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Preface to the English
Edition

Modern combinatorics speaks the language of generating functions.

The study of this language does not require a bulky knowledge of

numerous parts of mathematics; although some preliminary acquain-

tance with calculus and algebra is more than welcome. On the other

hand, generating functions may prove to be extremely useful in fur-

ther mathematical education because of their deep involvement in

various mathematical activities, including computer science. The goal

of the present book is to serve as a basis for a one-semester under-

graduate course in combinatorics, based on the notion of generating

function. It contains many exercises both for class and home work.

Of course, it is an introductory book not containing a complete the-

ory. I hope, however, that some of its readers will find in it a good

entrance point into the fascinating world of generating functions.

All of the main ideas in the book are introduced on the basis of

examples. Sometimes the choice of examples is classical, and in other

cases it is justified by my own research experience. This experience

concerns first of all graph embeddings into two-surfaces and enumer-

ation of the embeddings. This subject plays a central role in contem-

porary theoretical physics, and specialists know that it incorporates

xi
                

                                                                                                               



xii Preface to the English Edition

many advanced mathematical theories. A variety of generating func-

tions appears naturally in these studies and some of them found their

way into this book.

I would like to use this opportunity to express my gratitude to

the American Mathematical Society for the suggestion to publish the

English translation of the book. In the translation, some minor cor-

rections and changes were made.

Sergei Lando, July 2003

                

                                                                                                               



Preface

After multiplying by (2n − 1)!, the coefficient of x2n−1 in the power

expansion of the function tanx becomes a positive integer. What is

more surprising, this number appears to be equal to the number of up-

down permutations of the set {1, . . . , 2n− 1}. This shows that tanx
is the “exponential generating function” for the sequence of numbers

of up-down permutations. This fact can be proved, but we cannot be

sure that we understand the phenomenon completely. The function

tanx is not unique in this sense: coefficients in the expansions of many

classical functions have a combinatorial interpretation. Trigonomet-

ric, hypergeometric and elliptic functions, elliptic integrals and so on

fall into this class. One can even affirm that the coefficients of every

function which is interesting by itself and not only as an element of

some functional class must have a combinatorial meaning.

Mathematicians of the 18th and 19th centuries knew functions

“personally”. I doubt whether there are more specialists nowadays

possessing these skills than there were a hundred years ago, in spite of

the fact that the roots, the asymptotics, the disk of convergence, the

singularities, and the topology of the corresponding Riemann surface

can say a lot about the nature of the objects under enumeration.

Generating functions admit a natural splitting into classes. The

simplest is the class of rational functions. It is well studied and a huge

bunch of problems leading to rational generating functions is known.

xiii
                

                                                                                                               



xiv Preface

Algebraic generating functions also appear frequently. In the be-

ginning of 1960s Schützenberger showed that their non-commutative

analogues arise naturally as languages generated by unambiguous for-

mal grammars. However, the class of algebraic functions (in contrast

to that of rational ones) is not closed under the natural operation

of the Hadamard product. Generally, the Hadamard product of two

algebraic functions is an algebro-logarithmic function. And the class

of algebro-logarithmic functions, which is closed under the Hadamard

product, seems to be natural.

The relationship between algebraic functions and formal gram-

mars indicates that the class of objects under enumeration is essen-

tially one-dimensional: words in languages admit a linear recording.

Modern quantum field theory models require enumeration of objects

of essentially two-dimensional origin, and the nature of generating

functions arising in these problems is far from being understood com-

pletely. The elegant method of matrix integration invented by physi-

cists leads to explicit results only in a few cases.

I wanted to write a simple and accessible introduction to gener-

ating functions, paying attention first of all to striking examples, not

to (often non-existing) general theories. As a result, many important

applications of the generating functions method, including Polya’s

enumeration theory and q-analogues, Poincaré’s generating polyno-

mials and generating families, the theory of ramified coverings and

many other important topics are not even mentioned in the book.

My interest in enumerative combinatorics was inspired by a series

of problems posed by V. I. Arnold in connection with some problems

of the singularity theory as well as his own activities in this field. I was

influenced a lot by the combinatorial team of the University Bordeaux

I (G. Viennot and others) and by P. Flajolet. The book is based on

the series of optional courses I gave for many years to freshmen of

the Higher College of Mathematics of the Independent University of

Moscow in 1992–99. In giving these courses, I enjoyed substantial help

from M. N. Vyalyi, who also helped greatly in preparing the book for

publication. The main source of my knowledge in combinatorics is my

                

                                                                                                               



Preface xv

friend and long-time coauthor Alexander Zvonkin, whose mastery of

creating texts is — alas — beyond my reach.

S. K. Lando

                

                                                                                                               



Chapter 1

Formal Power Series
and Generating
Functions. Operations
with Formal Power
Series. Elementary
Generating Functions

1.1. The lucky tickets problem

In the early 70s A. A. Kirillov usually opened his seminar with the

following problem. A bus passenger, then, had to buy a ticket from

a cashier. The tickets had a 6-digit number.

A ticket is said to be lucky if the sum of the first three digits of

its number coincides with the sum of the last three digits.

Thus, the ticket with the number 123060 is lucky, while the one

with the number 123456 is not lucky.

Now, how many lucky tickets are there?

A person possessing elementary skills in computer programming

will have no difficulty in writing a computer program counting the

number of lucky tickets. The simplest such program just searches

1

                                     

                

                                                                                                               



2 1. Elementary generating functions

through all numbers from 000000 to 999999 selecting the lucky ones.

However, let us look at the problem more attentively.

First, split all lucky tickets into classes formed by tickets with

a given sum of the first three digits. This sum runs from 0 (for the

triple 000) to 27 (for the triple 999). Therefore, the total number of

classes is 28. Denote by an the number of triples of digits with the

sum n. It is easy to compute the first values of an:

• a0 = 1 (there is a single triple with the sum 0);

• a1 = 3 (the three triples 001, 010, 001 have the sum 1);

• a2 = 6 (the triples are 002, 020, 200, 011, 101, 110).

The number of lucky tickets with the sum of the first three digits

equal to n is a2n. Indeed, we are able to put arbitrary triple of digits

with the same sum n both at the beginning and at the end of the

number of a lucky ticket. Hence, in order to compute the number of

lucky tickets it suffices to compute the numbers an and then to find

the sum of their squares.

Before computing an, let us first compute the number of one-

and two-digit numbers with the sum n. For each n = 0, 1, 2, . . . , 9

there is a single one-digit number with the sum of digits n (when

written down, this number just coincides with n written down). We

will describe one-digit numbers by the polynomial

A1(s) = 1 + s+ s2 + · · ·+ s9.

The coefficients of this polynomial have the following meaning:

the coefficient of sn in the polynomial A1 coincides with the num-

ber of one-digit numbers having the sum of digits equal to n.

In other words, the coefficient of sn in A1 is 1 provided that

0 ≤ n ≤ 9 and is 0 for n > 9.

Now let us write down the polynomial A2(s) which describes the

two-digit numbers. The coefficient of sn in A2(s) is the number of

two-digit numbers having the sum n. (We take into account also

two-digit numbers such that their first, or even both digits are 0.)
                

                                                                                                               



1.1. Lucky tickets 3

It is easy to see that the degree of A2 is 18. Indeed, 18 is the

largest possible sum of the digits of a two-digit number. The com-

putation of the first few coefficients of this polynomial also meets no

trouble:

A2(s) = 1 + 2s+ 3s2 + 4s3 + . . .

It turns out that the polynomial A2 is closely related to the polyno-

mial A1.

Statement 1.1. A2(s) = (A1(s))
2.

Proof. The product of two monomials sk and sm contributes to the

coefficient of the monomial sn in the polynomial (A1(s))
2 if and only

if n = k + m. Therefore, the coefficient of sn in (A1(s))
2 is exactly

the number of ways to represent n as a sum n = k + m, k,m =

0, 1, . . . , 9. Hence, the polynomial on the right-hand side of the iden-

tity coincides with A2.

Now we are able to write down the polynomial A3(s) = a0+a1s+

· · ·+ a27s
27.

Statement 1.2. A3(s) = (A1(s))
3.

Proof. The proof repeats that of the previous statement almost word

for word: the coefficient of sn in the polynomial (A1(s))
3 is equal to

the number of representations of n as a sum of three digits, n =

m+ k + l, m, k, l = 0, 1, . . . , 9.

Thus, the lucky tickets problem is almost solved; it remains only

to compute the polynomial (A1(s))
3 and then find the sum of squares

of its coefficients. Note that the multiplication by the polynomial

A1(s) is a rather simple operation. The calculation can be done by

hand and it takes about 10 minutes. No computer program is re-

quired.

However, being not absolutely satisfied with the result, we can

proceed further1. The approach to the lucky tickets problem which

we explain below belongs to V. Drinfeld, then a high school student.

1The reader may skip the rest of the section since it requires some knowledge of
calculus and will not be used in the future.

                

                                                                                                               



4 1. Elementary generating functions

Together with the polynomial A3(s), consider the “Laurent poly-

nomial” A3(1/s) in the variable s:

A3

(
1

s

)
= a0 +

a1
s

+
a2
s2

+ · · ·+ a27
s27

.

The product A3(s)A3

(
1
s

)
also is a Laurent polynomial (i.e., it con-

tains monomials of the form sk both with positive and negative k’s,

but the values of k are bounded from below as well as from above).

The free term in this product (the coefficient of s0) has the form

a20 + a21 + · · ·+ a227, and we conclude that

the number of lucky tickets coincides with the free term of the

Laurent polynomial A3(s)A3(1/s).

This free term can be computed using the basic fact of the theory

of functions of one complex variable, the Cauchy theorem.

Theorem 1.3 (Cauchy). For any Laurent polynomial p(s) its free

term p0 is

p0 =
1

2πi

∫
p(s)ds

s
,

where the integral is taken over an arbitrary counterclockwise oriented

circle in the complex plane containing the origin.

In other words, the integral of skds over such a circle is 2πi if k =

−1, and it is 0 otherwise. This fact can be easily verified.

The most convenient circle for our purposes is the unit circle

centered at the origin. Using the fact that

A1(s) = 1 + s+ · · ·+ s9 =
1− s10

1− s

one can represent the Laurent polynomial in question in the form

P (s) = A3(s)A3

(
1

s

)
= A3

1(s)A
3
1

(
1

s

)

=

(
1− s10

1− s

)3 (
1− s−10

1− s−1

)3

=

(
2− s10 − s−10

2− s− s−1

)3

.

Introducing the standard parameter ϕ in the unit circle and re-

stricting the Laurent polynomial P (s) to this circle we obtain the
                

                                                                                                               



1.1. Lucky tickets 5

ϕ

f(ϕ)

10

0

π
10

π
2− π

10−π
2

Figure 1. The shape of the graph f(ϕ) =
sin(10ϕ)

sinϕ

following expression for the free term of the polynomial:

p0 =
1

2π

∫ 2π

0

(
2− 2 cos(10ϕ)

2− 2 cosϕ

)3

dϕ =
1

2π

∫ 2π

0

(
sin2(5ϕ)

sin2
(
ϕ
2

))3

dϕ

=
1

π

∫ π

0

(
sin(10ϕ)

sinϕ

)6

dϕ =
1

π

∫ π
2

−π
2

(
sin(10ϕ)

sinϕ

)6

dϕ.(1.1)

Let us try to estimate the value of the last integral. The graph

of the function f(ϕ) = sin(10ϕ)
sinϕ on the segment

[
−π

2 ,
π
2

]
is shown in

Fig. 1. The function has the maximum, equal to 10, at the origin.

The value of f out of the segment
[
− π

10 ,
π
10

]
is less than 1

sin π
10

≈
3. Therefore, the contribution of the complement to the segment[
− π

10 ,
π
10

]
to the integral (1.1) is less than π ·36 ≈ 2100 (actually, this

contribution is significantly smaller).

The main contribution to the integral (1.1) is produced by the

segment
[
− π

10 ,
π
10

]
. To estimate this contribution we make use of the

method of the stationary phase. This method allows one to find the
                

                                                                                                               



6 1. Elementary generating functions

asymptotics of the integral∫ π
10

− π
10

f tdϕ =

∫ π
10

− π
10

et ln fdϕ

as t → ∞. For t large enough the value of the integral is determined

by the behavior of the function ln f (the “phase”) in the neighborhood

of its stationary point 0 (the point, where (ln f)′ = 0, or, what is the

same, f ′ = 0). In a neighborhood of the stationary point we have

f(ϕ) ≈ 10
(
1− 33

2 ϕ2
)
, and ln f(ϕ) ≈ ln 10− 33

2 ϕ2. For t large enough

this gives∫ π
10

− π
10

et(ln 10− 33
2 ϕ2)dϕ = et ln 10

∫ π
10

− π
10

e−
33
2 tϕ2

dϕ ≈ et ln 10

√
2π√
33t

.

Setting t = 6 and recalling Eq. (1.1) we obtain the value

p0 ≈ 106

3
√
11π

≈ 56700.

This result approximates the exact value reasonably well (the error is

not greater than 3%).

Another approach to enumeration of lucky tickets is explained in

Sec. 7.1.

1.2. First conclusions

The example considered in the previous section allows one to make

some conclusions concerning the problems we are going to study and

the methods we will use.

The main subject of our study will be problems of enumerative

combinatorics. They concern enumeration of objects belonging to

a family of finite sets. Each set has a number (in the lucky ticket

problem the number is the sum n of the three leftmost digits).

As a rule, an enumerative problem is solvable “in principle”: we

are able to write down all elements belonging to each set of the family

and find their number. The problem, however, is to find a “good”

solution without exhausting all elements.
                

                                                                                                               



1.3. Generating functions 7

On the other hand, it is a complicated task to define what a good

solution is. We are able often only to compare two solutions and say

which one of them is better.

When solving enumerative problems, generating polynomials (or,

more generally, generating series) are of great use. In our case, the

generating polynomial A3 happened to be extremely useful. Oper-

ations with combinatorial objects can be naturally translated into

operations with generating functions. For instance, the passage from

one-digit numbers to three-digit ones consists just in taking the cube

of the the generating polynomial A1.

We have also seen that methods of close mathematical areas

(analysis, for example) can provide new points of view on combi-

natorial problems and allow one to find unexpected approaches to

solving them.

1.3. Generating functions and operations with
them

Now let us give formal definitions.

Definition 1.4. Let a0, a1, a2, . . . be an arbitrary (infinite) sequence

of numbers. The generating function (generating series) for this se-

quence is the expression of the form

a0 + a1s+ a2s
2 + . . . ,

or, briefly,
∞∑

n=0

ans
n.

If all elements in the sequence starting from some element are equal to

zero, then the corresponding generating function is called a generating

polynomial.

The elements of the sequence an may be of arbitrary nature. We

will consider sequences of natural, integer, rational, real, and complex

numbers. As is usual for ordinary functions, we will often denote a

generating function by a single letter followed by the argument in

brackets:

A(s) = a0 + a1s+ a2s
2 + . . .

                

                                                                                                               



8 1. Elementary generating functions

Remark 1.5. When using the term “function” we do not mean that

the expression we write down indeed is a function. For example,

we are not able to say what is the “value A(s0) of a function A

at a point s0”. The variable s is formal and the sum of the series

a0+a1s0+a2s
2
0+ . . . makes no sense. However, the statement A(0) =

a0 is true, that is, the value of a generating function at 0 is well

defined.

A generating function represents a number sequence as a series in

powers of the formal variable. That is why we use the term “formal

power series” along with the term “generating function”.

Definition 1.6. The sum of two generating functions

A(s) = a0 + a1s+ a2s
2 + . . .

and

B(s) = b0 + b1s+ b2s
2 + . . .

is the generating function

A(s) +B(s) = (a0 + b0) + (a1 + b1)s+ (a2 + b2)s
2 + . . .

The product of the generating functions A and B is the generating

function

A(s)B(s) = a0b0 + (a0b1 + a1b0)s+ (a0b2 + a1b1 + a2b0)s
2 + . . .

Obviously, both the addition and the multiplication are commu-

tative and associative.

Definition 1.7. Let

A(s) = a0 + a1s+ a2s
2 + . . .

and

B(t) = b0 + b1t+ b2t
2 + b3t

3 + . . .

be two generating functions and suppose B(0) = b0 = 0. The substi-

tution of B into A is the generating function

A(B(t)) = a0+a1b1t+(a1b2+a2b
2
1)t

2+(a1b3+2a2b1b2+a3b
3
1)t

3+ . . .

                

                                                                                                               



1.3. Generating functions 9

If, for example, B(t) = −t, then

A(B(t)) = A(−t) = a0 − a1t+ a2t
2 − a3t

3 + . . .

Note that the substitution of a function different from zero at 0

is not well defined. Its application would cause the necessity to sum

up infinite number series.

Of course, if both functions A and B are polynomials, then their

sum, their product, and the result of the substitution coincide with

the usual sum, product and substitution for polynomials.

For a closer look on generating functions let us prove the following

important theorem.

Theorem 1.8 (about the inverse function). Let a function

B(t) = b1t+ b2t
2 + b3t

3 + . . .

be such that B(0) = b0 = 0, and b1 �= 0. Then there exist functions

A(s) = a1s+ a2s
2 + a3s

3 + . . . , A(0) = 0,

and

C(u) = c1u+ c2u
2 + c3u

3 + . . . , C(0) = 0,

such that

A(B(t)) = t and B(C(u)) = u.

Each of the functions A and C is a unique function possessing this

property.

The function A is said to be left inverse and the function C is

said to be right inverse to the function B.

Proof. Let us prove the existence and uniqueness of the left inverse

function. For the right inverse function the proof is similar. We

compute the coefficients of the functionA step by step. The coefficient

a1 is the solution of the equation a1b1 = 1, whence

a1 =
1

b1
.

Now suppose the coefficients a1, a2, . . . , an are already known. Then

the coefficient an+1 is the solution of the equation

an+1b
n+1
1 + · · · = 0,

                

                                                                                                               



10 1. Elementary generating functions

where dots denote some polynomial in a1, . . . , an and b1, . . . , bn.

Hence, the equation is a linear equation with respect to an+1 and

the coefficient of an+1 is bn+1
1 . This coefficient is non-zero, therefore,

the equation has a unique solution and the proof of the theorem is

completed.

Thus, we have learned how to add, multiply and substitute power

series. We would also like to divide power series. The division is not

always well defined. In this respect it reminds the division of integers:

the ratio of two integers is not necessarily an integer. However, we

are always capable to divide by a power series whose value at 0 is

non-zero.

Statement 1.9. Let

A(s) = a0 + a1s+ a2s
2 + a3s

3 + . . .

be a formal power series such that A(0) �= 0. Then there exists a

formal power series

B(s) = b0 + b1s+ b2s
2 + b3s

3 + . . .

such that A(s)B(s) = 1.

Proof. Once again we proceed by induction. We have b0 = 1
a0
. Now

suppose that all coefficients of the series B up to the degree n− 1 are

known. The coefficient of sn is determined from the condition

a0bn + a1bn−1 + · · ·+ anb0 = 0.

This is a linear equation with respect to bn, and the coefficient a0 of

bn in this equation is non-zero. Therefore, the equation has a unique

solution.

1.4. Elementary generating functions

Writing each generating function as a power series is not always con-

venient. Therefore, some frequently used generating functions have a

special short notation.
                

                                                                                                               



1.4. Elementary generating functions 11

Definition 1.10.

1) (1 + s)α = 1 +
α

1!
s +

α(α− 1)

2!
s2 +

α(α− 1)(α− 2)

3!
s3 + . . . ,

where n! = 1 · 2 · 3 · · · · · n and α is an arbitrary complex number.

Coefficients in this generating function are called the binomial

coefficients; the nth binomial coefficient is denoted by(
α

n

)
=

α(α− 1) . . . (α− n+ 1)

n!
;

2) es = exp s = 1 +
1

1!
s+

1

2!
s2 +

1

3!
s3 + . . . ;

3) ln

(
1

1− s

)
= s+

1

2
s2 +

1

3
s3 + . . . ;

4) sin s = s− 1

3!
s3 +

1

5!
s5 − . . . ;

5) cos s = 1− 1

2!
s2 +

1

4!
s4 − . . .

Expansion 1) in Definition 1.10 was introduced by Newton and

is called the Newton binomial. For positive integer values of α it

coincides with the usual definition of the power of the binomial. This

fact allows one to deduce elementary combinatorial identities. For

example, the substitutions s = 1 and s = −1 yield respectively

(1.2)

(
α

0

)
+

(
α

1

)
+ · · ·+

(
α

α

)
= 1+

α

1!
+

α(α− 1)

2!
+ · · ·+ α!

α!
= 2α,

(1.3)

(
α

0

)
−
(
α

1

)
+ · · ·+ (−1)α

(
α

α

)
= 0

for arbitrary positive integer α.

Besides, the functions introduced above satisfy some natural re-

lations which also have combinatorial meaning. Let us prove, for

example, that

ese−s = 1.

Indeed, the free term in the product on the left is 1, while for n > 0

the coefficient of sn is

1

n! 0!
− 1

(n− 1)! 1!
+

1

(n− 2)! 2!
− · · ·+ (−1)n

0!n!
.

                

                                                                                                               



12 1. Elementary generating functions

Multiplying this expression by n! we reduce it to the left-hand side of

Eq. (1.3) for α = n, which completes the proof of the statement.

1.5. Differentiating and integrating generating
functions

Definition 1.11. Let A(s) = a0 + a1s + a2s
2 + . . . be a generating

function. The derivative of this function is the function

A′(s) = a1 + 2a2s+ 3a3s
2 + · · ·+ nans

n−1 + . . .

The integral is the function∫
A(s) = a0s+ a1

s2

2
+ a2

s3

3
+ · · ·+ an

sn+1

(n+ 1)
+ . . .

The differentiation is the inverse operation to the integration:(∫
A(s)

)′
= A(s).

On the contrary, the integration of a derivative leads to a function

with the zero free term; therefore, generally speaking, the result differs

from the original function by an additive constant.

Remark 1.12. It is easy to see that for functions admitting a power

series expansion the formal derivative coincides with the ordinary one.

The formula for the integral corresponds to the conventional integral

with the variable right end of the interval,∫
A(s) =

∫ s

0

A(ξ)dξ.

The last remark allows one to compute (that is, to express in

terms of elementary functions) generating functions for various se-

quences. Let us compute, for example, the generating function

f(s) =
1

1 · 2 +
1

2 · 3s+
1

3 · 4s
2 + · · ·+ 1

(n+ 1)(n+ 2)
sn + . . .

Multiplying f by s2 and taking the derivative we obtain

(s2f(s))′ = s+
1

2
s2 +

1

3
s3 + · · · = ln(1− s)−1,
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whence

f(s) = s−2

∫
ln(1− s)−1

= s−2
(
(s− 1) ln(1− s)−1 + s

)
.

1.6. The algebra and the topology of formal
power series

The reader will find below some information from the theory of formal

power series. This information will not be used in the future, but it

can help to place this theory among other mathematical theories.

From the algebraic point of view, the set of formal power se-

ries (with coefficients in the field of complex, real, or rational num-

bers) forms an (infinite dimensional) vector space over this field. The

multiplication makes this vector space into an algebra denoted by

C[[s]] (respectively R[[s]] and Q[[s]]). An important role is played by

ideals in this algebra, i.e., subsets I ⊂ C[[s]] such that fI ⊂ I for

any f ∈ C[[s]]. All ideals in the algebra of formal power series are

principal, i.e., each of them has the form fC[[s]] for some element

f ∈ C[[s]]. Moreover, it is easy to describe all these ideals: they are

Ik = skC[[s]], k = 0, 1, 2, . . . (this means that the ideal Ik consists of

all power series divisible by sk). One of the ideals Ik, namely I1, is

the maximal one: it is not contained in any other ideal different from

the algebra itself. An algebra having a single maximal ideal is said to

be local. The locality property shows that the algebra of formal power

series is close to coordinate algebras in a neighborhood of the origin

(the algebras of germs of smooth or analytic functions). The quotient

algebras C[[s]]/Ik are called the algebras of truncated polynomials and

are also very useful.

