, [28].
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It is surprising that the two-way model, which seems like a simple
and natural extension of the one-way model, turns out to have unex-
pected mathematical features. It is, at one level, completely ill-posed,
in the sense that the corresponding linear problem may suffer from
the Hadaniard instability. Indeed, a complete solution to the mathe-
matical problem is not known at this time. I came across the model
because it is related to research I have been doing on other systems
of conservation laws, used in physics and engineering, which are, sim-
ilarly, derived from what appear to be reasonable principles and from
analogies to well-known and well-behaved models, and which are ill-
posed in exactly the same way. This work is reviewed in [14, 15, 16J.

A note of caution is in order here. Often one is presented with
equations which are said to be mathematical models for something,
and one is given the impression that there is not much depth to the
modeling exercise — understand the physics well enough, and under-
stand the mathematics well enough, and everything will be straight-
forward. In examples such as the two-way traffic model, the interplay
between "modeling" and "mathematics" is intricate and subtle. The
process goes both ways: as more is understood about the mathemat-
ics, people return to the models to take another look. The one-way
traffic model was not useful to engineers until the mathematical the-
ory was developed in the 1950s. Perhaps future theories will make
sense of two-way traffic models.
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