The algebra of formal power series is equipped with a topology.

The ideals Ik, k = 0, 1, 2, . . . , as well as the empty set are the open

sets in this topology. This topology defines the notion of conver-

gence: a sequence F1(s), F2(s), . . . converges to a formal power series

F (s) if for any n there is a number N such that the coefficients of

s0, s1, . . . , sn in all the series Fk(s) for k > N coincide with those

in F (s). In particular, the sequence of partial sums of a power se-

ries F (s) converges to F (s).
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1.7. Problems

1.1. Compute the polynomials A2 and A3 explicitly and enumerate

lucky tickets.

1.2. Find an expression for the number of 2r-figure lucky tickets in

the number system to the base q.

1.3. Prove the following identities:

a) sin2 s+ cos2 s = 1;

b) (1 + s)α(1 + s)β = (1 + s)α+β ;

c) exp(ln((1− s)−1)) = (1− s)−1;

d) ln(1 + s) = s− 1
2s

2 + 1
3s

3 − · · ·+ (−1)n+1

n sn + . . . ;

e) ln((1− s)α) = α ln(1− s).

1.4. Suppose a function B = B(s) = b1s + b2s
2 + b3s

3 + . . . is such

that b1 �= 0. Prove that the left inverse function A(t) and the right

inverse function C(t) to it coincide. This common inverse function is

denoted by B−1(t).

1.5. Prove that the power series of the form

a1s+ a2s
2 + . . . , a1 �= 0,

form a group with respect to the composition.

1.6. Prove that there is no power series A(s) satisfying the equation

sA(s) = 1.

1.7. Prove that if each of the power series A(s) and B(s) is non-zero,

then their product A(s)B(s) also is non-zero.

1.8. Suppose the series A(s) = a0 + a1s + a2s
2 + . . . , a0 �= 0, and

B(s) = b1s+b2s
2+ . . . , b1 �= 0, have integer coefficients. Find simple

assumptions on their coefficients which guarantee that the series 1
A(s) ,

B−1(s) also have integer coefficients.

1.9. Find the generating function for the sequences

a) 1, 2, 3, 4, 5, 6, . . . ;

b) 1 · 2, 2 · 3, 3 · 4, . . . ;
c) 12, 22, 32, 42, . . .
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1.10. Prove that for any series B = B(t) with zero free term, B(0) =

0, and for arbitrary series A = A(s) one has(∫
A

)
(B(t)) =

∫
(A(B(t))B′(t))

(the substitution of variable in the integral).

1.11. Prove the Newton–Leibniz identity

(A(s)B(s))′ = A′(s)B(s) +A(s)B′(s).

1.12. Prove the integration by parts formula∫
(A(s)B′(s) +A′(s)B(s)) = A(s)B(s)−A(0)B(0).

1.13. (Binomial number system) Prove that for a given positive

integer k each positive integer n admits a unique representation in

the form

n =

(
b1
1

)
+

(
b2
2

)
+ · · ·+

(
bk
k

)
,

where 0 ≤ b1 < b2 < · · · < bk. For example, for k = 2, we have the

following representations:

1 =

(
0

1

)
+

(
2

2

)
2 =

(
1

1

)
+

(
2

2

)
3 =

(
0

1

)
+

(
3

2

)
4 =

(
1

1

)
+

(
3

2

)
5 =

(
2

1

)
+

(
3

2

)
6 =

(
0

1

)
+

(
4

2

)

and so on. (Recall that, by definition,
(
p
q

)
= 0 for integers p, q such

that 0 ≤ p < q.)

                

                                                                                                               



Chapter 2

Generating Functions
for Well-known
Sequences

2.1. Geometric series

The simplest sequence is the constant sequence 1, 1, 1, . . . The gener-

ating function for this sequence has the form

(2.1) G(s) = 1 + s+ s2 + s3 + . . . ,

and it is easy to express it in terms of elementary functions. Indeed,

multiplying Eq. (2.1) by s we obtain

sG(s) = s+ s2 + s3 + s4 + . . .

= G(s)− 1,

whence

(2.2) G(s) =
1

1− s
.

After an appropriate modification the same argument works for

an arbitrary sequence of the form a, ar, ar2, ar3, . . . :

Ga,r(s) = a+ ars+ ar2s2 + ar3s3 + . . .

= a
(
1 + (rs) + (rs)2 + (rs)3 + . . .

)
,

17

                                     

                

                                                                                                               



18 2. Well-known sequences

whence

rsGa,r(s) = Ga,r(s)− a

and

(2.3) Ga,r(s) =
a

1− rs
.

The above computations are nothing but a well-known derivation

of the formula for the sum of a geometric series. Obviously, their

result is consistent with the definition of the generating function (1−
s)−1.

2.2. The Fibonacci sequence

The famous Fibonacci sequence is defined by its first two terms f0 =

f1 = 1 and the relation

(2.4) fn+2 = fn+1 + fn.

This relation allows one to easily produce the first few terms of the

Fibonacci sequence,

1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ;

starting with f2, each element of this sequence is the sum of the two

preceding elements. To compute the generating function

(2.5) Fib(s) = 1 + s+ 2s2 + 3s3 + 5s4 + . . . ,

let us multiply both parts of Eq. (2.5) by s+ s2. We obtain

(s+ s2) Fib(s) = s + s2 + 2s3 + 3s4 + 5s5 + . . .

+ s2 + s3 + 2s4 + 3s5 + . . .

= s + 2s2 + 3s3 + 5s4 + 8s5 + . . . ,

or

(s+ s2) Fib(s) = Fib(s)− 1,

whence

(2.6) Fib(s) =
1

1− s− s2
.

The resulting formula may be treated as the composition of two

generating functions, namely, (1− s)−1 and s+ s2, i.e.,

Fib(s) = 1 + (s+ s2) + (s+ s2)2 + (s+ s2)3 + . . .
                

                                                                                                               



2.2. Fibonacci sequence 19

This expansion, however, is inconvenient because the summands on

the right contain different powers of s, which makes the explicit for-

mulas for the coefficients complicated. More useful is a representation

of the fraction (2.6) as a sum of two elementary fractions:

1

1− s− s2
=

1√
5

(
1

s− s2
− 1

s− s1

)

=
1√
5

⎛⎝ 1

s1

(
1− s

s1

) − 1

s2

(
1− s

s2

)
⎞⎠ ,

where s1 = (−1 +
√
5)/2 and s2 = (−1 −

√
5)/2 are the roots of

the quadratic equation 1 − s − s2 = 0. The latter decomposition

immediately yields

Fib(s) =
1√
5s1

(
1 +

s

s1
+

s2

s21
+ . . .

)
− 1√

5s2

(
1 +

s

s2
+

s2

s22
+ . . .

)
.

Therefore,

fn =
1√
5
(s−1−n

1 − s−1−n
2 )

=
(−1)n√

5
(sn+1

1 − sn+1
2 )

=
(−1)n√

5

⎛⎝(
−1 +

√
5

2

)n+1

−
(
−1−

√
5

2

)n+1
⎞⎠ .(2.7)

Here we made use of the equation s1s2 = −1.

Another way to deduce the generating function for the Fibonacci

numbers uses elementary notions of linear algebra. Consider a pair of

consecutive Fibonacci numbers fn, fn+1 as the coordinates of a vector

in the two-dimensional real vector space R2:(
fn

fn+1

)
∈ R2.

                

                                                                                                               



20 2. Well-known sequences

Then Eq. (2.4) may be interpreted as the rule of transformation of

the vector
(

fn
fn+1

)
to the vector

(
fn+1

fn+2

)
:

Φ:

(
fn

fn+1

)

→

(
fn+1

fn+2

)
=

(
fn+1

fn + fn+1

)
.

This transformation is linear, and it can be written in the matrix

form:

Φ:

(
fn

fn+1

)

→

(
0 1

1 1

)(
fn

fn+1

)
= Φ

(
fn

fn+1

)
.

The transition from the vector
(
fn+1

fn+2

)
to the vector

(
fn+2

fn+3

)
is

achieved by iterating Φ, and so on. Hence, the generating function

for the vector Fibonacci sequence becomes

F (s) =

(
1

1

)
+

(
1

2

)
s+

(
2

3

)
s2 +

(
3

5

)
s3 + . . .

=

(
f0
f1

)
+Φ

(
f0
f1

)
s+Φ2

(
f0
f1

)
s2 +Φ3

(
f0
f1

)
s3 + . . .

= (I +Φs+ Φ2s2 +Φ3s3 + . . . )

(
f0
f1

)
= (I − sΦ)−1

(
f0
f1

)
.

Here I denotes the identity matrix, I =

(
1 0

0 1

)
, and we have ap-

plied the derivation of the formula for the geometric series to the

vector generating function. The only difference is in the result: the

expression (I − sΦ)−1 is treated as the inverse matrix to the matrix

I − sΦ.

An explicit expression for the Fibonacci numbers can be obtained

if we manage to find an explicit form of the matrix Φn for arbitrary

n. In order to do this, diagonalize the matrix Φ, that is, represent it

in the form

Φ = L−1Φ̃L,

where Φ̃ is a diagonal matrix, and L is a non-degenerate one. Then

Φ =
1

s−1
2 − s−1

1

(
1 1

s−1
1 s−1

2

)(
s−1
1 0

0 s−1
2

)(
s−1
2 −1

−s−1
1 1

)
.

                

                                                                                                               



2.3. Recurrence relations 21

Now, using the relation

Φn = L−1Φ̃nL,

and the values s1, s2 we obtain Eq. (2.7).

2.3. Recurrence relations and rational
generating functions

The Fibonacci sequence is defined by the linear recurrence relation

fn+2 = fn+1 + fn. Using this relation and the two first terms of the

sequence we managed to find the generating function explicitly. It

happens to be a rational function, that is, a ratio of two polynomials.

In fact, our derivation did not use the special form of the recurrence

relation. Proceeding in the same way we are able to prove a similar

theorem for the generating function of an arbitrary sequence produced

by a linear recurrence relation.

Theorem 2.1. Suppose a sequence an is given by a linear recurrence

relation of order k with constant coefficients c1, . . . , ck,

(2.8) an+k = c1an+k−1 + c2an+k−2 + · · ·+ ckan,

and let the elements a0, a1, . . . , ak−1 be given. Then the generating

function A(s) = a0+a1s+a2s
2+. . . is rational, A(s) = P (s)

Q(s) , where Q

is a polynomial of degree k, and P is a polynomial of degree at most k−
1.

Proof. The proof of the theorem repeats the argument for the Fi-

bonacci sequence almost word for word. Multiplying the generating

function A(s) by c1s+ c2s
2 + · · ·+ cks

k we obtain

(c1s+ · · ·+ cks
k)A(s)

= c1a0s + c1a1s
2 + c1a2s

3 + . . . + c1ak−1s
k + . . .

+ c2a0s
2 + c2a1s

3 + . . . + c2ak−2s
k + . . .

+ c3a0s
3 + . . . + c3ak−3s

k + . . .

. . .

+ cka0s
k + . . .

= P (s) +A(s),

where the degree of the polynomial P is at most k − 1. Indeed,

the coefficient of sn+k on the right-hand side of the first identity
                

                                                                                                               



22 2. Well-known sequences

coincides with the right-hand side of Eq. (2.8). Now the theorem is

straightforward.

Note that in the course of the proof of Theorem 2.1 we obtained

a sharper statement: we have proved that the polynomial Q is

Q(s) = 1− c1s− c2s
2 − · · · − cks

k.

The derivation of the vector generating function for the Fibonacci

sequence also admits an immediate generalization to the case of an

arbitrary recursive sequence. In the general case, the two-dimensional

vector must be replaced with the k-dimensional vector⎛⎜⎜⎜⎝
an

an+1

...

an+k−1

⎞⎟⎟⎟⎠ ∈ Rk,

and the transformation matrix A corresponding to the recurrence

relation acquires the form

(2.9)

⎛⎜⎜⎜⎝
an+1

an+2

...

an+k

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 1

ck ck−1 ck−2 . . . c2 c1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

an
an+1

...

an+k−1

⎞⎟⎟⎟⎠ .

As the result, we obtain the vector generating function

A(s) = (I − sA)−1

⎛⎜⎜⎜⎝
a0
a1
...

ak−1

⎞⎟⎟⎟⎠ .

Generally speaking, the matrix A is non-diagonalizable. It is di-

agonalizable if and only if its eigenvalues (that is, the roots of the

polynomial Q) are pairwise distinct. However, in the general case

it admits a Jordan normal form, whose powers also are easily com-

putable.
                

                                                                                                               



2.4. Hadamard product 23

It happens that rational generating functions are exactly the gen-

erating functions for recursive sequences. To be more precise, the

following statement takes place.

Theorem 2.2. If the generating function A(s) = a0+a1s+a2s
2+. . .

is rational, A(s) = P (s)
Q(s) , where the polynomials P and Q are coprime,

then, starting from some number n, the sequence a0, a1, a2, . . . is given

by a linear recurrence relation

an+k = c1an+k−1 + c2an+k−2 + · · ·+ ckan,

where k is the degree of Q, and c1, c2, . . . , ck are some constants.

We leave the proof as an exercise to the reader.

2.4. The Hadamard product of generating
functions

One of the most attractive features of rational generating functions

is their closedness with respect to the Hadamard product.

Definition 2.3. The Hadamard product of two generating functions

A(s) = a0 + a1s+ a2s
2 + . . .

and

B(s) = b0 + b1s+ b2s
2 + . . .

is the generating function

A ◦B(s) = a0b0 + a1b1s+ a2b2s
2 + . . .

Hence, the Hadamard product of two sequences is the sequence

whose elements are the products of corresponding elements of the

sequences. We have already met a situation, where the generating

function for the Hadamard product was necessary: in the lucky tickets

problem we have to compute the sum of squares of the coefficients of

the generating polynomial A3. This situation is reproduced each time

when we need to enumerate pairs of objects of the same order n: if

the number of objects of the first kind is an, while that of the second

kind is bn, then the number of pairs of objects, one of the first and

one of the second kind, is anbn.
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Theorem 2.4. The Hadamard product of two rational generating

functions is rational.

To prove the theorem we will need a new characterization of the

rational generating functions.

Lemma 2.5. The generating function for a sequence a0, a1, a2, . . .

is rational if and only if there are numbers q1, . . . , ql and polynomials

p1(n), . . . , pl(n) such that starting from some number n we have

(2.10) an = p1(n)q
n
1 + · · ·+ pl(n)q

n
l .

The expression on the right-hand side of Eq. (2.10) is called a

quasipolynomial in the variable n.

Proof. Note first of all that the generating function (1 − qs)−k has

the form

(1− qs)−k = 1−
(
−k

1

)
qs+

(
−k

2

)
q2s2 −

(
−k

3

)
q3s3 + . . .

= 1 +

(
k

1

)
qs+

(
k + 1

2

)
q2s2 +

(
k + 2

3

)
q3s3 + . . .

= 1 +

(
k

k − 1

)
qs+

(
k + 1

k − 1

)
q2s2 +

(
k + 2

k − 1

)
q3s3 + . . .

The coefficient of sn in this generating function has the form

(2.11)(
k + n− 1

k − 1

)
qn =

(n+ 1)(n+ 2) . . . (n+ k − 1)

(k − 1)!
qn = Pk−1(n)q

n,

where Pk−1(n) is a polynomial in n of degree k − 1. Any rational

function of s admits a representation as a linear combination of a

polynomial and elementary fractions of the form (1− qis)
−ki ; there-

fore, the coefficients of a rational function are quasipolynomials.

Conversely, suppose that the coefficients of a generating function

are quasipolynomials starting from some number. Let us show that

the generating function with quasipolynomial coefficients an = p(n)qn

is rational. Suppose the degree of the polynomial p is k − 1. The

polynomials P0, P1, . . . , Pk−1 defined by Eq. (2.11) form a basis in

the vector space of polynomials of degree at most k − 1. Indeed, any

sequence of polynomials of degrees 0, 1, . . . , k−1 forms a basis in this
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vector space. Therefore, p is a linear combination of the polynomi-

als Pi and the corresponding generating function is simply a linear

combination of the rational functions (1 − qs)−j , j = 0, 1, . . . , k − 1.

For an arbitrary quasipolynomial we arrive at a linear combination

of elementary fractions with different qi. This completes the proof of

the lemma.

Proof of Theorem 2.4. The theorem follows from the fact that the

product of two quasipolynomials is also a quasipolynomial. This is

an immediate corollary of Eq. (2.10).

2.5. Catalan numbers

In arithmetic expressions, the order of computations is determined by

brackets, e.g.,

(3− 1) · (4 + (15− 9) · (2 + 6)).

After erasing all elements of an arithmetic expression except for the

brackets we obtain what is called a regular bracket structure:

()(()()).

Here are all regular bracket structures with one, two, and three

pairs of brackets:

()

()() (())

()()() ()(()) (())() (()()) ((()))

Definition 2.6. The Catalan number cn is the number of regular

bracket structures with n pairs of brackets.

It is convenient to set c0 = 1. Then the sequence of Catalan

numbers starts as follows:

1, 1, 2, 5, 14, 42, 132, . . .

In order to deduce the generating function for the Catalan num-

bers let us first deduce a recurrence relation for these numbers.

Each regular bracket structure satisfies the following two condi-

tions:
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1) the number of left and right brackets in a regular bracket struc-

ture is the same;

2) the number of left brackets in any starting segment of a regular

bracket structure is not less than the number of right brackets in the

same segment.

Conversely, each (finite) sequence of left and right brackets pos-

sessing properties 1) and 2) is a regular bracket structure.

All brackets in a regular bracket structure are split into pairs:

a right bracket is associated to each left bracket. The right bracket

associated to a given left one is defined by the following rule: this

is the first right bracket to the right of the given left bracket such

that the sequence of brackets between the two is a regular bracket

structure.

Consider a regular bracket structure consisting of n + 1 pairs of

brackets and the pair of brackets in it that contains the leftmost left

bracket. Then the sequence of brackets inside the chosen pair forms a

regular bracket structure, and the sequence of pairs outside this pair

also forms a regular bracket structure: (. . . ) . . . , where dots denote

regular bracket structures. If the inside regular bracket structure

consists of k pairs of brackets, then there are n− k pairs of brackets

in the outside bracket structure. Conversely, for each pair of regular

bracket structures containing respectively k and n−k pairs of brackets

we can construct a new regular bracket structure, consisting of n+ 1

pairs of brackets, by bracketing the first structure and concatenating

the result with the second one.

This procedure produces a recurrence relation for the Catalan

numbers. This time the relation is non-linear:

(2.12) cn+1 = c0cn + c1cn−1 + · · ·+ cnc0.

For example, for n = 4 we have

c5 = c0c4 + c1c3 + c2c2 + c3c1 + c4c0

= 1 · 14 + 2 · 5 + 2 · 2 + 5 · 1 + 14 · 1
= 42.
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Consider the generating function for the Catalan numbers:

Cat(s) = c0 + c1s+ c2s
2 + . . .

= 1 + s+ 2s2 + 5s3 + . . .

Taking its square and multiplying the result by s we obtain

sCat2(s) = c20s+ (c0c1 + c1c0)s
2 + (c0c2 + c1c1 + c2c0)s

2 + . . .

= s+ 2s2 + 5s3 + 14s4 + . . .

= Cat(s)− 1,

which leads to the following quadratic equation:

(2.13) sCat2(s)− Cat(s) + 1 = 0,

whence

(2.14) Cat(s) =
1−

√
1− 4s

2s
.

(We choose the minus sign before the root because the expression

with the plus sign, (1+
√
1− 4s)/2s = 1/s+ . . . , contains a negative

power of s and hence cannot coincide with Cat(s).)

The generating function (2.14) allows one to find an explicit for-

mula for the Catalan numbers. By the Newton binomial formula,

cn =
1
2 · 1

2 · 3
2 · · · · · 2n−1

2 · 4n+1

2(n+ 1)!
,

and multiplying both the numerator and the denominator by n! and

dividing by 2n+1 we obtain

(2.15) cn =
(2n)!

n!(n+ 1)!
=

1

n+ 1

(
2n

n

)
.

The last formula also yields a simpler (but containing variable

coefficients) recurrence relation for the Catalan numbers:

(2.16) cn+1 =
4n+ 2

n+ 2
cn.

The Catalan numbers enumerate objects of various nature. They

are discussed in numerous papers and books. Dozens of their defini-

tions are known. We describe here only two more of their interpreta-

tions.
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Figure 1. Diagonal triangulations of the square and the pentagon

0 1

k

Figure 2. The triangle adjacent to the side 01

Consider a convex (n+2)-gon whose vertices are numbered coun-

terclockwise from 0 to n+1. A diagonal triangulation is a partition of

the polygon into triangles by non-intersecting diagonals. Each diago-

nal triangulation contains n−1 diagonals. All diagonal triangulations

of the square and the pentagon are shown in Fig. 1.

Let tn be the number of triangulations of the (n+2)-gon, n ≥ 1;

we set t0 = 1. Consider an arbitrary triangulation and the triangle in

it adjacent to the side 01 (see Fig. 2). Let k be the number of the third

vertex of this triangle. The chosen triangle splits the (n+2)-gon into

a k-gon and a (n−k+3)-gon, each triangulated by diagonals. Let us

number the vertices of both polygons counterclockwise starting with 0
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(see Fig. 3). As a result, we obtain a pair of diagonal triangulations

of a k-gon and a (n− k + 3)-gon.

0

1
2

0

k − 2

k − 1

Figure 3. Renumbering the vertices of the parts

Conversely, each pair of triangulations of a k-gon and a (n −
k+3)-gon uniquely determines a triangulation of the initial polygon.

Therefore,

tn+1 = t0tn + t1tn−1 + · · ·+ tnt0,

and since t0 = 1, the sequence tn coincides with the Catalan sequence.

The procedure associating to a triangulation of a (n + 2)-gon a

pair of triangulations of a k-gon and a (n − k + 3)-gon described

above allows one to establish a one-to-one correspondence between

triangulations of a (n + 2)-gon and regular bracket structures of n

pairs of brackets. Indeed, suppose that such correspondence is already

established for all smaller values of n. We have assigned to each

triangulation of a (n+2)-gon a pair of triangulations of polygons with

fewer vertices. By the induction hypothesis, a pair of regular bracket

structures is associated to this pair of triangulations. Bracketing the

first bracket structure and concatenating the result with the second

one we obtain a new regular bracket structure which we assign to the

initial triangulation of the entire (n+ 2)-gon.

Another important realization of the Catalan numbers is related

to the Dyck paths in the plane. Consider the integer square lattice
                

                                                                                                               



30 2. Well-known sequences

in the positive quadrant in the plane. A Dyck path is a continuous

broken line consisting of vectors (1, 1) and (1,−1), starting at the

origin and ending at the x-axis (see Fig. 4).

( ( ( () ) ) )

Figure 4. A Dyck path and the corresponding regular bracket structure

It is clear how to establish a correspondence between the Dyck

paths and the regular bracket structures: to the vector (1, 1) we asso-

ciate the left bracket, and to the vector (1,−1) the right one (Fig. 4).

Then the assumption that the path belongs to the upper half-plane

and ends at the x-axis just coincides with the regularity requirement

for the bracket structure. Therefore:

The number of Dyck paths consisting of 2n steps coincides with

the nth Catalan number cn.

2.6. Problems

2.1. Prove that if a sequence an admits a representation of the

form (2.10) and all qi are distinct, then such a representation is unique

up to a permutation of the summands.

2.2. Using the previous problem, show that the generating function

ln((1− s)−1) = s+ s2/2 + s3/3 + . . . is not rational.

2.3. Are the generating functions for the following sequences ratio-

nal?

a) 1,−2, 3,−4, 5, . . . ;

b) 2,−6, 12, . . . , (−1)k(k + 1)(k + 2), . . . ;
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c) 1,−4, 9,−16, . . . , (−1)k(k + 1)2, . . . ;

d) 1, 1
4 ,

1
9 , . . . ,

1
k2 , . . . ;

e) f2
n, where fn are the Fibonacci numbers?

Find the generating functions in those cases, where they are ra-

tional.

2.4. Let A(s) = a0 + a1s + a2s
2 + . . . be the generating function

for a sequence a0, a1, a2, . . . . Express in terms of A the generating

functions for the following sequences:

a) a0 + a1, a1 + a2, a2 + a3, . . . ;

b) a0, a0 + a1, a0 + a1 + a2, . . . ;

c) a0, a1b, a2b
2, a3b

3, . . . , b is a constant;

d) a0, 0, a2, 0, a4, 0, a6, 0, a8, 0, . . .

2.5. Using the generating function for the Fibonacci numbers, prove

the following identities:

a) f0 + f1 + · · ·+ fn = fn+2 − 1;

b) f0 + f2 + · · ·+ f2n = f2n+1;

c) f1 + f3 + · · ·+ f2n−1 = f2n − 1;

d) f2
0 + f2

1 + · · ·+ f2
n = fnfn+1.

2.6. Prove that in the Jordan normal form the matrix of Eq. (2.9)

has exactly one Jordan block, of dimension equal to the multiplicity

of the eigenvalue, for each eigenvalue.

2.7. Find the generating functions and explicit formulas for the se-

quences given by the following recurrence relations:

a) an+2 = 4an+1 − 4an, a0 = a1 = 1;

b) an+3 = −3an+2 − 3an+1 − an, a0 = 1, a1 = a2 = 0;

c) an+3 = 3
2an+2 − 1

2an, a0 = 0, a1 = 1, a2 = 2.

2.8. Find the Hadamard products for the following functions of s:

(1−qs)−1 ◦ (1−rs)−1, (1−qs)−1 ◦ (1−qs)−1, (1−qs)−2 ◦ (1−rs)−1,

(1−qs)−2◦(1−rs)−2, (1−qs)−3◦(1−qs)−1.

2.9. The Motzkin paths are defined in the same way as Dyck paths,

but they can also include horizontal vectors (1, 0) (see Fig. 5). The
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Figure 5. A Motzkin path

number of Motzkin paths consisting of n vectors is called the nth

Motzkin number and is denoted by mn. Here is the beginning of the

Motzkin sequence: m0 = 1,m1 = 1,m2 = 2,m3 = 3. Compute some

further terms of this sequence. Find a recurrence relation and the

generating function for this sequence.

2.10. Invent algorithms producing successively a) regular bracket

structures; b) Motzkin paths. Try to make the algorithms as efficient

as possible.

2.11. Consider the set of paths on the line consisting of steps of

length 1 to the left or to the right. Find the generating functions for

the numbers of such paths issuing from 0, consisting of n steps and a)

returning back to 0; b) returning to 0 and not entering the negative

half-line; c) ending at some given point N > 0; d) ending at some

given point N > 0 and not entering the negative half-line.

2.12. Consider the set of paths on the plane consisting of vectors

(1, 0), (−1, 0), (0, 1). Find the generating function for the numbers of

such paths of length n issuing from the origin and non-selfintersecting

(this means that the vectors (1, 0) and (−1, 0) cannot follow each other

immediately in a path).

2.13. Two players play the following game. The first picks an integer

number between 1 and 144 (inclusive), while the second tries to guess

the number by asking questions to which the first player answers

(honestly) “yes” or “no”. Receiving the answer “yes” the second
                

                                                                                                               



2.6. Problems 33

player pays 1 rouble, while the price of the answer “no” is 2 roubles.

What is the strategy for the second player minimizing the loss in

the worst situation possible? And what if 144 is replaced by another

number?

2.14. (The Hipparchus Problem) The following citation is taken from

Plutarch, Moralia, vol. 9, Cambridge MA, Harward University Press,

1961, §VIII.9, p. 732:

“Chrysippus says that the number of compound propositions that

can be made from only ten simple propositions exceeds a million.

(Hipparchus, to be sure, refuted this by showing that on the affirma-

tive side there are 103,049 compound statements, and on the negative

side 310,952.)”

Verify the Hipparchus statement admitting that

• a “compound proposition on the affirmative side” is con-

structed from n simple propositions by bracketing them in

all possible ways (with at most n− 2 pairs of brackets). For

example, there are three compound propositions for n = 3:

a, b, c ; (a, b), c ; a, (b, c),

and 11 compound propositions for n = 4:

a, b, c, d ; a, (b, c, d) ; (a, b, c), d ; a, b, (c, d);

a, (b, c), d ; (a, b), c, d ; a, (b, (c, d)) ; a, ((b, c), d) ;

(a, (b, c)), d ; ((a, b), c), d ; (a, b), (c, d) ;

• a “compound proposition on the negative side” is construc-

ted from n simple propositions by bracketing them, preceded

by the negation, in all possible ways (with at most n−1 pairs

of brackets). For example, there are 7 compound proposi-

tions on the negative side constructed from three simple

propositions:

no a, b, c ; (no a, b), c ; no a, (b, c) ; no(a, b), c ;

no(a, b, c) ; no((a, b), c) ; no(a, (b, c)) .

(In the second case, the answer differs slightly from the one given by

Hypparchus.)

Deduce the generating functions for the corresponding sequences.
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2.15. (Fibonacci computational system) Prove that each positive

integer admits a unique representation in the form a1f1 + a2f2 + . . . ,

where fn are the Fibonacci numbers, each of the numbers ai is either 0

or 1, the number of ones in the representation is finite, and no two

subsequent elements of the sequence ai are equal to 1 simultaneously.

For example, the first few representations are 1 = f1, 2 = f2, 3 = f3,

4 = f3 + f1, 5 = f4, 6 = f4 + f1, 7 = f4 + f2. (Pay attention to

the fact that the number f0 = 1 is not used in this computational

system, so that the Fibonacci sequence starts with 1, 2, 3, 5, 8, . . . .)

Invent algorithms for converting numbers from the Fibonacci system

to the decimal positional number system and back, and algorithms for

adding and multiplying numbers written in the Fibonacci sequence.

2.16. Let

A1(s) =
P1(s)

Q1(s)
, A2(s) =

P2(s)

Q2(s)

be two rational generating functions given by irreducible fractions,

and let

A1 ◦A2(s) =
P (s)

Q(s)

be their Hadamard product represented as an irreducible fraction.

What can be said about the polynomial Q in the denominator, pro-

vided the polynomials Q1 and Q2 are known?

                

                                                                                                               



Chapter 3

Unambiguous Formal
Grammars. The
Lagrange Theorem

3.1. The Dyck Language

We know already that regular bracket structures are enumerated by

the Catalan numbers. Let us write out all regular bracket structures

with up to 4 pairs of brackets:
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Denoting the left bracket by a and the right bracket by b we

can rewrite regular bracket structures as “words” over the alphabet

{a, b}. In the above table, the corresponding word is written under

each bracket structure.

Not all words over the alphabet {a, b} can be obtained in this

way. For example, no regular bracket structure corresponds to any of

the words a, b, aa, ba.

35
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Definition 3.1. Let A = {a1, a2, . . . , ak} be an arbitrary finite set

of distinct letters. A word over the alphabet A is an arbitrary finite

sequence α1α2 . . . αm, where αi ∈ A, i = 1, . . . ,m. The number m is

called the length of the word. A language over the alphabet A is an

arbitrary (either finite or infinite) set of words over A.

The length of the empty word λ is 0; the empty word may either

belong or not belong to a given language.

Example 3.2. Let F denote the language over the alphabet {a, b}
consisting of words not containing two consecutive occurrences of the

letter b: λ, a, b, ab, ba, aaa, aab, aba, baa, bab, aaaa, . . .

The set of regular bracket structures, together with the empty

word, also form a language over the alphabet {a, b}. This language is
called the Dyck language. Of course, we are able to speak about the

same language over the alphabet {(, )}; however, for us the symbols

a, b resemble letters more than the brackets.

Definition 3.3. The generating function of a language L is the gen-

erating function

L(s) = l0 + l1s+ l2s
2 + . . . ,

where lk is the number of words of length k in L.

3.2. Productions in the Dyck language

Writing out all regular bracket structures is a hard job. The process

requires some order which allows one to include all regular bracket

structures, and not to mention any of them twice. A useful tool to

achieve this goal is the following set of production rules in the Dyck

language:

(3.1)
1) r −→ λ;

2) r −→ arbr.

Here r is just an auxiliary letter. Instead of it, any letter not belonging

to the alphabet {a, b} would do.

The arrow in each of the production rules (3.1) is a substitute for

the following phrase:
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an occurrence of the letter r in a word can be replaced with the

word on the right of the arrow.

To show how the production rules work, let us derive a given

regular bracket structure using them.

Suppose we want to derive the word aabaabbb. Here is the deriva-

tion:

r
2)−→ arbr

1)−→ arb
2)−→ aarbrb

1)−→ aabrb
2)−→ aabarbrb

1)−→
1)−→ aabarbb

2)−→ aabaarbrbb
1),1)−→ aabaabbb.

Above each arrow, the number of the rule applied is displayed.

The occurrence of the letter r, to which the rule has been applied, is

underlined.

The production rules in the Dyck language can be interpreted as

follows:

Each word in the Dyck language is

1) either the empty word,

2) or the concatenation of a bracketed word of the Dyck language

and a word of the Dyck language.

Clearly, each word of the Dyck language admits a unique repre-

sentation of this form.

Let us compute, by means of the production rules, the generating

function for the Dyck language. In order to do this, consider the

“non-commutative generating series”, enumerating all words in the

language. This series is nothing but the formal sum of all words of

the language, arranged in increasing order of their lengths:

(3.2) D(a, b) = λ+ ab+ aabb+ abab+ aaabbb+ aababb+ . . .

Theorem 3.4. The series (3.2) satisfies the equation

(3.3) D(a, b) = λ+ aD(a, b)bD(a, b).

Proof. Indeed, the left-hand side of Eq. (3.3) is simply the sum of all

words in the Dyck language. The identity means that the following

statement is true:

Each word in the Dyck language is
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1) either the empty word,

2) or the concatenation of a bracketed word of the Dyck language

and a word of the Dyck language.

Such a representation is unique, which completes the proof of the

theorem.

To obtain an ordinary generating series instead of the non-com-

mutative one, let us make the substitution a = s, b = s, λ = s0 = 1.

Then Eq. (3.3) becomes

D(s, s) = 1 + s2D(s, s).

Denoting D(s, s) by d(s) we arrive at the equation

(3.4) d(s) = 1 + s2d2(s).

Of course, the solution

d(s) =
1−

√
1− 4s2

2s2

of this equation coincides (up to squaring of the formal variable) with

the generating function for the Catalan numbers (2.14). The appear-

ance of s2 instead of s is due to the fact that the length of a word

in the Dyck language consisting of n pairs of brackets is 2n, while

previously we enumerated regular bracket structures with respect to

the number of pairs of brackets.

3.3. Unambiguous formal grammars

Let us formalize and generalize the argument of the previous section.

Definition 3.5. A word w = β1 . . . βm in a language L is said to

be indecomposable in this language if none of its non-empty subwords

βiβi+1 . . . βi+l, 1 ≤ i, i+ l ≤ m, l ≥ 0, different from w belong to L.
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In particular, the empty word is indecomposable in any language.

Suppose a language L possesses the following properties:

(3.5)

1) the empty word belongs to L;

2) no beginning of an indecomposable word

coincides with an end of the same or other

indecomposable word;

3) if we insert a word belonging to L

between any two neighboring letters of a word in L,

then we obtain a word in L;

4) if we erase a subword belonging to L

from a word in L, then we obtain a word in L.

Denote by n(t) = n0 + n1t + n2t
2 + . . . the generating function

for the number of indecomposable words in L and by l(s) = l0+ l1s+

l2s
2 + . . . the generating function for L.

Theorem 3.6. The generating function for a language L possessing

properties (3.5) and the generating function for the sublanguage of

indecomposable words in L are related by the Lagrange equation

(3.6) l(s) = n(sl(s)).

Proof. Associate to each indecomposable word αi1 . . . αim in L the

production rule

r −→ αi1rαi2r . . . αimr.

It is clear that each word in L can be derived using these rules. Indeed,

let β1 . . . βk be an arbitrary word in L. If it is indecomposable, then

it is represented by the right-hand side of the production rule

r −→ β1rβ2r . . . βkr,

where each occurrence of r must be replaced with the empty word.

By the definition of an indecomposable word, such representation

is unique. Otherwise, we may delete an indecomposable subword

in β1 . . . βk, not containing the leftmost letter β1, and proceed by

induction over the length of the word.
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Now suppose there are decomposable words admitting several

representations. Let w be the shortest such word. It contains an in-

decomposable subword. Take the rightmost indecomposable subword

in w. This is possible since indecomposable subwords in a word can-

not overlap. After deleting this indecomposable subword we obtain a

new word w′, which has the same representations as w as the right-

hand sides of the production rules. Hence, w′ is a shorter word also

admitting several representations. The contradiction thus obtained

proves the uniqueness of representation.

Hence, the non-commutative generating function for the lan-

guage L satisfies the equation

L(a1, . . . , am) = λ+ α11L(a1, . . . , am)α12L(a1, . . . , am) · · ·+ . . .

Making the substitution λ = 1, ai = t and taking into account that

l(t) = L(t, t, . . . , t) we arrive at the conclusion of the theorem.

Example 3.7. For the Dyck language, n(t) = 1+ t2. The only inde-

composable words are λ and ab. This gives us immediately Eq. (3.4)

for the generating function for the Dyck language.

One additional symbol is not always enough to construct a gram-

mar. Let us give a formal definition of a grammar.

Definition 3.8. Let R = {r1, . . . , rl} be a finite set of symbols having

empty intersection with A. A production rule is a string of the form

ri −→ w,

where ri ∈ R and w is a word over the alphabet A 
 R. A (finite or

infinite) set Γ of production rules

r1 −→ w11,

r1 −→ w12,

. . .

rl −→ wl1,

rl −→ wl2,

. . .

is called a (context free) grammar over the alphabet A. A word over A

is generated by the symbol ri if it can be obtained from ri by a se-

quence of productions in Γ. A language Li is generated by the symbol
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ri if all the words in Li and only these words are generated by ri. A

grammar Γ is unambiguous if each word generated by ri has a unique

representation as the right-hand side of a production rule ri −→ wik.

Enumeration problems are related first of all with unambiguous

formal grammars. We have constructed already such a grammar for

the Dyck language. Let us give one more example. An example of an

ambiguous formal grammar is given in Problem 3.3 below.

Example 3.9. Consider the language F from Example 3.2. Here is

a possible grammar for this language:

r1 −→ λ,

r1 −→ b,

r1 −→ r2b,

r1 −→ r2,

r2 −→ r1a.

The language F is generated by the symbol r1. The symbol r2 gener-

ates the sublanguage of F consisting of words ending with the letter

a.

This grammar can be pronounced as follows:

1) each word of F is either the empty word, or the word b, or a

word of F ending with a concatenated with b, or a word of F ending

with a;

2) each word of F ending with a is a word of F concatenated

with a.

Theorem 3.10. Let Γ be an unambiguous grammar. Denote by ri(s)

the generating functions for the languages Li generated from the sym-

bols ri. Then these functions satisfy a system of equations

ri(s) =
∑
j

sνij

∏
k

r
ηkj

k (s).

In particular, if there are finitely many production rules, then the

generating functions ri satisfy a system of polynomial equations and

hence are algebraic functions.

Proof. We proceed in the same way as in the situation with one gen-

erating symbol. Namely, introduce the non-commutative generating
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series for each of the languages Li. Since the grammar is unambigu-

ous, we obtain a system of equations for unknown non-commutative

series. The substitution λ = s0 = 1, ai = s for i = 1, . . . ,m, reduces

the system to one for non-commutative series. This completes the

proof of the theorem.

3.4. The Lagrange equation and the Lagrange
theorem

Let us look more attentively at Eq. (3.6). This is a functional equation

relating the generating function for a language and the sublanguage

of indecomposable words in it. We would like to know how to solve

this equation provided that one of the functions is known. It happens

that this is always possible.

First of all we rewrite this equation in the classical form by mul-

tiplying both parts by s introducing the notation sl(s) = l̃(s). Then

Eq. (3.6) becomes

(3.7) l̃(s) = sn(l̃(s)).

The last equation is called the Lagrange equation and the following

theorem holds for it.

Theorem 3.11 (Lagrange). Suppose one of the generating functions

l̃(s) (l̃0 = 0, l̃1 �= 0) or n(t) (n0 �= 0) in Eq. (3.7) is given. Then

the second generating function can be uniquely reconstructed from it.

Proof. One can rewrite Eq. (3.7) in the following form:

l̃1s+ l̃2s
2 + · · · = n0s+ n1s

(
l̃1s+ l̃2s

2 + l̃3s
3 + + . . .

)
+ n2s

(
l̃21s

2 + 2l̃1 l̃2s
3+ . . .

)
+ n3s

(
l̃31s

3 + . . .
)

+ . . .

Let us prove first that if the function l̃(s) is known, then one can

reconstruct the function n(t). We will proceed by induction equating

successively the coefficients of the same powers of s on both sides.
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The coefficient n0 is determined from the equation

n0 = l̃1.

Now suppose the coefficients n0, n1, . . . , nk−1 are already known.

Then the coefficient nk is determined from the equation obtained

by equating the coefficients of sk+1:

(3.8) nk l̃
k
1 + nk−1λk−1 + · · ·+ n1λ1 = l̃k.

Here λi, i = 2, . . . , k−1, denote the coefficients of sk in the generating

functions l̃i(s). Equation (3.8) is a linear equation with respect to nk.

The coefficient of nk in it is l̃k1 , which is non-zero by the assumptions

of the theorem. Therefore, Eq. (3.8) determines nk uniquely.

On the other hand, if the function n(t) is given, then we must set

l̃1 = n0. Then the coefficients l̃k are uniquely determined by (3.8),

since each of the coefficients λi is a polynomial in l̃1, . . . , l̃k−1. The

proof of the theorem is completed.

Remark 3.12. If the coefficients of the function n are non-negative

integers, then the same is true for the coefficients of the function l̃. If

the coefficients of the function l̃ are non-negative integers and l̃1 = 1,

then the coefficients of the function n also are integers, this time not

necessarily non-negative.

3.5. Problems

3.1. Prove that the grammar of Example 3.9 indeed describes the

language F of Example 3.2 and is unambiguous. Find the generating

function for the language F using this grammar.

3.2. Invent an unambiguous grammar generating the language F
and having one generating symbol.

3.3. Show that the grammar

r −→ λ;

r −→ ra;

r −→ br;

r −→ arb.

is ambiguous. (It suffices to find a word which has two distinct rep-

resentations as the right-hand side of these production rules.)
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3.4. Write out production rules for the language of regular bracket

structures over the alphabet of brackets of two kinds (round and

square) and deduce the generating function for this language. For

example, [([])][] is a regular bracket structure, while [(]) is not. This

language is called the Dyck language of the second order. Generalize

this result to Dyck languages of arbitrary order.

3.5. Invent formal grammars for the languages of systems of paths

from Problems 2.11, 2.12; deduce from the constructed grammars the

corresponding generating functions.

3.6. The Motzkin language is the language consisting of words over

the alphabet {a, b, c} such that erasing all occurrences of the letter c

from it one obtains a word of the Dyck language. The words in the

Motzkin language are in one-to-one correspondence with the Motzkin

paths introduced in Problem 2.9. Construct an unambiguous gram-

mar for the Motzkin language and find the generating function for

the Motzkin language using this grammar.

3.7. Construct a grammar for the language of non-negative binary

integers. (Take into account that the only binary integer starting

with 0 is 0.)

3.8. Construct a grammar for the language of regular binary arith-

metic expressions over the alphabet {(, ),+, 1, 0}.
3.9. Construct grammars for the following languages:

a) L1 = {a3ibi | i ≥ 0};
b) L2 = {aibj | i ≥ j ≥ 0};
c) L3 = {w | the number of occurrences of the letter a in w coin-

cides with that of b };
d) L4 = {w | the number of occurrences of the letter a in w is

twice as much as that of b};
e) L5 = {words in a one-letter alphabet, whose length is divisible

either by 2 or by 3};
f) L6 = the set of palindromes in the three-letter alphabet. (A

palindrome is a word having the same shape when read from left to

the right and from right to the left.)
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g) L7 = {words in the alphabet {a, b} containing an even number

of a′s}.
Find the generating functions for these languages.

3.10. Prove Remark 3.12.

3.11. Find the generating functions for the languages over the two-

letter alphabet consisting of words not containing

a) the subword ba; b) the subword aabb; c) the subword aba.

3.12. Prove that the generating function for the language over {a, b}
consisting of all words such that the number of occurrences of a in

each subword differs from that of b at most by 2 is rational. Con-

struct an unambiguous formal grammar for this language and find

this generating function.

                

                                                                                                               



Chapter 4

Analytic Properties of
Functions Represented
as Power Series and the
Asymptotics of their
Coefficients

4.1. Exponential estimates for asymptotics

When solving enumerative problems, one is often interested in the

behavior of the number of elements in the set with the growth of the

enumeration parameter. This behavior is important, for example, if

we plan to enumerate the objects by means of a computer program

and try to predict the expected working time of the program.

Definition 4.1. Two functions f : N → R and g : N → R have the

same asymptotics, or the same growth rate, as n → ∞, if there is a

limit lim
n→∞

f(n)
g(n) and this limit equals 1. A function f grows slower

than g if the limit lim
n→∞

f(n)
g(n) exists and is 0. In the latter case one

also says that g grows faster than f .

When computing the asymptotics, we usually choose some func-

tions for “patterns” and “reduce” other functions to these patterns.

47
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For the patterns, usually the most ordinary monotonous functions

with simple well-known behavior are chosen. The usual patterns are

• the exponential function an for different values of the base

a;

• the power function nα for different values of the power α;

• the factorial n!;

• the logarithm lnn;

and also various products and compositions of these functions.

It is easy to order the pattern functions in the decreasing rate of

their growth:

n!; an, a > 1; nα, α > 0; lnn; nα, α < 0; an, 0 < a < 1.

Example 4.2. The coefficients of the generating function ln(1 −
s)−1 = s + 1

2s
2 + 1

3s
3 + . . . grow as n−1 (although in this case it

would be more natural to say that they “decrease as n−1”).

In the discussion below we treat the formal variable s as the

complex variable s ∈ C.

The simplest and most often used way to estimate the growth

rate of coefficients of a generating function is provided by the follow-

ing theorem based on the Cauchy criterion for the convergence of a

number series.

Theorem 4.3. Suppose the series F (s) converges at some point s0,

|s0| = r. Then the sequence of coefficients of the series grows slower

than
(
1
r + ε

)n
for arbitrary positive real number ε.

Corollary 4.4. If a power series converges on the entire plane, then

the sequence of its coefficients grows slower than εn for arbitrary pos-

itive real number ε.

To each power series (with number coefficients that may be in-

teger, real, or complex) its disc of convergence is associated. The

disc of convergence of a power series is the largest open (that is, not

containing the boundary) disc centered at the origin of the complex

plane such that the series converges at each of its points. The disc of

convergence can either be empty, or coincide with the entire plane, or
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have a finite non-zero radius R. In the last case R is called the radius

of convergence of the power series and the following useful statement

is true.

Statement 4.5. The radius of convergence of a power series F (s) co-

incides with the module of the singular point of the function F closest

to the origin.

For the proof, we refer the reader to standard calculus courses.

Instead of giving a formal definition of a singular point of a func-

tion, let us give several illustrations to this notion.

Example 4.6. Consider the generating function for the Fibonacci

sequence Fib(s) = 1
1−s−s2 (see Example (2.6)). The singularities of

this function are those values of s, where the denominator is 0, that is,

the roots s1 = (−1+
√
5)/2, s2 = (−1−

√
5)/2 of the quadratic poly-

nomial in the denominator. The point s1 is closer to the origin than

the point s2. Therefore, the radius of convergence of the Fibonacci

series is

RFib =

√
5− 1

2
.

Now Theorem 4.3 immediately implies that the Fibonacci numbers

grow slower than
(√

5+1
2 + ε

)n

for arbitrary ε > 0. Equation (2.7)

allows one to give a more precise statement. In fact, the Fibonacci

numbers grow as 1√
5

(√
5+1
2

)n+1

. Indeed, Eq. (2.7) yields

fn

1√
5

(√
5+1
2

)n+1 = 1 + cn,

where |c| =
∣∣∣√5−1√

5+1

∣∣∣ < 1. Clearly, cn tends to 0 as n → ∞.

Example 4.7. The generating function for the Catalan numbers (see

Eq. (2.14)) is

Cat(s) =
1−

√
1− 4s

2s
.

The root s = 0 of the denominator is not a singularity of the function

since at s = 0 the numerator also vanishes. The only singularity of

Cat(s) is the point, where the square root becomes zero, i.e., the
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point s = 1
4 . Hence the Catalan numbers grow slower than (4 + ε)n

for arbitrary ε > 0. For more precise asymptotics, see below.

4.2. Asymptotics of hypergeometric sequences

In enumerative problems, one often meets sequences such that the

ratio of two successive elements is expressed as the ratio of two poly-

nomials of the same degree. For a geometric series, for example,

this ratio is simply a constant. If the degrees of the polynomials are

greater than zero, then the corresponding sequence is termed hyper-

geometric. The following statement gives a very good description of

the asymptotics of hypergeometric sequences.

Lemma 4.8. Suppose a0, a1, . . . is a sequence of positive real numbers

such that

(4.1)
an+1

an
= A

nk + α1n
k−1 + · · ·+ αk

nk + β1nk−1 + · · ·+ βk

for all n large enough, and suppose α1 �= β1. Then an grows as

(4.2) an ∼ cAnnα1−β1

for some constant c > 0.

Remark 4.9. The assumptions of the lemma do not allow one to de-

termine the value of the constant c. Indeed, multiplying the sequence

an by a constant d > 0 we obtain a new hypergeometric sequence

with the same ratio of successive terms, but with c replaced by dc.

Example 4.10. For the Catalan numbers (cf. Eq. (2.16)) we have

cn+1

cn
=

4n+ 2

n+ 2
= 4

n+ 1
2

n+ 2
.

Therefore, cn ∼ c · 4n · n−3/2 for some constant c.

Example 4.11. Let us find the asymptotics of the sequence of co-

efficients of the function (a− s)α, where α is real. We already know

the asymptotics in several cases, for example, for α = −1. By the
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definition of the function (1− s)α, one has

(4.3)

(a− s)α = aα
(
1− s

a

)α

= aα
(
1− α

1!

s

a
+

α(α− 1)

2!

( s
a

)2

− α(α− 1)(α− 2)

3!

( s
a

)3

+ . . .
)
.

If α is a non-negative integer, then the series is finite, and no asymp-

totics is required. Otherwise, all coefficients in (4.3) have the same

sign starting with some number. The asymptotics can be found by

applying Lemma 4.8 to the sequence an = (−1)n α(α−1)...(α−n+1)
n!an :

(4.4)
an+1

an
=

1

a

n− α

n+ 1
.

Therefore, an ∼ c · a−n · n−α−1. For example, the coefficients of the

function −(1−4s)1/2 have the asymptotics c·4n ·n−3/2, and we obtain

the asymptotics for the Catalan numbers once again.

Proof of the lemma. The statement of the lemma is equivalent to

the fact that there is a limit

lim
n→∞

an
Annα1−β1

,

and this limit is non-zero. Taking the logarithm of both parts, we

arrive at the necessity to prove the existence of the limit

(4.5) lim
n→∞

(ln an − n lnA− (α1 − β1) lnn).

We will prove the existence of the limit (4.5) by using the Cauchy

criterion, i.e., we are going to prove that the sequence under consid-

eration is fundamental. This means that for any ε > 0 there is a

number N such that for any n > N and each positive integer m one

has

| ln an+m − ln an − (n+m) lnA+ n lnA

− (α1 − β1) ln(n+m) + (α1 − β1) lnn| < ε,

or

(4.6)

| ln an+m − ln an −m lnA− (α1 − β1) ln(n+m) + (α1 − β1) lnn| < ε.
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Let us rewrite the ratio an+1

an
in the form

an+1

an
= A

1 + α1n
−1 + · · ·+ αkn

−k

1 + β1n−1 + · · ·+ βkn−k

= Af

(
1

n

)
,(4.7)

where

(4.8) f(x) =
1 + α1x+ · · ·+ αkx

k

1 + β1x+ · · ·+ βkxk
.

Taking the logarithm of Eq. (4.7) we obtain

(4.9) ln an+1 − ln an = lnA+ ln f

(
1

n

)
.

Let us look at the function ln f(x). The first terms of the power series

expansion at 0 of the function f defined by Eq. (4.8) are

f(x) = 1 + (α1 − β1)x+ γx2 + . . .

for some constant γ. This expansion is the central point of the proof.

This is the coefficient α1 − β1 (which is non-zero by the assumptions

of the theorem) of the linear term that guarantees the appearance of

the factor nα1−β1 in the asymptotics. For the logarithm of f one has

ln f(x) = (α1 − β1)x+ γ̃x2 + . . .

Therefore, for sufficiently small x one has | ln f(x)−(α1−β1)x| < Cx2

for some constant C. In particular, if N is sufficiently large, then

∀n > N , ∣∣∣∣ln an+1 − ln an − lnA− (α1 − β1)
1

n

∣∣∣∣ < C
1

n2
,∣∣∣∣ln an+2 − ln an+1 − lnA− (α1 − β1)

1

n+ 1

∣∣∣∣ < C
1

(n+ 1)2
,(4.10)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∣∣∣∣ln an+m − ln an+m−1 − lnA− (α1 − β1)
1

n+m

∣∣∣∣ < C
1

(n+m)2
.

Now the expression on the left-hand side of inequality (4.6) we are

interested in can be estimated by means of Eq. (4.10) and the triangle
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inequality:

(4.11) | ln an+m − ln an −m lnA− (α1 − β1)(ln(n+m)− lnn)|
= | ln an+m − ln an+m−1 + ln an+m−1 · · ·+ ln an+1 − ln an

−m lnA− (α1 − β1)

m−1∑
k=0

1

n+ k
+ (α1 − β1)

m−1∑
k=0

1

n+ k

−(α1 − β1)(ln(n+m)− lnn)|

≤
∣∣∣∣ln an+1 − ln an − lnA− (α1 − β1)

1

n

∣∣∣∣
+

∣∣∣∣ln an+2 − ln an+1 − lnA− (α1 − β1)
1

n+ 1

∣∣∣∣
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+

∣∣∣∣ln an+m − ln an+m−1 − lnA− (α1 − β1)
1

n+m

∣∣∣∣
+|α1 − β1|

∣∣∣∣∣
m−1∑
k=0

1

n+ k
− ln(n+m) + lnn

∣∣∣∣∣
≤ C

(
1

n2
+

1

(n+ 1)2
+ · · ·+ 1

(n+m− 1)2

)
+|α1 − β1|

∣∣∣∣∣
m−1∑
k=0

1

n+ k
− ln(n+m) + lnn

∣∣∣∣∣ .
Since the series

∑∞
k=1 1/k

2 converges, the first summand on the

right-hand side of the last inequality can be made arbitrarily small

for n large enough. In order to estimate the second summand, remark

that the sum in it is nothing but the area bounded by the graph of

the stepwise function 1
[x] on the segment [n, n+m]; see Fig. 1. (Here

[x] denotes the integer part of x, that is, the maximal integer number

not exceeding x.) This area lies between that under the graph of the

function y = 1
x , and the graph of the function y = 1

x−1 on the same

segment. The area bounded by the graph of the function y = 1
x is

ln(n+m)− lnn, while that bounded by the graph of the function 1
x−1

is ln(n+m − 1) − ln(n− 1). Hence, the difference we are interested
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n n+m

1
x

1
x−1

Figure 1. The graph of the function y =
1

[x]
on the segment

[n, n+m]

in is at most

|(ln(n+m− 1)− ln(n− 1))− (− ln(n+m) + lnn)|

=

∣∣∣∣ln(1− 1

n+m

)
− ln

(
1− 1

n

)∣∣∣∣ < ∣∣∣∣ln(1− 1

n

)∣∣∣∣ < C
1

n
.

This completes the proof of the lemma.

4.3. Asymptotics of coefficients of functions
related by the Lagrange equation

Suppose two generating functions ϕ = ϕ(s) and ψ = ψ(t) are related

by the Lagrange equation (see Eq. (3.7))

(4.12) ϕ(s) = sψ(ϕ(s)).

We would like to know whether their radii of convergence are related

to each other. From the first glance, there is no connection at all.

Indeed, in Example 3.7 we have seen that if ψ(t) = 1 + t2 is the

generating function for the sublanguage of indecomposable words in

the Dyck language, then ϕ(s) is s times the generating function for

the Dyck language. While the first function is a polynomial and

hence converges at the entire plane, the radius of convergence of the

second one is 1
16 . The situation is similar for all languages generated
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by unambiguous grammars with a finite set of production rules. It

changes dramatically, however, if there are infinitely many production

rules (indecomposable words).

Theorem 4.12. Suppose two generating functions ϕ = ϕ(s) and

ψ = ψ(t), ψ(0) = 1, with non-negative coefficients are related by the

Lagrange equation (4.12). Let r > 0 be the radius of convergence of

the series ϕ and suppose the number series ϕ(r) converges. Then

the radius of convergence of the series ψ is at least ρ = ϕ(r). If the

number series ϕ′(r) also converges, then the radius of convergence of

the function ψ is exactly ρ = ϕ(r).

Remark 4.13. The non-negativity assumption for the coefficients of

the series is natural if we consider generating functions for languages.

In this case it is also natural to expect that the radius of convergence

of the generating series for the sublanguage of indecomposable words

is greater than that for the whole language (since the number of all

words of given length is greater than the number of indecomposable

words of the same length).

Proof. Let us prove that the series ψ(s) converges absolutely at each

point s, |s| = q < ρ. Since the function ϕ is monotonous and continu-

ous on the segment [0, r], there is a point p ∈ [0, r] such that ϕ(p) = q.

Therefore, for each truncated series ψ[n](s) = ψ0 + ψ1s+ · · ·+ ψns
n

we have

|ψ[n](s)| ≤ ψ[n](q) = ψ[n](ϕ(p)) ≤ ϕ(p),

where the last inequality follows from the above remark.

The first statement of the theorem is proved.

Now let us rewrite the Lagrange equation (4.12) in the form

ψ(λ) =
λ

ϕ−1(λ)
.

The functions ψ(λ) and ϕ−1(λ) are defined and holomorphic in the

disc of radius ρ. The theorem will be proved if we show that the

function ϕ−1(λ) admits no holomorphic extension to a neighborhood
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of the point ρ. Suppose that such an extension exists. Then(
ϕ−1

)′
(ρ) = lim

λ→ρ−0

(
ϕ−1

)′
(λ) =

1

lim
t→r−0

ϕ′(t)
.

The last limit exists, and by the assumptions of the theorem is pos-

itive. Hence the function ϕ−1 is invertible in a neighborhood of the

point ρ, which contradicts the assumptions of the theorem.

Note that the generating series for the Catalan numbers Cat(s)

converges at s = r = 1
4 , since the Catalan numbers have the asymp-

totics 4n · n−3/2 and the series
∑

n−3/2 converges. On the other

hand, the coefficients of the derivative Cat′(s) have the asymptotics

4n · n−1/2, whence the series Cat′( 14 ) diverges. Therefore, Theo-

rem 4.12 cannot be applied to the Catalan series in corpore, and

the second statement of the theorem is not true for this series.

4.4. Asymptotics of coefficients of generating
series and singularities on the boundary of
the disc of convergence

We have seen already that the radius of convergence of a generating

series is determined by the closest to the origin singular point of the

series. If the radius of convergence is finite (that is, it is neither

zero nor infinity), then the asymptotics of the coefficients is closely

related to the nature of the singularities on the boundary of the disc

of convergence.

The simplest kind of singularities is a pole, the singularity of the

form (1 − s/a)−k for a positive integer k. Rational generating func-

tions possess only these singularities. The coefficients of a generating

function with such singularity have asymptotics nk−1an.

Algebraic and algebro-logarithmic singularities are more compli-

cated.

Definition 4.14. A singular point s = A is called an algebro-

logarithmic singular point of a function f(s) if in some neighbor-

hood of A the function f admits a representation as a finite sum of

functions of the form

(4.13) (s−A)−α lnk(s−A)ϕ(s),
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where α is a complex number, k is a non-negative integer, ϕ does not

have a singularity at A, and ϕ(A) �= 0.

The coefficients of the series (4.13) have the following asymp-

totics:

(4.14)
const ·AnnReα−1 lnk n for α �= 0,−1,−2, . . .

const ·Annα−1 lnk−1 n for α = 0,−1,−2, . . .

We have shown in Sec. 3.4 that unambiguous formal grammars

naturally lead to algebraic generating functions. The Hadamard prod-

uct of rational functions is rational (see Theorem 2.4). A similar state-

ment is true for the product of an algebraic and a rational generating

function:

Theorem 4.15. If f(s) is a rational and g(s) an algebraic generating

function, then their Hadamard product is an algebraic function.

However, in contrast to rational functions, the algebraic generat-

ing functions themselves are not closed with respect to the Hadamard

product. For example, the Hadamard square of (1−s)−1/2 (and, more

generally, Hadamard products of functions (1−s)−α) is non-algebraic.

A natural set of functions closed with respect to the Hadamard prod-

uct is formed by functions with algebro-geometric singularities. More

precisely, the following theorem is true.

Theorem 4.16. If two functions f(s) and g(s) have only algebro-

logarithmic singularities on the boundary of their disc of convergence,

then the same is true for their Hadamard product. Moreover, the

radius of convergence of the Hadamard product coincides with the

product of the radii of convergence of the two factors.

Here is another important result concerning the Hadamard prod-

uct, due to Hurwitz.

Theorem 4.17 (Hurwitz). If each of the functions f and g is a solu-

tion of a homogeneous ordinary differential equation with polynomial

coefficients, then the same is true for their Hadamard product.
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4.5. Problems

4.1. Find the asymptotics of the Motzkin numbers (see Problem 2.9).

4.2. Find the asymptotics for the number of words in the Dyck

language: a) of the second; b) of arbitrary order (see Problem 3.4).

4.3. Find the asymptotics for the number of paths of length k from

Problems 2.11, 2.12.

4.4. Find the asymptotics for the number of words for the languages

from Problems 3.9, 3.11.

4.5. Consider points 1, 2, . . . , 2n on the horizontal line and join them

in pairs by a set of n non-intersecting semicircles in the upper half-

plane and n non-intersecting semicircles in the lower half-plane. Such

a picture is called a system of meanders of order n. Find the asymp-

totics for the number of systems of meanders.

A system of meanders can be encoded by a word of length 2n

over the four-letter alphabet {a, b, c, d} by assigning to each of the

points 1, . . . , 2n one of the letters according to the following rule:

a b c d

(The picture shows the local behavior of the upper and of the

lower semicircle passing through the chosen point.) Find the asymp-

totics for the number of indecomposable systems of meanders (i.e.,

for the sublanguage of indecomposable words in the language of sys-

tems of meanders). For example, the systems of meanders of order 2

have the encoding aadd, adad, abcd, acbd; the last two of them are

indecomposable.

4.6. Prove that the Hadamard square of the generating function for

the Catalan numbers is not an algebraic function.

4.7. Denote by ak the number of ways to pack the quadrangle 3×2k

by non-overlapping 1 × 2-tiles. For example, a1 = 3, a2 = 11. Find

the generating function for the numbers ak and their asymptotics.

                

                                                                                                               



Chapter 5

Generating Functions of
Several Variables

5.1. The Pascal triangle

Generating functions of two variables correspond to two-index se-

quences. It is convenient to write down such sequences in the form

of a triangle (corresponding to the positive quadrant of the integer

lattice).

The Pascal triangle is shown in Fig. 1. The entries of this triangle

enumerate paths from the vertex of the triangle to the corresponding

entry. Each path is a broken line consisting of unit vectors of either

of the two kinds: going to the right down or to the left down.

The numbers in the Pascal triangle are the already well-known

to us binomial coefficients,

cn,k =

(
n

k

)
.

This can be easily shown by induction over n. Suppose that

the numbers in the nth row of the Pascal triangle coincide with the

coefficients in the expansion of (1 + s)n. The number of different

paths going to the point (n + 1, k) coincides with the sum of the

number of paths ending at the point (n, k − 1) and the number of

paths ending at the point (n, k), cn+1,k = cn,k−1+cn,k. Therefore, the

number cn+1,k coincides with the coefficient of sk in the polynomial

(1 + s) · (1 + s)n = (1 + s)n+1.
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1

1

1

1

1

1

1

1

1

1

1

2

3 3

4 46

5 510 10

a) b)

c0,0

c1,1

c2,2

c3,3

c4,4

c5,5

c1,0

c2,1

c3,2

c4,3

c5,4

c2,0

c3,1

c4,2

c5,3

c3,0

c4,1

c5,2

c4,0

c5,1c5,0

C0,0

C0,1

C0,2

C0,3

C1,0

C1,1

C1,2

C1,3

C1,4

C2,0

C2,1

C2,2

C2,3

C3,0

C3,1

C3,2C4,1

c) d)

Figure 1. The Pascal triangle and the paths it enumerates

A generating function can be associated to the Pascal triangle in

several different ways. For example, one can consider the generating

function

∞∑
n,k=0

cn,kx
kyn =

∞∑
n,k=0

(
n

k

)
xkyn =

∞∑
n=0

(
n∑

k=0

(
n

k

)
xk

)
yn

=

∞∑
n=0

(1 + x)nyn =
1

1− y − xy
.

Another possibility consists of numbering the entries of the trian-

gle by the numbers of segments of each of the two types in any path

leading to the entry (see Fig. 1 d)). For this numbering,

Cn,m = cn+m,m =

(
n+m

m

)
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and the generating function is

∞∑
n,m=0

Cn,mxnym =

∞∑
n,m=0

(
n+m

m

)
xnym

=
∞∑
k=0

∑
n+m=k

(
n+m

n

)
xnym

=
∞∑
k=0

(x+ y)k =
1

1− x− y
.

This time the generating function is symmetric in x and y.

Finally, one can associate to the Pascal triangle the exponential

generating function. In contrast to the ordinary generating function,

the coefficients of the exponential generating function are not just the

elements an, but the numbers an/n!.

5.2. Exponential generating functions

Fix an arbitrary sequence {αn}. One can associate to each sequence

{an} the generating function

{an} 
→
∞∑

n=0

anαns
n,

defined by the sequence {αn}. If there are no zeroes in the sequence

{αn}, then this correspondence is one-to-one. Up to now we made use

only of ordinary generating functions, i.e., those corresponding to the

sequence αn ≡ 1. Other sequences also may prove to be useful. The

choice of the sequence is determined by the problems we are trying to

solve. The sequence αn = 1
n! is one of the most frequently used. The

corresponding generating functions are said to be exponential. Expo-

nential generating functions for integer sequences are called Hurwitz

functions.

What is the difference between exponential generating functions

and ordinary ones? Let us look at the behavior of the exponential
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generating functions under the usual operations. Their behavior un-

der the summation is similar to that of ordinary ones:
∞∑

n=0

an
n!

sn +
∞∑

n=0

bn
n!

sn =
∞∑

n=0

(an + bn)

n!
sn,

while under the multiplication they behave differently:(a0
0!

+
a1
1!
s+

a2
2!
s2 + . . .

)(
b0
0!

+
b1
1!
s+

b2
2!
s2 + . . .

)
=

a0
0!

b0
0!

+

(
a0
0!

b1
1!

+
a1
1!

b0
0!

)
s+

(
a0
0!

b2
2!

+
a1
1!

b1
1!

+
a2
2!

b0
0!

)
s2 + . . .

The coefficients cn
n! of the product are given by the formula

cn =

(
n

0

)
a0bn +

(
n

1

)
a1bn−1 + · · ·+

(
n

n

)
anb0.

Another essential difference between exponential and ordinary

generating functions is their behavior under the differentiation (and

integration). Both the differentiation and integration of an exponen-

tial generating function lead to the shift of the sequence of coefficients,

without changing the coefficients:(a0
0!

+
a1
1!
s+

a2
2!
s2 + . . .

)′
=

a1
0!

+
a2
1!
s+

a3
2!
s2 + . . . ;∫ (a0

0!
+

a1
1!
s+

a2
2!
s2 + . . .

)
=

a0
1!
s+

a1
2!
s2 +

a2
3!
s3 +

a3
4!
s4 + . . .

The ordinary generating function A(s) = a0 + a1s + a2s
2 + . . .

can be expressed in terms of the exponential one A(t) = a0

0! +
a1

1! t +
a2

2! t
2 + . . . according to the formula

A(s) =

∫ ∞

0

e−tA(st)dt.

Indeed, it is easy to see that

k! =

∫ ∞

0

e−ttkdt.

Now we are in position to deduce the exponential generating func-

tion for the Pascal triangle:
∞∑

n,m=0

1

(n+m)!

(
n+m

m

)
xnym =

∞∑
n=0

(x+ y)n

n!
= ex+y.
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1
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2

2

3

4

5
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5

9
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28

42

42

d5,5

d4,4

d3,3

d2,2

d1,1

d0,0

d6,4

d5,3

d6,2d4,2

d5,1

d6,0

d3,1

d4,0d2,0

a) b)

Figure 2. The Dyck triangle

Several more sophisticated examples of exponential generating

functions will be discussed later.

5.3. The Dyck triangle

The Dyck triangle enumerates paths in the positive quadrant issuing

from the origin and consisting of vectors (1, 1) and (1,−1) (see Fig. 2).

Those paths that end on the y-axis are the Dyck paths from Sec. 2.5.

Clearly, the elements dij of the Dyck triangle are non-zero if and

only if i ≥ j and i + j is even. Denote by D(x, y) the generating

function of two variables

D(x, y) =

∞∑
i,j=0

dijx
iyj .

The construction rule for the Dyck triangle hints the following equa-

tion for this generating function:

xyD(x, y) + (D(x, y)−D(x, 0))
x

y
= D(x, y)− 1.

Indeed, the coefficient of any non-unit monomial xiyj is the sum of

the coefficients of the monomials xi−1yi−1 and xi−1yj+1. We already

know the function

D(x, 0) =
1−

√
1− 4x2

2x2
,

and the series D(x, y) is found by solving the linear equation,

D(x, y) =
1−

√
1− 4x2 − 2xy

2x(xy2 + x− y)
.
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5.4. The Bernoulli–Euler triangle and
enumeration of snakes

Similarly to the Pascal triangle, the Bernoulli–Euler triangle (see

Fig. 3) possesses many remarkable properties. The left-hand side

of this triangle is called the Bernoulli side, and the right-hand side is

the Euler side 1.

An entry of the Bernoulli–Euler triangle also enumerates paths

from the vertex of the triangle to the given entry. However, here we

consider only alternating paths: odd steps go to the left, while even

steps go to the right (not necessarily to the neighboring entry). That

is why each element in the Bernoulli–Euler triangle is equal to the

sum of all elements of the previous row situated either to the right,

or to the left of the given entry, depending on the parity of the row’s

number.

One can also define the Bernoulli–Euler triangle by a simpler

recurrence rule, after switching the sign in pairs of successive rows

(see Fig. 4). In this alternated triangle each entry is the sum of two

neighboring entries, to the right and to the up-right of the given one.

To make this definition of the triangle unambiguous, one must define

the Euler side of the triangle. In order to do this, we shall make use

of two other interpretations of the Bernoulli–Euler triangle, those in

terms of Morse polynomials and up-down permutations.

Definition 5.1. A point x0 is a critical point of a polynomial p = p(x)

if it is a root of the derivative, p′(x0) = 0. The tangent line to the

graph of the polynomial at a critical point is horizontal. The value

p(x0) of a polynomial p at a critical point is called a critical value of

the polynomial. A polynomial p is Morse if

a) all its critical points are real and distinct;

b) all its critical values are distinct.

A Morse polynomial of degree n + 1 has n critical points and n

critical values. We will consider polynomials of the form

(5.1) p(x) = xn+1 + a1x
n + · · ·+ an+1,

1The reader should not mix these sequences up with other two number sequences,
also carrying the names of Bernoulli and Euler.
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1

1 0

0 1 1

2 2 1 0

0 2 4 5 5

16 16 14 10 5 0

0 16 32 46 56 61 61

a)

b)

be0,0

be0,1

be0,2

be0,3

be0,4

be0,5

be1,0

be1,1

be1,2

be1,3

be1,4

be2,0

be2,1

be2,2

be2,3

be3,0

be3,1

be3,2

be4,0

be4,1 be5,0

be0,3 = be0,2 + be1,1 + be2,0

be4,0 = be0,3 + be1,2 + be2,1 + be3,0

c)

Figure 3. The Bernoulli–Euler triangle and the paths it enumerates
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1

1 0

0 −1 −1

−2 −2 −1 0

0 2 4 5 5

16 16 14 10 5 0

0 −16 −32 −46 −56 −61 −61

b̃en,k

b̃en−1,k−1

b̃en,k−1

b̃en,k = b̃en−1,k−1 + b̃en,k−1

Figure 4. The alternated Bernoulli–Euler triangle

with the leading coefficient equal to 1.

One can associate to a Morse polynomial a permutation on the set

of n elements. This permutation shows the order of the critical values

of the polynomial. To construct the permutation, let us number the

critical points and the critical values in the increasing order. The

ith element of the desired permutation is the number of the critical

value at the ith critical point (see Fig. 5). Clearly, each element

of such a permutation is either bigger than both its neighbors (the

corresponding critical value is a local maximum), or smaller than

both of them (the corresponding critical value is a local minimum).

Such permutations are called up-down permutations. The up-down

permutation corresponding to a polynomial is called the type of this

polynomial.

Note that not each up-down permutation can be the type of a

polynomial of the form (5.1): the last element of such a permutation

must be smaller than its left neighbor. As a result, the first element

of such a permutation must be smaller than its right neighbor if n is

odd, and must be bigger otherwise.

The types of Morse polynomials for small values of n are shown

in Fig. 6. For n = 1 and n = 2 there is only one possibility. For

n = 3 the number of cases is 2, and for n = 4 the number of cases

is 5. Continuing this enumeration we obtain the sequence

1, 1, 2, 5, 16, 61, 272, . . .
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Figure 5. The permutation corresponding to a Morse polynomial

n = 1

(1)

n = 2

(12)

n = 3

(132) (231)
n = 4

(2143) (3142) (3241) (4132) (4231)

Figure 6. The types of Morse polynomials with n = 1, 2, 3, 4

The elements of this sequence corresponding to the odd values of n

coincide with those on the Bernoulli side of the Bernoulli–Euler tri-

angle, while the elements corresponding to the even values of n are

on the Euler side.

In order to understand where the relationship with the Bernoulli–

Euler triangle comes from, let us look at the types of Morse polyno-

mials with the first critical value having a given number k.
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Lemma 5.2. Let cn,k be the number of types of Morse polynomials

of degree n + 1 with the first critical value having number k. Then

cn,k is the kth entry in the nth row of the Bernoulli–Euler triangle.

Proof. For the first two rows of the triangle the verification is ab-

solutely straightforward. Now let us prove that if the statement is

true for the nth row, then it remains true for the n+1st row as well.

Suppose for definiteness that n + 1 is even. Then both n and n + 2

are odd; we study the types of polynomials of degree n+2. The first

critical value of such a polynomial is a local maximum, whence the

second one is a local minimum and hence it is smaller than the first

one.

Throwing away the first critical value we obtain a uniquely de-

fined type of Morse polynomial of degree n + 1. The number of the

first critical value of this polynomial can be k, k + 1, . . . , n. Con-

versely, to each type of a polynomial of degree n+1 whose first critical

value has number l (l ≥ k) one can associate, in a unique way, a type

of a polynomial of degree n + 2 with the first critical value having

number k. Thus,

cn+1,k = cn,k + cn,k+1 + · · ·+ cn,n.

For odd rows a similar argument also works. Therefore, the num-

bers cn,k satisfy the same recurrence relations as the entries of the

Bernoulli–Euler triangle, and hence exactly these numbers constitute

the triangle.

Consider the following two cases separately:

• n is odd; denote the corresponding number of the up-down

permutations by bn and introduce the exponential generat-

ing function

B(x) = b1
1!
x+

b2
2!
x2 + · · · = 1

1!
x+

2

3!
x3 +

16

5!
x5 + . . . ;

• n is even; denote the corresponding number of up-down per-

mutations by en and introduce the exponential generating

function

E(y) = 1 +
e1
1!
y +

e2
2!
y2 + · · · = 1 +

1

2!
y2 +

5

4!
y4 + . . .

                

                                                                                                               



5.4. The Bernoulli–Euler triangle 69

Figure 7. Associating two new types to a type of a polynomial

Now let us deduce a recurrence relation for the numbers of up-

down sequences. To do this, let us take the global maximum of the

polynomial and tend it to infinity (see Fig. 7). As a result, we have

associated to a type of a polynomial two new types, and if the initial

polynomial has n + 1 critical points, then the new polynomials have

k and n− k critical points, with n− k odd.

For odd n we obtain the following recurrence relation for the

numbers bn:

(5.2) bn+1 =
∑
k odd

(
n

k

)
bkbn−k.

The binomial coefficients arise because we must shuffle the sets of

critical values of the left and of the right polynomials, i.e., choose k

critical values of the left polynomial among the n critical values (all,

but the greatest one).

Recalling that for exponential generating functions the right-hand

side of Eq. (5.2) corresponds to the square of the generating func-

tion B(x) and the left-hand side corresponds to its derivative we can

rewrite Eq. (5.2) in the form

(5.3) B′(x) = B2(x) + 1.
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The last equation is an ordinary differential equation with separable

variables. Solving it we obtain

dB = (B2 + 1) dx,∫
dB

B2 + 1
=

∫
dx,

arctanB = x,

B(x) = tanx.

Hence, the Bernoulli side gives the expansion of the tangent,

B(x) = tanx = x+ 2
x3

3!
+ 16

x5

5!
+ 272

x7

7!
+ . . .

The coefficients bn in this expansion are also called the tangential

numbers. Pay attention to the fact that the vertex element 1 of the

triangle is not included in the Bernoulli side.

In the case of even n, the recurrence relation has the form

(5.4) en+1 =
∑
k odd

(
n

k

)
ekbn−k,

and the corresponding equation for the exponential generating func-

tions looks like

(5.5) E ′(y) = E(y)B(y).

Solving the latter we obtain

E ′(y)

E(y) = B(y),

(ln E(y))′ = tan y,

ln E(y) =
∫

tan y,

E(y) = 1

cos y
,

and we conclude that the Euler side determines the expansion of the

inverse cosine. The coefficients en of this expansion are called the

Euler numbers 2.

2Usually, the term “Euler numbers” refers to the numbers on the Euler side in
the alternated triangle (that is, to the same sequence, but with alternating signs).
However, we will not stress this difference.
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Using the substitutions

sinx =
(
eix − e−ix

)
/2i, cosx =

(
eix + e−ix

)
/2,

we can rewrite the generating functions for the alternated triangle in

the form

B̃(x) = ex − e−x

ex + e−x
, Ẽ(y) = 2

ey + e−y
.

Now the preparatory work for writing out the exponential gener-

ating function for the Bernoulli–Euler triangle is completed. Denote

by bek,l the entry of the triangle having the coordinate k along the

Bernoulli side and the coordinate l along the Euler side.

Theorem 5.3. The exponential generating function for the alternated

Bernoulli-Euler triangle is

(5.6) BE(x, y) =
∞∑

k,l=0

bek,l
xk

k!

yl

l!
=

2ex

ex+y + e−(x+y)
.

Proof. Let us prove that the exponential generating function for the

alternated Bernoulli–Euler triangle satisfies the differential equation

BE(x, y) + ∂BE(x, y)
∂y

=
∂BE(x, y)

∂x
.

This equation is nothing but the defining rule for the alternated tri-

angle. Indeed, consider a half-line in the triangle parallel to the Euler

side. The differentiation of the exponential generating function of this

half-line over y is nothing but the shift by one along the Euler side.

Adding the initial function to the derivative we obtain the neighbor-

ing line (since bek,m = bek−1,m+bek−1,m+1), i.e., the derivative of

the initial exponential generating function with respect to x.

Hence, the function BE(x, y) is uniquely determined by the initial

condition

BE(0, y) = Ẽ(y) = 2

ey + e−y

and the partial differential equation. Now a straightforward verifi-

cation shows that the function (5.6) satisfies the above differential

equation, which completes the proof of the theorem.
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5.5. Representing generating functions as
continued fractions

The generating function for the Catalan numbers satisfies the qua-

dratic equation (2.13):

s2 Cat2(s)− Cat(s) + 1 = 0.

Let us rewrite this equation in the form

Cat(s)− s2 Cat2(s) = 1,

or

(5.7) Cat(s) =
1

1− s2 Cat(s)
.

Substituting this expression for Cat(s) into the right-hand side

of the same Eq. (5.7) we obtain

Cat(s) =
1

1− s2

1−s2 Cat(s)

.

Iterating the process of substitution of the expression (5.7) for Cat(s)

in the resulting identity we finally obtain the expression for the Cata-

lan function in the form of a continued fraction:

(5.8) Cat(s) =
1

1− s2

1− s2

1−...

.

The right-hand side of this equation should be interpreted as follows.

If we break the continued fraction at the nth level (replacing it thus

with a finite ratio, a convergent to the continued fraction), then the

coefficients of the expansion of the resulting rational function in pow-

ers of s will coincide with the coefficients of the expansion of Cat(s)

up to the term s2n. Note that since the numerator of the ratio added

at the (n+ 1)th step is divisible by s2, the increasing of the number

of terms in the convergent does not change the first coefficients of the
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expansion. For example,

1

1− s2
= 1 + s2 + s4 + s6 + s8 + . . . ,

1

1− s2

1−s2

= 1 + s2 + 2s4 + 4s6 + 8s8 + . . . ,

1

1− s2

1− s2

1−s2

= 1 + s2 + 2s4 + 5s6 + 13s8 + . . . ,

1

1− s2

1− s2

1− s2

1−s2

= 1 + s2 + 2s4 + 5s6 + 14s8 + . . .

The stabilizing part of the expansion is shown in bold.

The representation of the Catalan function as a continued fraction

is closely related with the two ways of deducing this function, namely,

by enumerating the Dyck paths (Sec. 2.5) and by using a generating

grammar (Sec. 3.2). Other functions enumerating paths of various

kinds also possess similar representations.

Let us modify slightly the Dyck triangle (see Fig. 1) by assigning

some numbers to the arrows. To be more precise, we assign to each

arrow the number of the row to which it belongs (see Fig. 8 a)). We

will interpret the number at an arrow as its multiplicity, i.e., as the

number of “distinct” arrows in the same direction. As a result, each

path in the Dyck triangle corresponds to several “distinct” paths in

the triangle with multiplicities. The number of these paths is equal

to the product of all multiplicities of all arrows in the path.

The numbers on the lower row of the triangle in Fig. 8 a) resemble

the already well-known sequence of Euler numbers studied in Sec. 5.4.

We postpone the proof of the fact that these two sequences indeed

coincide with the next section. Now we only construct the continued

fraction expansion of the corresponding generating function.

Theorem 5.4. The generating function

F0(s) = 1 + s2 + 5s4 + 61s6 + 1385s8 + . . .
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cm,n = (n+ 1)cm−1,n+1 + ncm−1,n−1

24

6

2

1

1 1

5

5

28

61

61

180

662

1385

1385

1 11 11 11 1

2222 222

333 333

444 44
cm,n

cm−1,n+1

cm−1,n−1

n+ 1

n

a) b)

Figure 8. Dyck triangles with multiplicities

for the lower side of the triangle shown in Fig. 8 a) admits the follow-

ing representation as a continued fraction:

F0(s) =
1

1− 12s2

1− 22s2

1− 32s2
1−...

.

Proof. The generating function F0(s) enumerates distinct paths

starting and ending at the level 0. Denote by Fi(s) the generat-

ing function enumerating paths starting and ending at the level i and

not going below this level, with respect to their lengths. Then

F0(s) =
1

1− s2F1(s)
.

Indeed, each path starting and ending at level 0 admits a unique

decomposition into (broken) segments such that

1) the ends of each segment are on the level 0;

2) the height of each internal point of the segment is positive.

If we erase the first and the last vector in such a segment, then

we obtain a path starting and ending at the level 1. This proves the

statement.

Similarly,

F1(s) =
1

1− 4s2F2(s)
.
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36

4

1

1 1

5

5

56

61

61

576

1080

1324

1385

1385

1 11 11 11 1

4444 111

999 11

1616 1

25

16

9

4

Figure 9. Another distribution of multiplicities in the Dyck triangle

The coefficient 4 at s2 appears because there are four “distinct” ways

to add the first and the last vector to a path on the level 2 in order

to make it into a path on the level 1.

Repeating this procedure we conclude that

Fk(s) =
1

1− (k + 1)2s2Fk+1(s)
,

and the way to write out the continued fraction becomes obvious:

F0(s) =
1

1− s2F1(s)

=
1

1− s2

1−4s2F2(s)

= . . .

=
1

1− s2

1− 4s2

1− 9s2
1−...

.

The proof of the theorem immediately implies that the distribu-

tion of the multiplicities among the ascending and descending vectors

inside each layer is of no importance. Only their product (which must

be constant) makes sense. For example, the triangle shown in Fig. 9

produces the same generating functions for paths starting and ending

at the level 0 as the one shown in Fig. 8 a). Note that the same is

true for paths on other levels as well.
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α0 α0 α0 α0

α1 α1 α1

α2 α2

β0 β0 β0

β1 β1

β2

γ0 γ0 γ0 γ0

γ1 γ1 γ1

γ2 γ2

γ3

cm,n

cm−1,n+1

cm−1,n−1

cm−1,n

cm,n = αn−1cm−1,n−1 + βncm−1,n+1 + γncm−1,n

γn

βn

αn−1

a) b)

Figure 10. Motzkin triangle with multiplicities

Of course, the proof of the theorem can be immediately rephrased

for arbitrary distribution of multiplicities. Moreover, it has an obvi-

ous generalization for the Motzkin triangle with multiplicities (see

Fig. 10).

Theorem 5.5. Let αi, βi, γi denote the multiplicities of the vectors

(1, 1), (1,−1), and (1, 0), respectively, in the ith layer of the weighted

Motzkin triangle. Then the generating function Fk(s) for the paths

starting and ending at the height k and not going below this height

admits the following continued fraction representation:

Fk(s) =
1

1− γks− αkβks2

1−γk+1s−
αk+1βk+1s2

1−...

.

Proof. Of course, this theorem can be proved in the same vein as

its special case Theorem 5.4. However, we prefer to express the same

proof in the language of formal grammars (Chapter 3). Associate to

the vectors (1, 1), (1,−1), (1, 0) in the ith layer the letters ai, bi, ci,

respectively. Consider the languages F0,F1, . . . over the inifinite al-

phabet {a0, b0, c0, a1, b1, c1, . . . , }. The language Fk consists of the

words corresponding to the paths starting and ending at the height k

and not going below this height.
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The grammar

r0 −→ λ,

r0 −→ c0r0,

r0 −→ a0r1b0r0,

r1 −→ λ,

r1 −→ c1r1,

r1 −→ a1r2b1r1,

. . .

is unambiguous. The letter rk, k = 0, 1, 2, . . . generates the language

Fk. Therefore, the non-commutative generating functions Fk satisfy

the equations

F0 = λ+ c0F0 + a0F1b0F0,

F1 = λ+ c1F1 + a1F2b1F1,

. . . . . . . . . . . . . . . . . . . . . . . .

Making the substitution λ = 1, ai = αis, bi = βis, ci = γis, we

obtain the following system of equations for the commutative gener-

ating functions:

F0(s) = 1 + γ0sF0(s) + α0β0s
2F0(s)F1(s),

F1(s) = 1 + γ1sF1(s) + α1β1s
2F1(s)F2(s),

. . . . . . . . . . . . . . . . . . . . . . . .

whence

F0(s) =
1

1− γ0s− α0β0s2F1(s)

=
1

1− γ0s− α0β0s2

1−γ1s−α1β1s2F2(s)

= . . .

For other Fk, the derivation is similar, which completes the proof.
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5.6. The Euler numbers in the triangle with
multiplicities

Statement 5.6. The base side of the triangle in Fig. 8 a) is formed

by the Euler numbers.

Proof. We will prove that the number of distinct paths of length 2n

in the Dyck triangle with multiplicities coincides with the number of

up-down permutations of the set {1, . . . , 2n−1} or, what is the same,

with the number of types of Morse polynomials of degree 2n. Let us

add to the underlying set of the permutations the additional element

2n which we will treat as the last element of each up-down permu-

tation. (Recall that we take into consideration only those up-down

permutations that remain up-down even after adding the maximal

element as the last one.)

Associate to each up-down permutation a path in the Dyck trian-

gle in the following way. Each element i of the permutation is either

a (local) maximum, or a (local) minimum in it. We choose the ith

vector going up if i is a minimal element of the permutation, and

going down otherwise. In Fig. 11 a permutation and the correspond-

ing Dyck path are shown. It is clear that such a path is indeed a

Dyck path: the number of maximal elements in an up-down permu-

tation coincides with that of minimal elements, and not more than

half of the elements are maximal among the first k elements 1, . . . , k

for arbitrary k.

1 2 3 4 5 6 7 8 9 10 11 12

(6,9,2,7,5,10,8,11,1,4,3,12)

Figure 11. The Dyck path corresponding to an up-down permutation
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Let us count the number of permutations corresponding to a given

path. Suppose that the path corresponding to the first m elements

of the permutation ends at the level k. And suppose also that the

last element m is a local maximum (that is, the last vector of the

path descends). Which number can be the local minimum on the

right of m? This minimum is among the first m − 1 elements of

the permutation, and there are k + 1 different ways to choose it.

Indeed, if a right neighboring minimum is already assigned to each

of the maxima among the first elements 1, . . . ,m− 1, then there are

exactly k + 1 free minima.

The reasoning for the case, where the last element m is a min-

imum, proceeds similarly, but we must choose the right neighboring

maximum and move along the permutation from right to left. The

statement is proved.

5.7. Congruences in integer sequences

This section is devoted to properties of integer sequences reduced with

respect to various moduli.

Consider, for example, the sequence of Euler numbers

1, 1, 5, 61, 1385, . . .

The remainders of these integers divided by 4 form the new sequence

1, 1, 1, 1, 1, . . .

One can check that all other elements of this sequence also are ones.

The same sequence considered modulo 3 looks as follows:

1, 1, 2, 1, 2, 1, 2, . . .

The periodicity of the sequence hints that it is given by a rational

generating function. Indeed, let N be a period length of a sequence

ai, i.e., ak+N = ak for all sufficiently large k. This means that the

sequence is given by a linear recurrence relation with constant co-

efficients, and hence, by Theorem 2.1, the corresponding generating

function is rational.

It is easy to find this rational function for the Euler numbers.

Indeed, consider the continued fraction expansion of the generating
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function for them:

E(s) =
1

1− 12s2

1− 22s2

1− 32s2
1−...

.

When the sequence is reduced modulo 4, the second term of this

continued fraction vanishes, and the fraction acquires the form

E4(s) ≡
1

1− s2
mod 4.

(Two power series with integer coefficients are congruent if the cor-

responding coefficients of the series are congruent with respect to the

given module.) When reduced modulo 3, the third term vanishes and

the entire fraction becomes

E3(s) ≡
1

1− s2

1−4s2

mod 3 ≡ 1− s2

1 + s2
mod 3.

More generally, reducing the Euler sequence modulo p we obtain

a finite fraction

Ep(s) ≡
1

1− 12s2

1−... (p−2)2s2

1−(p−1)2s2

mod p,

since the coefficient p2 of the next term is zero modulo p, and hence

the whole tail of the fraction is zero. It is clear how to extend this

argument to an arbitrary continued fraction.

Theorem 5.7. Suppose the generating function A(s) is represented

as a continued fraction

A(s) =
1

1− c1s− p1s2

1−c2s− p2s2

1−c3s− p3s2

1−...

.

Then the function Ap(s) ≡ A(s)mod p is rational for an arbitrary

number p which is a divisor of one of the products p1, p1p2, p1p2p3, . . .

If p divides the product p1 . . . pk, then

Ap(s) ≡
1

1− c1s− p1s2

1−...
pk−2s2

1−ck−1s−pk−1s2

mod p.
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Thus, Theorem 5.7 allows one to find rational generating func-

tions for sequences corresponding to weighted Dyck triangles, reduced

with respect to some (and, sometimes, to all as in the case of the Euler

numbers) moduli.

Another approach to the study of arithmetic properties of integer

sequences is based on using various combinatorial interpretations for

them. Here is the simplest example of such an argument. The number

1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!

is integer for arbitrary n, which is not obvious from the formula. How-

ever, we know that this number enumerates regular bracket structures

with n pairs of brackets and therefore cannot be a non-integer.

The representation of the Catalan numbers as triangulations of

regular (n+ 2)-gons leads to the following statement.

Statement 5.8. If n+ 2 is a power of a prime number, n+ 2 = pk

and n > 1, then the Catalan number cn is divisible by p.

For example,

c2 = 2 ≡ 0mod 2; c5 = 42 ≡ 0mod 7; c7 = 429 ≡ 0mod 3.

Proof. The group Zn+2 of residues modulo n + 2 acts by rotations

on the set of triangulations of a regular (n + 2)-gon. If n > 1, then

the action has no fixed points, and the length of each orbit, being,

by the Lagrange theorem from the group theory, a divisor of n+2, is

divisible by p. Hence the total number of triangulations is divisible

by p.

Similarly, interpreting the Catalan numbers in terms of regular

bracket structures we obtain one more property.

Statement 5.9. If n is a power of a prime number, n = pk, then

cn ≡ 2mod p.

For example,

c2 = 2 ≡ 2mod 2; c3 = 5 ≡ 2mod 3; c5 = 42 ≡ 2mod 5.
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Proof. The group Z2n of residues modulo 2n acts on the set of regular

bracket structures with n pairs of brackets in the following way. The

generator of the group is represented by the minimal cyclic shift of

the structure. Under such a shift

1) the leftmost bracket is deleted;

2) instead, the rightmost bracket is added;

3) the right bracket corresponding to the deleted leftmost bracket

is replaced with the left bracket (which now corresponds to the right-

most bracket). All other brackets remain the same.

This transformation possesses no fixed points if n > 1. Exactly

one of the orbits of this action has length 2. It consists of the bracket

structures

()() . . . ()︸ ︷︷ ︸
n pairs

and ( () . . . ()︸ ︷︷ ︸
n− 1 pairs

).

The lengths of all other orbits are divisible by p, and the statement

follows.

5.8. How to solve ordinary differential equations
in generating functions

When deriving generating functions for the Bernoulli and Euler sides

of the Bernoulli–Euler triangle we had to solve ordinary differential

equations satisfied by these functions. The theorem below solves the

problem of existence and uniqueness of a solution for a large class

of ordinary differential equations containing both Equations (5.3)

and (5.5).

Theorem 5.10. Consider the ordinary differential equation

(5.9) f ′(s) = F (s, f(s))

with respect to the generating function f(s), where F = F (s, t) is

a generating function in two variables, polynomial in t (i.e., having

finite degree in t). Then for each f0 Eq. (5.9) possesses a unique

solution with the initial condition f(0) = f0.

For Eq. (5.3), the function F is

F (s, t) = t2 + 1,
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while for Eq. (5.5) it is

F (s, t) = B(s)t.

Proof of the theorem. The proof follows our usual pattern of

finding the coefficients of the unknown function f one by one. Let n

be the degree of F with respect to t and let

F (s, t) = (F00 + F01s+ F02s
2 + . . . )

+ (F01 + F11s+ F21s
2 + . . . )t

+ · · ·+
+ (F0n + F1ns+ F2ns

2 + . . . )tn,

f(s) = f0 + f1s+ f2s
2 + . . .

Equating the coefficients of s0 on the left- and on the right-hand

sides of Eq. (5.9) we obtain

f1 = F00 + F01f0 + · · ·+ F0nf
n
0 .

Similarly, the equation for the coefficients of s1 yields

2f2 = F10 + F01f1 + F11f0 + · · ·+ F0nf
n−1
0 f1 + F1nf

n
0 .

More generally, fn is the root of the equation

(5.10) nfn = . . . ,

where dots denote a polynomial in coefficients of F and the coefficients

f0, f1, . . . , fn−1 of f . For each n > 0 Eq. (5.10) has a unique solution,

and the theorem follows.

5.9. Problems

5.1. The Chebyshev polynomial Tn is defined by the equality

cosnϕ = Tn(cosϕ).

Here are the first few Chebyshev polynomials:

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x.
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Prove the recurrence relation Tn+1(x) = 2xTn(x) − Tn−1(x) and de-

duce from it the identity∑
n≥0

Tn(x)t
n =

1− tx

1− 2tx+ t2
.

5.2. Prove that(
n

0

)2

+

(
n

1

)2

+ · · ·+
(
n

n

)2

=

(
2n

n

)
.

5.3. Suppose the sequence {an} starting with 1, 1, 2, 5, 17, 73, . . . is

defined by the conditions

a0 = a1 = 1, a2 = 2, an+1 = (n+ 1)an −
(
n

2

)
an−2, n > 2.

Prove that the exponential generating function A(s) for this sequence

satisfies the ordinary differential equation

(1− s)A′(s) =

(
1− 1

2
s2
)
A(s)

and is given by the formula

A(s) = (1− s)−1/2es/2+s2/4.

5.4. Prove that

a) the sum and the product of two Hurwitz functions are Hurwitz

functions;

b) the derivative and the integral of a Hurwitz function are Hur-

witz functions;

c) the result of substitution of a Hurwitz function into a Hurwitz

function is a Hurwitz function;

d) if, in the assumptions of Theorem 5.10, the right-hand side F

of the equation is a Hurwitz function and the number f0 is an inte-

ger, then the solution f of this equation satisfying the initial condi-

tion f(0) = f0 is a Hurwitz function.
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5.5. Denote by an,k the number of Dyck paths of length n bounding

area k; a2,1 = 1, a2,k = 0 for k even. Prove that

A(s, t) =
∑

an,ks
ntk =

1

1− s2t

1− s2t3

1− s2t5
1−...

.

5.6. Prove the following continued fractions expansions:

a)

B(s) =
s

1− 1·2s2
1− 2·3·s2

1−···− k(k+1)s2

1−...

,

where B(s) is the ordinary generating function for the Bernoulli side

of the Bernoulli–Euler triangle;

b)
∞∑

n=0

(2n− 1)!!s2n =
1

1− s2

1− 2s2

1− 3s2
1−...

,

where (2n− 1)!! = 1 · 3 · 5 · · · · · (2n− 1);

c)
∞∑

n=0

Ins
n =

1

1− s− s2

1−s− 2s2

1−s− 3s2
1−...

,

where In is the number of involutions (that is, permutations whose

squares are the identity permutation) on a set of n elements, I1 = 1,

I2 = 2, I3 = 4, I4 = 10, . . . ;

d)
∞∑

n=0

(n+ 1)!sn =
1

1− 2s− 1·2s2
1−4s− 2·3s2

1−6s− 3·4s2
1−...

;

e)
∞∑

n=0

n!sn =
1

1− s− 12s2

1−3s− 22s2

1−5s− 32s2
1−...

.

5.7. Consider the hypergeometric function

h(s) = 1 +

(
1

2

)2

s+

(
1 · 3
2 · 4

)2

s2 +

(
1 · 3 · 5
2 · 4 · 6

)2

s3 + . . .
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a) Prove that

s(1− s)h′′(s) + (1− 2s)h′(s)− 1

4
h(s) = 0.

b) Find the asymptotics of the coefficients of h.

5.8. Prove that the power series

y(s) = 1 +
2s

1!
+

6s2

2!
+

20s3

3!
+ · · ·+

(
2n

n

)
sn

n!
+ . . .

satisfies the differential equation

sy′′ + (1− 4s)y′ − 2y = 0.

5.9. Find the first five coefficients of the (unique) solution y = y(x)

of the following differential equation:

y′ = 2 + 3x− 2y + x2 + x2y.

5.10. Prove that the function y(s) = arcsin s
(1−s2)1/2

satisfies the differential

equation

(1− s2)y′ − sy = 1

and find the sequence of its coefficients.

5.11. Write out a differential equation satisfied by the function

es
2

∫
e−s2/2

and find the sequence of its coefficients.

5.12. Write out the Bernoulli–Euler triangle modulo 2.

5.13. Prove that the number of indecomposable meanders (see Prob-

lem 4.5) of order pm, where p is a prime number and m ≥ 1, is

congruent to 2 modulo p.

                

                                                                                                               



Chapter 6

Partitions and
Decompositions

6.1. Partitions and decompositions

In the process of solving the lucky tickets problem in Chapter 1 we

have already studied the question about the number of representa-

tions of a positive integer n as a sum of k integers. Put aside the

restriction on the value of a summand (in the lucky tickets problem,

the summands were figures, and they could not be greater than 9).

Let us find the number of ways to represent n as a sum of non-negative

integers.

We consider two representations

n = a1 + · · ·+ ak = b1 + · · ·+ bk

as distinct if ai �= bi at least for one i, 1 ≤ i ≤ k. We call such a

representation of n a decomposition.

Statement 6.1. The number of distinct decompositions of n into a

sum of k non-negative integers is
(
n+k−1
k−1

)
.

Proof. Let us think of n as of a tuple of n indistinguishable balls on

the line. Associate to each decomposition of n with k summands a

distribution of k − 1 sticks on the intervals between the balls. The

87

                                     

                

                                                                                                               



88 6. Partitions and decompositions

element ai of the decomposition coincides with the number of balls

between the (i− 1)th and the ith sticks. Together there are n+ k− 1

objects — balls and sticks. Conversely, having n+k−1 objects, there

are
(
n+k−1
k−1

)
possibilities to appoint k− 1 of them sticks. This proves

the proposition.

It is also easy to deduce the generating function for the numbers

of decompositions. In fact, we have already done this in Chapter 1.

Statement 6.2. The generating function for the numbers of decom-

positions into k summands is

Bk(s) = (1− s)−k.

The computation of partitions of n is more complicated. A parti-

tion is an equivalence class of decompositions without zero summands.

Two decompositions are considered to be equivalent if one of them can

be obtained from the other one by a permutation of the summands.

Here are all partitions of small numbers:

n = 1 1

n = 2 2 = 1 + 1

n = 3 3 = 2 + 1 = 1 + 1 + 1

n = 4 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

n = 5 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1

= 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

Pay attention to the fact that each partition is written in the decreas-

ing order of the parts: the comparison of two partitions written in

this form is an easy task.

Denote the number of partitions of n by pn; then we obtain the

following table of the first few elements of the sequence pn:

n 0 1 2 3 4 5 6 7 8

pn 1 1 2 3 5 7 11 15 22

The problem at hand now is to find the generating function for

the sequence pn. To do this, let us first write out the generating

functions for the numbers of partitions with restrictions on the size of

the parts. Let P1(s) denote the generating function for the number
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of partitions of n into parts equal to 1. Obviously, there is exactly

one such partition for each n and we have

P1(s) = 1 + s+ s2 + s3 + · · · = 1

1− s
.

The number of partitions of n into parts equal to 2 is one for

even n and 0 for odd ones; therefore,

P2(s) = 1 + s2 + s4 + s6 + · · · = 1

1− s2
.

Hence, the number of partitions of n into parts not exceeding 2

is described by the generating function

P1(s)P2(s) =
1

(1− s)(1− s2)
.

Similarly, the number of partitions of n into parts equal to 3 is de-

scribed by the generating function P3(s) = 1/(1−s3), while partitions

into parts not greater than 3 are enumerated by the generating func-

tion

P1(s)P2(s)P3(s) =
1

(1− s)(1− s2)(1− s3)
.

Repeating this argument we arrive at the following statement.

Theorem 6.3 (Euler). The generating function for the number of

partitions of n has the form

(6.1) P (s) =
1

(1− s)(1− s2)(1− s3)(1− s4) . . .
.

This theorem makes sense if we can interpret the infinite product

in the denominator of the right-hand side of Eq. (6.1). This product

must be a formal power series

(6.2) Q(s) = q0 + q1s+ q2s
2 + · · · = (1− s)(1− s2)(1− s3) . . .

In order to say what are the coefficients q0, q1, q2, . . . of this infinite

product, let us first look at the finite products:
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1− s = 1−s

(1− s)(1− s2) = 1−s−s2 + s3

(1− s)(1− s2)(1− s3) = 1−s−s2 + s4 + s5 − s6

(1− s) . . . (1− s4) = 1−s−s2 + 2s5 + . . .

(1− s) . . . (1− s5) = 1−s−s2 + s5 + . . .

We see that the coefficients in these finite sequences “stabilize”,

i.e., they remain unchanged starting from some moment (the stabi-

lized terms of the expansions are shown in bold). There is nothing

strange in this fact: the multiplication by 1− sk produces no changes

in the coefficients of the polynomail at degrees less than k. There-

fore, we may simply set qk to be the coefficient of sk in the polynomial

(1− s)(1− s2) . . . (1− sk).

Now we are able to write out the generating functions for parti-

tions satisfying various additional restrictions.

For example, the number of partitions into distinct parts is given

by the generating function

(1 + s)(1 + s2)(1 + s3) . . . ,

partitions into distinct odd parts are described by the generating

function

(1 + s)(1 + s3)(1 + s5) . . . ,

while partitions into arbitrary odd parts are enumerated by the gen-

erating function
1

(1− s)(1− s3)(1− s5) . . .
,

and so on.

Partitions are closely related to the algebra C[x1, x2, x3, . . . ] of

polynomials in the infinite number of variables. We assign to the

variable xi the weight i and assume that the weight of a monomial

is the sum of the weights of the variables. Let us count the number

of monomials of weight n, i.e., the dimension of the space of homoge-

neous polynomials of weight n.
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a) b)

Figure 1. a) Ferrer’s and b) Young’s diagrams

For n = 1 there is one such monomial, namely, x1. For n = 2

there are two monomials of weight n, namely, x2
1 and x2. The number

of monomials of weight 3 is three: x3
1, x1x2 x3. More generally, the

number of monomials of weight n is pn. Indeed, one can associate to

a monomial of weight n a partition of n according to the following

rule: the number of parts i in the partition coincides with the power

of xi in the monomial. Clearly, this correspondence is one-to-one.

Here is a useful geometric interpretation of partitions. It is conve-

nient to represent a partition as a Ferrer diagram or a Young diagram

(see Fig. 1). The diagrams in this figure correspond to the partition

5 + 4+ 4+ 2+ 1 of 16. The number of elements in the ith row of the

diagram coincides with the ith part of the partition.

Ferrer’s and Young’s diagrams provide a convenient tool for prov-

ing various properties of partitions. For example, there is a natural

involution on the set of Young diagrams, the reflection with respect to

the diagonal. Some diagrams remain fixed under this involution (see

Fig. 2). We call such diagrams (and the corresponding partitions)

symmetric.

Let us prove the following property of symmetric partitions.

Statement 6.4. The number of symmetric partitions of n coincides

with the number of its partitions into pairwise distinct odd parts.

Proof. To prove the statement, let us associate to each symmetric

Young diagram the diagram consisting of the “central hooks” in it (see

Fig. 2 b)). The number of cells in each central hook of a symmetric
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a) b)

Figure 2. a) A symmetric Young diagram; b) the central
hooks in the diagram

diagram is odd, and these numbers are pairwise distinct. Conversely,

given a diagram consisting of distinct odd rows, we may take each

row, “break” it at the middle and construct a new diagram of the

resulting hooks.

6.2. The Euler identity

The generating function Q defined by Eq. (6.2) is a very interesting

one. Euler continued counting its coefficients and obtained

Q(s) = 1− s− s2 + s5 + s7 − s12 − s15 + s22 + s26

− s35 − s40 + s51 + s57 − s70 − s77 + s92 + s100 − . . .

We see that the coefficients on the right are only ones or negative ones

and zeroes. The non-zero coefficients are situated at rather specific

places, and the signs at ones alternate in pairs. These observations

led Euler to a conjecture, which we state here as a theorem.

Theorem 6.5 (the Euler identity).

Q(s) = 1 +

∞∑
k=1

(−1)k
(
s

3k2−k
2 + s

3k2+k
2

)
.

Proof. After removing parentheses, the series

Q(s) = (1− s)(1− s2)(1− s3) . . .
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Figure 3. The lower row and the side diagonal of a diagram

contains the same terms as the generating series for the number of

partitions into distinct parts

(1 + s)(1 + s2)(1 + s3) . . .

However, some terms enter this series with the positive sign, while

the others with the negative sign. The positive terms correspond to

partitions into an even number of parts, while the negative terms

correspond to partitions into an odd number of parts. We are going

to prove that the number of partitions of n into an odd number of

parts coincides with that into an even number of parts for all values

of n but some special ones.

Let us represent each partition by its Young diagram. The lower

row and the “side diagonal” of the diagram (see Fig. 3) will play an

essential role in the proof.

Let l be the length of the lower row, d the length of the side

diagonal, and let k be the number of rows in the diagram, that is,

the number of parts in the partition. Define a mapping from the set

of diagrams with rows of pairwise distinct length into itself in the

following way:

• if l < d, then we cut off the lower row and glue it to the

diagram along the side diagonal;

• if l = d < k, then we do the same thing;

• if l > d and k > l, then, conversely, we cut off the side

diagonal and glue it below the lower side.

We do nothing with all other (exceptional) tables.
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This mapping switches the parity of the number of rows in the

diagram, that is, the number of parts in the partitions for all parti-

tions but the exceptional ones. Therefore, if there are no exceptional

diagrams with n cells, then the coefficient of sn in Q(s) is zero.

The exceptional diagrams are selected by the conditions

either k = l = d or k = d, l = k + 1.

In the first case we have

n = k + (k + 1) + (k + 2) + · · ·+ (2k − 1) =
3k2 − k

2
;

and in the second

n = (k + 1) + (k + 2) + · · ·+ 2k =
3k2 + k

2
.

In both cases the exceptional diagram is unique. The Euler identity

is proved.

Statement 6.6. We have

pn = pn−1 + pn−2 − pn−5 − pn−7 + pn−12 + pn−15 − . . .

Indeed, this is an immediate corollary of the identity

P (s)Q(s) = 1.

The recurrence relation of Statement 6.6 found the following ele-

gant interpretation as “D. B. Fuchs’ ruler”1:

This formula allows one to generate effectively a

rather long table of the numbers pn. Here is a

practical approach. Take a sheet of graph paper.

Cut off a strip 3–4 squares wide along its longer

side. Lay the strip on the table vertically and in-

sert some mark, say a star, in the lowest cell. Then,

moving up along the strip, insert the sign + in the

first and second rows, the sign − in the fifth and

seventh rows, the sign + in the twelfth and fif-

teenth rows, and so on, up to the upper side of the

strip. Place the remaining part of the sheet verti-

cally also and draw a vertical line from the upper

1Kvant. 1981. no. 8. p. 15.
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to the lower side of the sheet, at the distance 10–15

cells from the left. Inscribe in the cells to the left

of the line the values of pn you already know top-

down, starting with p0: 1, 1, 2, 3, 5, 7. In order

to find the next value, place the strip against the

line so as to put the star against the first empty

cell. Then subtract the sum of numbers against

the − signs from the sum of those against the +

signs. Inscribe the result in the next cell. This is

the next value of the function pn. Shift the strip

one square down and repeat the procedure, and so

on. In several minutes you will obtain a column

of the numbers pn of height equal to that of your

sheet.

6.3. Set partitions and continued fractions

We have seen in Sec. 2.5 that by fixing the vertices of a polygon we

can simplify enumeration of its triangulations. Similarly, partitions

of sets are enumerated easier than partitions of numbers.

Consider the set Nn = {1, 2, . . . , n} of positive integers between 1

and n. A partition of Nn is a representation of this set as a union

of non-empty disjoint subsets. For example, the set N3 admits five

partitions:

{{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}}, {{1}, {2}, {3}}.

Denote the number of partitions of Nn by p̃n. We are going to study

the generating function

P̃ (s) = p̃0 + p̃1s+ p̃2s
2 + . . .

(we set, by definition, p̃0 = 1).

There is a natural way to associate to each partition of Nn a

partition of the number n. In order to do this, it suffices to represent n

as the sum of the cardinalities of the parts in the given partition of Nn.

It is also easy to count the number of partitions of Nn corresponding

to a given partition

n = n1 + n2 + · · ·+ nk
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of n. There are
(
n
n1

)
ways to choose the elements of the first part,(

n−n1

n2

)
ways to choose the elements of the second part after the first

part is already chosen, and so on. All in all, there are(
n

n1

)(
n− n1

n2

)
. . .

(
n− n1 − · · · − nk−1

nk

)
=

n!

n1!(n− n1)!

(n− n1)!

n2!(n− n1 − n2)!
. . .

(n− n1 − · · · − nk−1)!

nk!0!

=
n!

n1!n2! . . . nk!
=

(
n

n1 n2 . . . nk

)
ways to split the elements of Nn into parts having n1, n2, . . . , nk ele-

ments. The resulting expression is called the multinomial coefficient.

This notion generalizes that of a binomial coefficient. It is easy to

see that the multinomial coefficient is the coefficient of the monomial

xn1
1 xn2

2 . . . xnk

k in the expansion of (x1 + · · ·+ xk)
n:

(x1 + · · ·+ xk)
n =

n∑
n1,...,nk=0
n1+···+nk=n

(
n

n1 . . . nk

)
xn1
1 . . . xnk

k .

However, the number of partitions of Nn corresponding to a given

partition of n is not exactly the multinomial coefficient. The reason

is that the parts of the partition having the same number of elements

can be permuted. Therefore, the correct answer is

1

m1! . . .mn!

(
n

n1 . . . nk

)
,

where mi is the number of parts equal to i.

Now associate to each partition Nn into subsets a path in the

Motzkin triangle according to the following rule. Take the part in

the partition containing the element i. The ith vector in the path

is horizontal if either the corresponding part consists of the single

element i, or i is neither the minimal, nor the maximal element in

this part. The ith vector of the path is the raising vector (1, 1) if i is

the minimal, and it is the descending vector (1,−1) if i is the maximal

element in this set. The starting point of the path is, as usual, the

origin (0, 0). A partition of the set N10 and the corresponding path

in the Motzkin triangle are shown in Fig. 4.
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1 2 3 4 5 6 7 8 9 10

{1, 3, 4, 8, 10}, {2, 6, 7}, {5}, {9}

Figure 4. The path in the Motzkin triangle corresponding to
a given partition

It is clear that the path associated to a partition is indeed a

Motzkin path: it lies in the positive quadrant and ends at the height 0.

Indeed, for eachm the number of maximal elements among the firstm

elements of Nn cannot exceed the number of minimal elements among

them, and for m = n the numbers of minimal and maximal elements

coincide.

Let us count the number of partitions corresponding to a given

path. Suppose the beginning i segments end at the height j and

suppose the first j elements of Nn are already split into subsets. If

the (j+1)th vector of the path is the raising vector (1, 1), then j+1 is

the minimum in the new part of the partition, and there are no other

possibilities. Therefore, the multiplicity of the corresponding edge in

the triangle is 1. If it is the horizontal vector, then the corresponding

element can either enter one of the existing subsets (there are exactly j

possibilities since the maximal element is not yet fixed in j subsets),

or form a subset by itself. Therefore, the multiplicity of a horizontal

vector at the height j is j+1. Finally, the multiplicity of a descending

vector (1,−1) is j since the corresponding element can be the maximal

element in one of the j subsets. This distribution of multiplicities in

the Motzkin triangle is shown in Fig. 5.

Hence, the following statement is true.

Theorem 6.7. The number p̃n of partitions of the set Nn into non-

empty subsets is equal to the number of paths of length n in the

Motzkin triangle with multiplicities shown in Fig. 5.

This theorem together with Theorem 5.5 immediately imply the

following statement.
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1

1

1

1

1

1

3

6

10

2

10

31

5

37

15
1 1 1 1 1

2 2 2 2

3 3 3

4 4

5

1 1 1 1

2 2 2

3 3

5

1 1 1 1 1

1 1 1 1

1 1 1

1 1

Figure 5. The distribution of multiplicities corresponding to
the generating function for set partitions

Corollary 6.8. The generating function P̃n(s) for the number of

partitions of Nn admits the following continued fraction expansion:

P̃n(s) =
1

1− s− s2

1−2s− 2s2

1−3s− 3s2
1−...

.

6.4. Problems

6.1. In how many ways can one change a rouble (=100 copecks) with

1, 5, 10, and 50 kopecks’ coins?

6.2. Count the number of ways to measure 78 grams having weights

of 1, 1, 2, 5, 10, 10, 20, 50 grams by means of

a) a one-pan balance;

b) two-pan balance?

(Applying two distinct weights of the same size we obtain two distinct

ways of measuring.)

6.3. Each positive integer has a unique presentation in decimal no-

tation. Deduce from this fact the following identity:

(1 + s+ s2 + · · ·+ s9)(1 + s10 + · · ·+ s90) · · · = 1

1− s
.
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6.4. Prove that

(1 + s)(1 + s2)(1 + s3) · · · = 1

(1− s)(1− s3)(1− s5) . . .
.

6.5. Prove that each positive integer has as many partitions into dis-

tinct positive summands as into odd (may be coinciding) summands.

6.6. Prove that the number of partitions of n such that only odd parts

are allowed to be repeated coincides with the number of partitions of n

such that each part is repeated not more than 3 times.

6.7. Prove that there are 2n−1 − 1 ways to represent a positive

integer n as a sum of smaller positive integers, if we consider two

representations with different order of summands as distinct. For

example, n = 4 has seven representations:

4 = 3 + 1 = 1 + 3 = 2 + 2 = 2 + 1 + 1

= 1 + 2 + 1 = 1 + 1 + 2 = 1 + 1 + 1 + 1.

6.8. Find the generating function for the number of symmetric par-

titions.

6.9. Consider the ring of polynomials in an infinite number of

weighted variables, and suppose the number of variables with given

weight i is finite for each i. Denote this number by qi. Write out

the generating function for the sequence of dimensions of spaces of

homogeneous polynomials of weight n.

6.10. Denote by σn the sum of divisors of a positive integer n (in-

cluding 1 and n itself); for example, σ6 = 1 + 2 + 3 + 6 = 12. Let

Σ(s) be the generating function for the sequence σn,

Σ(s) = s+ 3s2 + 4s3 + 7s4 + 6s5 + 12s6 + . . .

a) Prove that

Σ(s)P (s) = sP ′(s),

where P (s) is the generating function for the number of partitions.

b) Deduce the recurrence relation for σn from this identity.

6.11. Prove that the sequence pn is increasing and estimate the rate

of its growth.
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6.12. Show that the generating function for the sequence of numbers

of Young diagrams with perimeter 2n is x2

1−2x .

6.13. Prove that∑
n1,n2,...,nk≥1

min(n1, n2, . . . , nk)t
n1
1 tn2

2 . . . tnk

k

=
t1t2 . . . tk

(1− t1)(1− t2) . . . (1− tk)(1− t1t2 . . . tk)
.

6.14. Prove that(
1 +

∞∑
n=1

tn

(1− q) . . . (1− qn)

)−1
= 1 +

∞∑
n=1

(−1)nq(
n
2)tn

(1− q) . . . (1− qn)
.

                

                                                                                                               



Chapter 7

Dirichlet Generating
Functions and the
Inclusion-Exclusion
Principle

7.1. The inclusion-exclusion principle

We start with a very simple general theorem of formal logic. Let B be

a finite set each of whose elements can possess some of the properties

c1, . . . , cm. Denote by N(ci), 1 ≤ i ≤ m, the number of elements of

the set B possessing the property ci, by N(ci, cj), i �= j, the number

of elements of the set B possessing both properties ci, cj , and so on.

Also, let N(1) denote the total number of elements in B.

Theorem 7.1 (inclusion-exclusion principle). The number of ele-

ments in B possessing none of the properties ci, i = 1, . . . ,m, is

N(1)−N(c1)− · · · −N(cm) +N(c1, c2) + · · · −N(c1, c2, c3)− . . .

Proof. Split all elements in B into disjoint groups: B = B0 
 B1 

· · · 
 Bm, where Bl is the subset of elements possessing exactly l

101
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properties. Consider the expressions

N(1),

N(1)−N(c1)− · · · −N(cm),

N(1)−N(c1)− · · · −N(cm) +N(c1, c2) + · · ·+N(cm−1, cm),

. . . . . . . . . . . . . . .

one by one. We associate to each of these expressions a distribution of

integers on the sets Bl. The first expression associates to each subset

the number 1: it counts each of the elements exactly once. The second

expression associates to the set Bl the number 1−l since each element

of Bl has been taken into account, when subtracted, exactly l times.

The third expression assigns to the set Bl the multiplicity 1− l+
(
l
2

)
,

and so on. Hence, the transition from the lth expression to the l+1th

expression does not change the multiplicities of the sets B0, . . . , Bl.

These stable multiplicities are(
l

0

)
−
(
l

1

)
+

(
l

2

)
− · · ·+ (−1)l

(
l

l

)
,

which is zero for all l but l = 0, and the theorem follows.

The following simple mnemonics allows one to remember the

inclusion-exclusion principle easily. Associate 1 to the objects pos-

sessing all properties, then 1 − ci will denote objects without prop-

erty ci. Then the expression for the objects possessing none of the

properties c1, . . . , cm will be

(1− c1)(1− c2) . . . (1− cm),

which after erasing the brackets gives

(1−c1)(1−c2) . . . (1−cm) = 1−c1−· · ·−cm+c1c2+ · · ·−c1c2c3− . . .

Now let us apply the inclusion-exclusion principle to the lucky

tickets problem of Sec. 1.1. Note first that the number of lucky tickets

coincides with the number of tickets having the sum of digits 27.

Indeed, suppose a ticket a1b1c1a2b2c2 is lucky. Then the sum of the

digits in the ticket a1b1c1(9−a2)(9−b2)(9−c2) is 27. Obviously, this

correspondence is one-to-one.
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Now consider the set of all distributions of non-negative integers

with sum 27 in six positions and introduce the following six properties

of such distributions. The property ci states that the number at the

ith position is at least 10. The number of lucky tickets is exactly the

number of distributions possessing none of the properties c1, . . . , c6.

The number N(1) of distributions of non-negative integers with

sum 27 at six positions is
(
32
5

)
. The number N(ci) of distributions

possessing the property ci is the same for all i = 1, . . . , 6 and equals(
22
5

)
. Indeed, we may fix the number 10 at the ith position and

then distribute the complementary sum 17 among the six positions

arbitrarily.

Similarly, the number of distributions possessing simultaneously

two properties ci and cj is
(
12
5

)
: we may fix the number 10 at the

ith and jth positions and distribute the complementary sum 7 arbi-

trarily at the six positions. The number of distributions possessing

simultaneously three or more properties is zero since the total sum

of the numbers is less than 30. Hence, the total number of distri-

butions possessing none of the properties ci is given by the following

proposition.

Statement 7.2. The number of lucky tickets is(
32

5

)
− 6

(
22

5

)
+ 15

(
12

5

)
.

Using the inclusion-exclusion principle, we solve one more prob-

lem having many applications.

A permutation π of the elements of the set {1, 2, . . . , n} is called

a disorder if π(k) �= k for all k = 1, . . . , n. Let dn denote the number

of disorders on the n-element set. Here is the beginning of the table

of the numbers of disorders:

n 0 1 2 3 4

dn 1 0 1 2 9

To enumerate disorders introduce n properties of permutations

on the n-element set. The property ci states that the permutation

fixes the element i. The total number of permutations is n!. The

number of permutations possessing the property ci is (n − 1)!: the

ith element of the set is fixed, while other n− 1 elements undergo an
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arbitrary permutation. The number of elements possessing two prop-

erties ci and cj is (n−2)!: two elements of the set are fixed, while the

permutation of the other n− 2 elements is arbitrary. More generally,

the number of permutations possessing m properties equals (n−m)!.

Hence, we arrive at the following formula.

Statement 7.3. The number of disorders on an n-element set is

dn =

(
n

0

)
n!−

(
n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!− . . .

= n!

(
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!

)
.

As is well known, as n → ∞ this expression tends to e−1. Thus,

disorders form approximately 1/e-part of all permutations.

7.2. Dirichlet generating functions and
operations with them

All generating functions we considered up to now are power series.

However, in multiplicative number theory another type of series,

Dirichlet functions, are also useful. The most important of them

is the Riemann zeta function

(7.1) ζ(s) =
1

1s
+

1

2s
+

1

3s
+ . . .

A general Dirichlet generating function corresponding to a se-

quence a1, a2, a3, . . . , has the form

a1
1s

+
a2
2s

+
a3
3s

+ . . .

The Riemann zeta function corresponds to the sequence 1, 1, 1, . . . .

It plays the same role for the Dirichlet generating functions as the

geometric series for the ordinary and the exponent for the exponential

generating functions. Pay attention to the fact that the numbering of

coefficients in Dirichlet generating functions starts with 1, not with 0,

as for ordinary or exponential ones.

Dirichlet generating functions are introduced because of their be-

havior under the multiplication: the product of two functions A(s) =
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ann

−s and B(s) =
∑

bnn
−s is the function

A(s)B(s) =
a1b1
1s

+
a1b2 + a2b1

2s
+

a1b3 + a3b1
3s

+
a1b4 + a2b2 + a4b1

4s
+ . . .

=
∑
n

∑
kl=n

akbl

ns
,

where the internal summation is carried over all decompositions of n

into a product of two ordered factors. Hence, Dirichlet generating

functions reflect the multiplicative structure of integers. Note that

the addition of two such functions corresponds to the usual termwise

addition of sequences.

The function 1 = 1−s plays the role of the unit under the multi-

plication of Dirichlet generating functions. Any Dirichlet generating

function A(s) with a non-zero constant term a1 �= 0, is invertible:

there is a function B(s) such that A(s)B(s) = 1. Let us construct

the inverse of the Riemann zeta function.

Theorem 7.4. The inverse function of the Riemann zeta function is

M(s) =
1

ζ(s)
=

∞∑
n=1

μn

ns
,

where

μn =

⎧⎪⎪⎨⎪⎪⎩
(−1)tn where tn is the number of prime divisors of n,

if there are no repeating divisors

in the prime factorization of n;

0 otherwise.

The sequence μn is called the Möbius sequence, and the function

M(s) the Möbius function.

Proof. To prove the theorem, let us multiply ζ(s) by M(s). The

coefficient of n−s, n > 1, in the product is(
tn
0

)
−
(
tn
1

)
+ · · ·+ (−1)tn

(
tn
tn

)
= 0.

Indeed, suppose the factorization of n into the product of positive

powers of distinct prime numbers has the form n = pk1
1 . . . pkt

t , where
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t = tn. Then the coefficient of m−s in M(s) contributes to the coef-

ficient of n−s in the product if and only if m is a product of prime

numbers forming a subset of the set p1, . . . , pt. The number of such

subsets containing k elements is
(
t
k

)
, and the sign of the coefficient of

m−s is (−1)k.

The theorem is proved.

This theorem immediately implies the following statement.

Corollary 7.5. Let fn, gn be two sequences such that

(7.2) fn =
∑
t|n

gt,

where the summation is carried over all divisors t of n. Then the ele-

ments gn can be expressed in terms of the elements fn in the following

way:

(7.3) gn =
∑
t|n

μn/tft.

Proof. Indeed, Eq. (7.2) means that

F (s) = ζ(s)G(s),

where F (s) (resp., G(s)) is the Dirichlet generating function for the

sequence fn (resp., gn). Multiplying both parts of the last equation

by M(s) we obtain

M(s)F (s) = M(s)ζ(s)G(s) = G(s),

which is exactly Eq. (7.3). The corollary is proved.

Since any positive integer admits a unique factorization into a

product of powers of distinct prime numbers, we obtain a represen-

tation of the zeta function as an infinite product (and, therefore, one

more representation of the Möbius function):

Statement 7.6. We have

ζ(s) =
1

1− 2−s

1

1− 3−s

1

1− 5−s

1

1− 7−s
. . . ,

M(s) =
(
1− 2−s

) (
1− 3−s

) (
1− 5−s

) (
1− 7−s

)
. . . ,

where the product is taken over all prime numbers.
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7.3. Möbius inversion

The formula for the sum of a geometric series, the inclusion-exclusion

formula of Theorem 7.1, Theorem 7.4 and the Euler inversion (6.1)

all are manifestations of a simple general principle, called the Möbius

inversion principle. This principle allows one to find the inverse func-

tion to a zeta function in a variety of situations.

Namely, let s1, s2, . . . be a set (may be infinite) of variables, and

suppose we consider the algebra of formal power series in these vari-

ables. Define the zeta function of this algebra as the sum of all mono-

mials in it, taken with coefficient 1. Thus, the geometric series

1 + s+ s2 + s3 + . . .

is the zeta function of the algebra of power series in a single variable s.

The function inverse to the zeta function is the Möbius function of the

algebra. It is a sum of some monomials taken with some coefficients,

which we have already computed in Theorem 7.4.

Theorem 7.7. The coefficient of the monomial sn1
i1

. . . snm
im

in the

Möbius function of the algebra of formal power series in variables

s1, s2, . . . is 0 if any of the variables enters the monomial with the

degree at least 2 (i.e., ni > 1 for some i) and it equals (−1)m if all m

variables in the monomial have degree 1.

Proof. One may prove the theorem repeating the proof of Theo-

rem 7.4 almost word for word. We choose another way, however. In

fact, we know the inverse function for the zeta function explicitly. In-

deed, the zeta function itself is the product of zeta functions in each of

the variables s1, s2, . . . . Therefore, it is the product of the geometric

series

(1 + s1 + s21 + s31 + . . . )(1 + s2 + s22 + s32 + . . . ) . . .

(Note that the coefficient of each monomial in this product is a sum of

finitely many finite products.) Therefore, the Möbius function, which

is inverse to the zeta function, is simply the product

(1− s1)(1− s2)(1− s3) . . . ,

and the statement of the theorem follows immediately.
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Let us look at applications of this theorem. In order to deduce

from it Theorem 7.4 consider the set of variables s2, s3, s5, s7, . . . (to

each prime number there corresponds a single variable, indexed by

this number). Then the algebra of Dirichlet generating functions is

isomorphic to the algebra of power series in the chosen set of vari-

ables: under this isomorphism the element n−s, with n = pk1
1 . . . pkm

m

being the factorization into the prime factors, corresponds to the

monomial sk1
p1

. . . skm
pm

of the algebra of power series. It is easy to

see that this mapping indeed extends linearly to an algebra isomor-

phism. Now Theorem 7.4 follows immediately from Theorem 7.7 (cf.

Statement 7.6).

The inclusion-exclusion principle can be deduced from Theo-

rem 7.7 in the following way. Consider the algebra of polynomials

in variables s1, . . . , sn (each variable corresponds to a property un-

der study) truncated at degree two. This means that each monomial

containing a variable of degree at least two is considered to be 0.

A monomial si1 . . . sim in this algebra is identified with the subset

{i1, . . . , im} of the set {1, . . . , n}. The inclusion-exclusion principle is

nothing but the formula for the Möbius function in this algebra.

The inversion formula for the generating function enumerating

partitions also can be deduced easily. Associate to each partition

n = n1 + · · ·+ nm the monomial sn1
sn2

. . . snm
(if some parts in the

partition occur more than once, then the degree of the corresponding

variable in the monomial is equal to the number of the parts). As we

already know, the Möbius function in this algebra is

(1− s1)(1− s2)(1− s3) . . .

Making the substitution sn = sn we transform the zeta function of the

algebra into the generating function enumerating partitions (indeed,

the coefficient of sn after the substitution is exactly the number of all

partitions of n). The inverse function is transformed into the function

(1− s)(1− s2)(1− s3) . . . ,

and Eq. (6.2) follows.
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7.4. Multiplicative sequences

There are other Dirichlet generating functions, different from the zeta

and the Möbius function, that also play important roles in number

theory. The most useful of them are the functions corresponding to

multiplicative number sequences.

Definition 7.8. A sequence a1, a2, a3, . . . is called multiplicative

if for any coprime positive integers m,n the equality aman = am·n
holds.

Note that if a1 = 0 in a multiplicative sequence, then this se-

quence consists of zeroes. Indeed, an = a1·n = a1an = 0 for any

positive integer n. The same argument shows that if a1 �= 0, then

a1 = 1. In what follows we will consider only non-zero multiplicative

sequences.

The sequence 1, 0, 0, 0, . . . is multiplicative. The sequence con-

sisting only of 1’s is also multiplicative. The Möbius sequence is also

multiplicative, which follows, for example, from Theorem 7.4. Let us

give several examples more.

Example 7.9. Denote by τn the number of divisors of n. Obviously,

the Dirichlet generating function for the sequence τn is

τ (s) =
τ1
1s

+
τ2
2s

+ · · · = ζ2(s).

If the numbers m and n are coprime, then the number of divisors of

their product mn is τmτn: if p is a divisor of m and q is a divisor of n,

then pq is a divisor of mn, and each divisor of mn can be represented

as the product of divisors of m and n in a unique way. Therefore, the

sequence τn is multiplicative.

Example 7.10. Denote by νn the number of distinct prime factors

of n. Then the sequence an = aνn is multiplicative for any real a.

Each multiplicative sequence is uniquely determined by its ele-

ments whose indices are powers of prime numbers. In other words,

the following analogue of Statement 7.6 takes place for multiplicative

sequences.
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Statement 7.11. A sequence {ai} is multiplicative if and only if

the corresponding Dirichlet generating function admits the following

representation:

(7.4)(
1

1s
+

a2
2s

+
a4
4s

+ . . .

)(
1

1s
+

a3
3s

+
a9
9s

+ . . .

)(
1

1s
+

a5
5s

+ . . .

)
. . . ,

where the product is taken over all prime numbers.

This statement immediately implies the following remarkable

property of multiplicative sequences, which generalizes the fact that

the Möbius sequence is multiplicative.

Corollary 7.12. If Dirichlet generating functions A(s) and B(s) cor-

respond to multiplicative sequences, then the sequences corresponding

both to their product A(s)B(s) and their ratio A(s)/B(s) are multi-

plicative. In other words, Dirichlet generating functions correspond-

ing to non-zero multiplicative number sequences form a group with

respect to the multiplication.

Indeed, if each of the functions A(s), B(s) possess the represen-

tation (7.4), then both their product and their quotient possess this

representation. Statement 7.11 follows immediately from the defini-

tion of a multiplicative sequence.

7.5. Problems

7.1. Using the inclusion-exclusion formula find the area of the spher-

ical triangle on the unit sphere, having the angles α, β, γ.

7.2. Using the inclusion-exclusion formula find the number of lucky

tickets with 2p digits in the number system to the base q.

7.3. Let a1, a2, . . . , ak be all distinct prime factors of a number n =

ap1

1 . . . apk

k . Prove that the number ϕn of numbers smaller than n and

prime to n is given by the formula

ϕn = n

(
1− 1

a1

)(
1− 1

a2

)
. . .

(
1− 1

ak

)
.

7.4. Make use of the previous problem to show that the sequence ϕn

is multiplicative.
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7.5. Show that the number of distinct regular closed n-gons (includ-

ing self-intersecting ones) inscribed in the unit circle is ϕn/2.

7.6. Count the number of uncancellable fractions among the n2 frac-

tions

1/1, 1/2, 1/3, . . . , 1/n

2/1, 2/2, 2/3, . . . , 2/n

. . .

n/1, n/2, n/3, . . . , n/n.

7.7. Show that the number of disorders in an n-element set is the

integer closest to n!/e.

7.8. Suppose the diagonal elements of an n×n-matrix are zero, while

all other entries are non-zero. Count the number of non-zero products

in the expansion of the determinant of this matrix.

7.9. Prove that the exponential generating function for the numbers

of disorders is D(s) = e−s/(1− s).

7.10. Let μn denote the Möbius sequence. Show that

∞∏
n=0

(1− xn)−μn/n = ex.

7.11. Describe all ideals in the algebra of Dirichlet generating func-

tions.

7.12. Prove the identity

max(a1, . . . , an) = a1 + · · ·+ an −min(a1, a2)− · · · −min(an−1, an)

+ min(a1, a2, a3) + · · ·+ (−1)n−1min(a1, . . . , an).

7.13. Set λn = (−1)k, where k is the number of prime factors of n

(taking multiplicities into account). Show that the sequence λn is

multiplicative.

7.14. Find the Dirichlet function ζ(s)λ(s), where the coefficients of

the function λ(s) are defined in the previous problem.

7.15. Denote by σα(n) the sum of the divisors of n taken to the

degree α, σα(n) =
∑
t|n

tα (α is a non-negative integer). Prove that the
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Dirichlet generating function for the sequence σα(n) is

Σα(s) =

∞∑
n=1

σα(n)

ns
= ζ(s)ζ(s− α).

                

                                                                                                               



Chapter 8

Enumeration of
Embedded Graphs

The present chapter is devoted to some geometric aspects of combi-

natorics, including those undergoing active development during the

last decades. These problems are related to graphs and their embed-

dings into two-dimensional surfaces. In this chapter we extensively

use the notation [sk]f(s) for the coefficient fk in a generating function

f(s) = f0 + f1s+ f2s
2 + . . .

8.1. Enumeration of marked trees

Many difficulties in enumeration problems are due to the fact that

objects under enumeration have distinct symmetries. Thus, if we con-

sider equal those diagonal triangulations of regular polygons that are

taken to each other by a rotation of the polygon (see Sec. 2.5), then

receiving an exact formula for the number of triangulations would

become a complicated problem, and the resulting formula would say

nothing essentially new about triangulations. This happens because

distinct triangulations possess non-isomorphic symmetry groups. For

example, all six rotations of the triangulation of a hexagon shown in

Fig. 1 a) produce distinct results, while the rotations of the triangu-

lation shown in Fig. 1 b) lead to only two new triangulations, and

113

                                     

                

                                                                                                               



114 8. Embedded graphs

a) b) c)

Figure 1. Three diagonal triangulations of the hexagon, with
distinct symmetries

the rotations of the triangulation in Fig. 1 c) give only one additional

picture.

On the other hand, the explicit formula expressing the number of

diagonal triangulations of a polygon with numbered vertices in terms

of the Catalan numbers, gives a good estimate for the asymptotics

of the numbers of triangulations of polygons with non-numbered ver-

tices. Indeed, the number of triangulations considered up to rotation

of the (n + 2)-gon is at most cn ∼ const · 4n · n−3/2, and it is not

smaller than cn/(n+2) ∼ const · 4n ·n−5/2. Hence, the break of sym-

metry (that is, the numbering of the vertices of a polygon) seriously

simplified the problem and had only a minor impact on the precision

of the answer. The same trick — marking — proves to be efficient in

many other enumeration problems. We start with showing how it is

used in enumeration of trees.

Definition 8.1. A graph is a triple Γ = {V,E, I} consisting of a finite

set of vertices V , a finite set of edges E and an incidence mapping

I : E → V × V assigning to each edge a pair of vertices, the ends of

the edge, connected by the edge. An edge is called a loop if its ends

coincide. The valency of a vertex in a graph is the number of edges

having this vertex as an end (when computing valencies, each loop

having both ends at the given vertex is counted twice).

Graphs are usually drawn in the plane. Vertices are shown as fat

points, and edges as arcs connecting these points (see Fig. 2).

Remark 8.2. 1. A graph is more naturally understood not as the

object defined above, but as an isomorphism class of such objects.

Two triples Γ1 = {V1, E1, I1} and Γ2 = {V2, E2, I2} are isomorphic if
                

                                                                                                               



8.1. Enumeration of marked trees 115

Figure 2. A plane picture of a graph. Fat points show the
vertices and the edges of the graph are represented by arcs.
The intersection points of the edges not marked with fat points
are not vertices

there are one-to-one mappings v : V1 → V2 and e : E1 → E2 such that

I2 ◦ e = (v × v) ◦ I1. We shall use below mainly this definition.

2. The above definition of a graph admits various variants. For

example, it is sometimes natural to require that at most one edge

passes through each pair of vertices. Sometimes loops are forbidden,

and so on. We will specify such restrictions at proper places.

3. From the topological point of view, a graph is a one-dimensional

complex. If we introduce an orientation on each edge of a graph (that

is, we choose one of the two directions of the edge), then the boundary

of the edge is the formal difference between the end and the starting

vertices of the edge.

Definition 8.3. Two vertices of a graph are said to be adjacent if

there is an edge connecting them. A graph is said to be connected if for

any pair u, v ∈ V of its vertices there is a chain v0 = u, v1, . . . , vk =

v ∈ V of the vertices of a graph such that the two vertices vi−1

and vi are adjacent for each i = 1, 2, . . . , k. A cycle is a sequence

v0, v1, . . . , vk ∈ V of graph vertices such that the vertices vi−1 and vi
are adjacent for each i = 1, 2, . . . , k, all vertices v0, v1, . . . , vk−1 are

distinct and v0 = vk. A tree is a connected graph without cycles.

All trees with n vertices (n ≤ 5) are shown in Fig. 3.

Enumeration of trees with n vertices is a complicated problem

since different trees have different symmetry. We will discuss a simpler

problem, that of enumerating marked trees. Mark each of the vertices

of a tree with one of the numbers in {1, 2, . . . , n} in such a way that

distinct vertices acquire distinct marks. All marked trees with n ≤ 4
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Figure 3. All trees with n ≤ 5 vertices
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Figure 4. All marked trees with n vertices (n ≤ 4)

vertices are shown in Fig. 4. The sequence of numbers of marked

trees with n vertices starts with the numbers 1, 1, 3, 16, . . .

Denote by Tn the number of rooted marked trees with n vertices,

i.e., the number of marked trees with a distinguished vertex, called

the root of the tree. Clearly, the number of rooted marked trees with n

vertices is n times the number of marked trees with n vertices: there

are n different choices of the root.

Let us find the exponential generating function

T (s) =

∞∑
n=1

1

n!
Tns

n =
1

1!
s+

2

2!
s2 +

9

3!
s3 +

64

4!
s4 + . . .

for the number of rooted marked trees. After we delete the root,

the tree splits into several new trees; the number of these new trees

coincides with the valency of the root. The new trees also can be

considered to be marked: the only thing we have to do is to replace
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the existing marks {l1, . . . , li}, l1 < · · · < li, by the marks {1, . . . , i},
preserving their order. For the root of a new tree the vertex adjacent

to the root of the initial tree is chosen. Hence, to each rooted marked

tree with a root of valency k we have associated a (multi)set consisting

of k rooted marked trees. We speak about multisets because some of

the newly generated trees can coincide.

This description implies that trees with a root of valency k are

enumerated by the exponential generating function sT k(s). Indeed,

exactly the elements

Tl1

l1!
. . .

Tlk

lk!
sl1+···+lk ,

such that l1 + · · · + lk = n contribute to the coefficient of sn+1 in

sT k(s). The set of marks of n vertices of k trees can be split into k

disjoint subsets containing l1, . . . , lk marks in
(

n
l1...lk

)
= n!

l1!...lk!
ways.

Therefore, the number of marked rooted trees having n + 1 vertices

and a root of valency k is

n![sn]T k(s) =
∑

l1+···+lk=n

n!

l1! . . . lk!
Tl1 . . . Tlk .

Now, summing the functions 1
k!T k over all k we obtain the following

statement.

Theorem 8.4. The exponential generating function T (s) for the

number of marked rooted trees enumerating them with respect to the

number of vertices satisfies the Lagrange equation

(8.1) T (s) = seT (s).

Now the Lagrange theorem allows us to compute easily first coeffi-

cients of the function T (s). For example, we get T5 = 625, T6 = 7776.

However, it would be nice to have an explicit formula for the coef-

ficients. To obtain such a formula we will need the following more

precise version of the Lagrange theorem.

Theorem 8.5. Suppose two functions ϕ = ϕ(s) (ϕ(0) = 0) and

ψ = ψ(t) are related by the Lagrange equation

(8.2) ϕ(s) = sψ(ϕ(s)).
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Then the coefficient of sn in the function ϕ is

[sn]ϕ(s) =
1

n
[tn−1]ψn(t).

Let us apply this statement to Eq. (8.1) whose solution is the

function T (s). We obtain

Tn = n![sn]T (s) = n!
1

n
[tn−1]ent = (n− 1)!

nn−1

(n− 1)!
= nn−1.

Hence, we have proved the following result.

Theorem 8.6 (Cayley). The number of rooted marked trees with n

vertices is Tn = nn−1.

Corollary 8.7. The number of marked trees with n vertices is nn−2.

Proof of Theorem 8.5.

Lemma 8.8 (transformation of the residue under a variable change).

For a function g(t) such that g(0) = 0, g′(0) �= 0, we have

[s−1]f(s) = [t−1]f(g(t))g′(t).

Indeed, suppose f(s) = f−Ns−N + f−N+1s
−N+1 + . . . , g(t) =

g1t+ g2t
2 + . . . For n �= −1 we have

[t−1]gn(t)g′(t) = [t−1]
1

n+ 1
(gn+1(t))′ = 0,

since the residue of the derivative of an function is 0. For n = −1

[t−1]f−1
1

g(t)
g′(t) = f−1,

and the statement of the lemma follows.

The coefficient of sn in the generating function ϕ has the form

[sn]ϕ(s) = [s−1]sn+1ϕ(s).

Let us find the last residue using Lemma 8.8. To do this, rewrite the

Lagrange equation (8.2) as the variable change

s =
t

ψ(t)
,
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where t = ϕ(s). Then the lemma gives

[s−1]s−n−1ϕ(s) = [t−1]
ψn+1(t)

tn
· ψ(t)− tψ′(t)

ψ2(t)

= [t−1]

(
ψn(t)

tn
− ψn−1(t)ψ′(t)

tn−1

)
= [tn−1]ψn(t)− 1

n
[tn−2](ψn(t))′

=
1

n
[tn−1]ψn(t),

which completes he proof of the theorem.

8.2. Generating functions for non-marked,
marked, ordered, and cyclically ordered
objects

As we have seen, some sequences are better described in terms of

ordinary generating functions, while others in terms of exponential

ones. There are exceptions, however. For example, the exponential

generating function for the number of up-down permutations is either

the tangent or the secant (depending on the parity of the cardinality

of the permuted set; see Sec. 5.4), while the corresponding ordinary

generating functions admit remarkable representations as continued

fractions (Sec. 5.5).

However, the general rule states that exponential generating func-

tions better describe marked objects, while ordinary generating func-

tions fit better for the description of non-marked objects. The fol-

lowing observation produces a base for this rule. Suppose we have a

class of objects and we study finite ordered sequences of objects in

this class and cyclically ordered sequences.

Statement 8.9. Suppose the objects of the class are marked and

A(s) =
∑

ans
n/n! is the exponential generating function for their

numbers ; then the exponential generating function for sequences of

these objects is 1/(1−A(s)), and the exponential generating function

for cyclic sequences equals ln(1/(1−A(s))).
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Figure 5. Two distinct embeddings of a tree into the plane

If the objects of the class are non-marked and B(s) =
∑

bns
n is

the ordinary generating function for them, then the generating func-

tion for sequences of these objects is 1/(1−B(s)), and the generating

function for cyclic sequences is
∑ ϕk

k ln(1/(1 − B(sk)), where ϕk is

the Euler function, that is, the number of integers between 1 and k

prime to k.

Here we suppose that an enumerating parameter, a weight, is

assigned to each object (e.g., the number of vertices in a graph) in

such a way that the weight of a complex object consisting of several

simple parts is the sum of the weights of the parts.

Hence, associating to marked objects exponential generating func-

tions and to unmarked objects ordinary generating functions we arrive

at natural generating functions enumerating complex objects.

8.3. Enumeration of plane and binary trees

It is obvious that each tree can be drawn on the plane in such a

way that its edges have no points of intersection and self-intersection

other than the common vertices. (The edges can be even chosen as

segments of straight lines, but we will not make use of this fact.)

However, the same tree can admit distinct plane representations (see

Fig. 5). The notion of embedding of a tree into the plane is formalized

in the following definition.

Definition 8.10. Two embeddings of a tree into the plane are called

equivalent if there is an orientation preserving homeomorphism of the

plane taking the image of the first embedding to the second one. An

equivalence class of embeddings of a tree is called a plane tree.
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Hence, several plane trees may correspond to the same tree. Note

that each tree with n ≤ 6 vertices admits a single plane embedding.

Enumeration of plane trees remains a complicated problem, since

distinct plane trees may have distinct symmetries. In order to destroy

the symmetry, let us choose a leaf (that is, a vertex of valency one) for

the root of the tree. A tree with such a root will be called planted. It

is clear that the only transformation taking a planted plane tree into

itself is the identity transformation. All planted plane trees having n

vertices (2 ≤ n ≤ 5) are shown in Fig. 6. The trees are shown

growing down from the root. The numbers 1, 1, 2, 5, . . . of planted

plane trees having 2, 3, 4, 5, . . . vertices give us a hint that these trees

are enumerated by the Catalan numbers.

Figure 6. Planted plane trees having n edges (1 ≤ n ≤ 4)

Theorem 8.11. The number of planted plane trees having n + 2

vertices is equal to the nth Catalan number cn.

Proof. One can associate to each vertex in a rooted tree a non-

negative integer which is equal to the distance from this vertex to the

root (the level of a vertex). The root itself has zero level, its neighbors

have level one, and so on.

Denote the number of planted plane trees (in the course of the

proof, we will refer to these objects simply as “trees”) having n + 2

vertices by pn. Then p0 = p1 = 1. For n > 1, associate to each tree

with n + 3 vertices two trees in the following way. The first tree is

the subtree of the initial tree growing from the leftmost edge issuing

from the (unique) vertex of level one; the second tree is the remaining
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Figure 7. Associating to a planted plane tree a pair of trees

of the same kind

part of the initial tree (see Fig. 7). The copy of the level one vertex

becomes the root of the first tree in the pair. If the first tree has k+2

vertices, then the number of the vertices in the second tree is n−k+2.

Conversely, having two trees with k+2 and n− k+2 vertices we can

construct from them a tree with n+ 3 vertices by attaching the first

tree at the level one vertex of the second tree on the left.

Hence,

pn+1 = p0pn + p1pn−1 + · · ·+ pnp0,

and planted plane trees are enumerated by the Catalan numbers.

8.4. Graph embeddings into surfaces

Plane trees provide us with examples of embeddings of graphs into

the plane. The same tree may admit distinct embeddings. On the

other hand, we are going to show that not each graph admits an

embedding into the plane. We will also touch on the problem of

embedding graphs into arbitrary two-dimensional surfaces.

Giving no definition of a two-dimensional surface we shall make

use of the classification theorem for such surfaces usually proved in

standard elementary courses of topology.

Theorem 8.12. Each (closed orientable two-dimensional) surface is

homeomorphic to the sphere with finitely many handles attached.

We will use the description given by this theorem for the definition

of a surface.

Definition 8.13. A surface of genus g is the two-dimensional sphere

with g handles glued to it.
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Figure 8. The surfaces of genus g for g = 0, 1, 2

In particular, the surface of genus 0 is the sphere itself, the surface

of genus 1 is the torus, and so on (see Fig. 8).

In what follows, a graph is allowed to have loops and multiple

edges (i.e., some pairs of its vertices may be connected by more than

one edge). Graphs admitting an embedding into the plane (planar

graphs) are exactly those graphs that admit an embedding into the

sphere. Indeed, puncturing the sphere at a point we obtain a surface

homeomorphic to the plane.

Definition 8.14. An embedding of a connected graph Γ into a surface

M is a drawing of the graph on the surface such that

1) each vertex of the graph is represented by a point in M and

distinct vertices are represented by distinct points;

2) each edge of the graph is represented by a non-selfintersecting

curvilinear segment in M , with the ends of the segment coinciding

with the vertices connected by the edge; no two segments intersect

each other;

3) the complement to the image of Γ in M is a disjoint union of

cells (two-dimensional domains homeomorphic to the disk).

The image of a graph under an embedding is called an embedded

graph (or amap). As in the case of embedded trees, we make no differ-

ence between embeddings taken to each other by a homeomorphism

of the ambient surface.

The first two requirements in the definition of an embedding co-

incide with those in the definition of an embedding of a graph into

the plane. The third requirement is new. In fact, for embeddings in

the sphere it is automatically satisfied: a connected graph can cut

the sphere only into domains homeomorphic to the disk. For surfaces

of higher genus this is not the case: the complement to a graph can
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Figure 9. Drawings of a graph on the torus, which are not embeddings

Figure 10. Graph embeddings into the torus (g = 1) and
pretzel (g = 2)

have handles (see Fig. 9). The goal of the third requirement is to

forbid such situations. We take for embeddings only those drawings

that cut all handles of the surface.

In what follows we will, by some abuse of language, refer to the

image of a graph on a surface as to the graph itself, and the images

of the vertices and the edges will be referred to as simply vertices and

edges.

In Fig. 10 graph embeddings into the torus and into the surface

of genus 2 are shown. Already these examples demonstrate that the

same graph can be embedded into different surfaces. For example,

the “eight” graph, which consists of a single vertex with two loops,

can be embedded both in the sphere and in the torus.

Suppose a graph Γ having V vertices and E edges is embedded

into a surface M of genus g. Denote by F the number of cells in the

complement to Γ in M . Then the numbers V,E, F and g are related

by the following famous Euler’s formula.

Theorem 8.15 (Euler).

V − E + F = 2− 2g.

The number χg = 2− 2g is called the Euler characteristic of the

surface M .
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Euler’s formula gives an immediate simple restriction on the max-

imal genus of the surface admitting an embedding of a given graph.

Corollary 8.16. A graph with V vertices and E edges cannot be

embedded in a surface of genus bigger than (E − V + 1)/2.

Indeed, by Euler’s formula,

g = (E − V − F + 2)/2 ≤ (E − V + 1)/2,

since F ≥ 1.

For example, the “eight” graph cannot be embedded into the

surface of genus bigger than (2− 1 + 1)/2 = 1.

Our closest goal is to show that any graph admits an embedding

into some surface. Suppose a graph Γ is already embedded in a sur-

face M . Consider a neighborhood of a vertex v of Γ and map it to

the plane homeomorphically on the image preserving the orientation.

The image of such a neighborhood is a disk containing the vertex of

the graph and a set of half-edges issuing from it (see Fig. 11). (Some

of these half-edges can belong to the same edge if there are loops

in Γ attached to the chosen vertex. The number of half-edges issuing

from a vertex coincides with its valency.) Let us define the following

cyclic order in the set of half-edges: we say that a half-edge b fol-

lows immediately after a half-edge a if it follows immediately after a

when moving along the boundary of the neighborhood in the counter-

clockwise direction. The half-edges in Fig. 11 have the following cyclic

order:

· · · � a � b � c � d � a � . . . .

Hence, an embedding of a graph into a two-surface equips it with

a cyclic order on each of the sets of half-edges issuing from each of its

vertices.

Definition 8.17. A graph with rotations is a graph endowed with a

cyclic order on each set of half-edges issuing from each of its vertices.

Example 8.18. Four half-edges issue from the only vertex of the

“eight”-graph. Fig. 12 shows two distinct possibilities to define a

cyclic order on this quadruple of half-edges (given by the orientation

of the plane). There are no other possibilities. The first of them is
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b

c

d

a

Figure 11. A neighborhood of a vertex of valency 4 in an

embedded graph

realized by the embedding of the “eight”-graph in the plane, and the

second one by the embedding into the torus from Fig. 10.

Definition 8.19. An embedding of a graph with rotations into a sur-

face is an embedding of the graph which induces the same cyclic order

as the given one on each set of half-edges issuing from each vertex.

It happens that not only an embedding of a graph into a surface

determines the corresponding graph with rotations uniquely, but con-

versely the surface of embedding can be uniquely reconstructed from

any graph with rotations.

Theorem 8.20. For each graph with rotations there is a two-dimen-

sional closed surface in which it can be embedded preserving the rota-

tions, and this surface is unique.

Remark 8.21. Before proving the theorem, let us remark that not

only the surface of embedding, but the embedding itself is uniquely

determined up to a homeomorphism of the surface. It is also possible,

however, to consider another, more subtle, equivalence relation on the

Figure 12. Two distinct cyclic orders on the set of half-edges
issuing from the vertex of the “eight”-graph
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set of embeddings: that up to isotopy. The two embeddings of the

“eight”-graph into the torus shown in Fig. 13 cannot be transformed

one into another by an isotopy, although they are homeomorphic. For

the sphere, the equivalence relations with respect to homeomorphisms

and isotopy coincide.

Figure 13. Two homemorphic but not isotopic embeddings
of the “eight”-graph into the torus

Remark 8.22. Planar graphs are exactly those graphs that admit

an embedding into the plane. However, two distinct embeddings of a

graph into the plane may prove to be the same when considered as

embeddings into the sphere. A simple example of such embeddings

is shown in Fig. 14. The loop splits the plane into two domains, the

internal and the external. These two domains cannot be exchanged

by a homemomorphism of the plane. On the sphere, however, the

internal and the external domains are indistinguishable.

Figure 14. Two distinct plane graphs leading to the same
spherical graph

Proof of Theorem 8.20. Let Γ be a graph with rotations. Draw

the vertices of Γ and the outgoing half-edges as a set of “stars” on the

plane (see Fig. 15). Now connect the ends of the half-edges in pairs

so as to obtain the required graph Γ. Of course after connecting the

half-edges, some of the resulting edges may intersect. However, we
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a4
a6

a3

a5

a2

a1

1

1

2

2

3

3

Figure 15. The graph obtained by connecting the half-edges

of the stars (up) with given cyclic orders

require that the edges do not pass through the existing vertices, and

points of their intersection are not considered as vertices. Put arrows

on all the edges (in other words, “orient” the edges) and mark each

edge with a letter, distinct edges having distinct marks. Using this

data we will construct a surface M independent of the choice both of

the orientations and marking.

The construction of the surface M splits into two stages. First of

all we determine the set of cells, and then we glue the cells together.

We describe the construction of the set of cells for the graph with

rotations shown in Fig. 15. For the general case, it follows the same

routine.

The cells are chosen as follows. Consider the edge a1 of Γ. Moving

along this edge we arrive at the vertex 1. A cyclic order of half-edges

at vertex 1 is fixed, and we leave it along the half-edge which follows

immediately after the half-edge of the edge a1. Hence, we leave along

the half-edge of the edge a6 and arrive at vertex 3. We must leave

vertex 3 along the half-edge a3 which follows immediately after the

edge a6. The loop a3 returns back to the same vertex 3, and we must

leave it along the edge a6, now in the direction opposite to that of
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the orientation of a6. This time we return to 1 and leave this vertex

in direction a4.

This process is iterated until our path reaches an edge of the graph

which it had already passed in the same direction.

Now we can write the path as a word, where each edge is denoted

by the corresponding letter. An edge passed in the direction coincid-

ing with its orientation is denoted just by the letter itself, while for

edges passed in the opposite direction the letter is inverted. For the

path in the example, the word looks like

a1a6a3a
−1
6 a4a2a

−1
3 a−1

2 .

On the next step, the first edge a1 is repeated. Let us prove that this

is an instance of a general situation.

Lemma 8.23. The first repeated edge in each path is the first edge

of this path.

Indeed, suppose that this is not true and the first repeated edge

is some edge x not coinciding with the first one. Let us look at the

half-edge preceding the edge x at its starting vertex. This half-edge

is defined uniquely by the rotation at this vertex. Therefore, the edge

containing this half-edge must be repeated before x, and we arrive at

a contradiction. The lemma is proved.

We associate to the path constructed above the octagon with

edges marked by the same letters, in the same cyclic order. To con-

struct the next cell, let us take one of the letters aσi , i = 1, . . . , 6, σ ∈
{−1,+1}, not entering the already constructed cycle and construct

the new cycle passing through the corresponding edge. In our exam-

ple, we can start, say, with the edge a5. A proof repeating that of

the lemma almost literally shows that any two cycles constructed in

this way either do not intersect (have no common edge passed in the

same direction), or coincide. Therefore, all edges in the graph split

into disjoint cycles. The result of this decomposition is a set of words

such that each of the letters aσi occurs in these words exactly once.

In our example, the set of cycles has the form

a1a6a3a
−1
6 a4a2a

−1
3 a−1

2 , a5a
−1
1 a−1

4 , a−1
5 .
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a4

a−1
6

a3

a6

a1

a−1
2

a−1
3

a2

a−1
1a−1

4

a5

a−1
5

Figure 16. The three cells with marked edges, of which the
embedding surface of the graph in Fig. 15 is glued

To this set of cycles, the set of cells shown in Fig. 16 is associated.

The cells are glued together along the edges having the same marks

but with opposite exponents. Clearly, the rotations induced by the

resulting embedding coincide with the original rotations in the graph.

This completes the proof of the theorem.

Remark 8.24. The above construction shows how to construct a

homeomorphism of the surface taking one embedding to another em-

bedding of the same graph with rotations. After cutting the surface

along the edges of the graph, we obtain a set of cells. Each cell is a

polygon with edges numbered by the edges of the graph (taking edge

orientations into account). The set of polygons is independent of the

embedding; it is constructed from the graph with rotations as in the

proof of the theorem. To construct the required homeomorphism, it

suffices to glue it from edge preserving homeomorphisms of the cells.

Remark 8.25. One can also study graph embeddings into non-

orientable surfaces. Such an embedding defines not one, but two cyclic

orders on the set of half-edges issuing from each vertex of the graph.

These two cyclic orders are mutually inverse. In the non-orientable

case, the correspondence between embeddings and rotations is not

one-to-one. A graph equipped with a pair of inverse rotations for

each set of half-edges issuing from each vertex can be embedded in

different non-orientable surfaces.
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For an embedded graph the dual embedded graph is well defined.

The dual graph is embedded into the same surface. In Fig. 17 two

pairs of mutually dual graphs in the sphere and in the torus are shown.

Figure 17. Pairs of mutually dual graphs on the sphere and torus

Definition 8.26. Suppose a graph Γ is embedded into a surface M .

The dual embedded graph is the graph Γ̃ embedded in M whose ver-

tices are in one-to-one correspondence with the faces of Γ, edges are in

one-to-one correspondence with the edges of Γ and each edge connects

the vertices corresponding to the faces separated by the corresponding

edge of Γ.

Example 8.27. As an illustration to the notion of dual embedded

graph let us describe an embedding of the graph K7, the complete

graph with 7 vertices, into the torus. This embedding is used to give

an example of a graph such that its vertices cannot be colored into six

colors so as to make all neighboring vertices be of distinct colors. The

dual embedding is shown in Fig. 18. The torus is obtained by gluing

opposite sides of the hexagon in pairs. Each of the seven cells of the

resulting partition of the torus is a neighbor of each of the other six

cells.

a

a

b

b

c

c

Figure 18. An embedding of a graph in the torus, with the
dual embedded graph being the K7 graph
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8.5. On the number of gluings of a polygon

One can produce closed orientable surfaces by gluing sides of polygons

in pairs. For example, gluing opposite sides of a square we obtain a

torus; see Fig. 19).

Figure 19. Gluing a torus from a square

Consider a regular 2n-gon and split its sides into pairs in all pos-

sible ways. For each such splitting, glue together the sides belonging

to the same pair (preserving the orientability of the surface). The

result will be an orientable closed surface. We are interested in enu-

merating the number of ways to obtain a surface of genus 0, or genus

1, . . . , or genus g.

Let us start, as usual, with examples.

Suppose n = 2 and we study gluings of the square. There are

three ways to split the sides of the square into pairs. After gluing,

the first two ways lead to the sphere, while the third way produces

the torus (see Fig. 20). For n = 3 there are 15 ways to split the sides

of the hexagon into pairs. It is easy to see that the five splittings in

the first row of Fig. 20 produce the sphere, while the remaining ten

splittings lead to the torus.

Note that we make a difference between a gluing and another one

obtained from it by a rotation (or a reflection) of the polygon. This

means that we used one of the ways to destroy the symmetry. We

may assume, for example, that either the sides or the vertices of the

polygon are marked. Or we may choose an initial side of the polygon.

These marks are not shown in the picture in order to make it more

transparent.

It happens that computing the genus of a gluing is an easy task.

The image of the boundary of the polygon under the gluing is a graph

embedded into the surface. Indeed, the complement to this graph is
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Figure 20. All gluings of the square and the torus. Two sides
forming a pair are marked by the same letter

a single cell, the interior of the polygon. Hence we know the number

of faces. The number of edges also is known: it is half the number of

sides of the 2n-gon, i.e., it equals n. What we need is only the number

of vertices. To find it, let us mark the vertices of the polygon glued

into a single vertex of the embedded graph by the same number (see

Fig. 21). The number of distinct markings is exactly the number of

vertices of the embedded graph. For example, the Euler characteristic

for the surface obtained from the gluing in Fig. 21 is

2− 2g = V − E + F = 2− 3 + 1 = 0,

hence the surface is the torus.

Hence, the genus of the resulting surface is uniquely determined

by the number of vertices in the graph glued from the sides of the

polygon.

Our problem consists of enumerating gluings of a 2n-gon leading

to a surface of genus g. This problem admits a natural reformulation

in terms of the dual graphs. In the dual setting, we replace the 2n-

gon with the 2n-star on the plane. Each partition of the ends of the

half-edges in this 2n-star into pairs determines a graph with rotations

having a single vertex. We ask how many of these graphs have genus g.

Associate to each number n a polynomial Tn = Tn(N) which

is the generating polynomial for the numbers of gluings of the sides

of the polygon. The coefficient of NV in the polynomial Tn equals
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Figure 21. A marking of the vertices of a polygon. The
vertices glued into a single vertex of the embedded graph have
coinciding marks

the number of gluings of the 2n-gon with V vertices in the resulting

graph. This data uniquely determines the genus of the resulting sur-

face. Hence, the number of ways to glue a surface of genus g from the

2n-gon is

[Nn−2g+1]Tn(N).

Now let us write out several polynomials Tn for small n. For

convenience, we set T0(N) = N . Then, T1(N) = N2: the only gluing

of the “regular 2-gon” gives a graph with two vertices and one edge

on the sphere. We have already computed the next two polynomials:

T2(N) = 2N3 +N ;

T3(N) = 5N4 + 10N2.

By drawing all gluings of the regular octagon and decagon we can

find two more polynomials:

T4(N) = 14N5 + 70N3 + 21N,

T5(N) = 42N6 + 420N4 + 483N2,

but already these calculations are laborious.

It is clear that the sum of all coefficients of the polynomial Tn,

i.e., its value Tn(1) at N = 1, is (2n − 1)!! = 1 · 3 · 5 · · · · · (2n − 1).

Indeed, the sum of all coefficients of Tn coincides with the number

of splittings into pairs the sides of the 2n-gon. It is easy to compute
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the number of such splittings. Indeed, choose a side of the polygon.

Then the pairing side can be chosen in 2n − 1 ways. Taking one of

the remaining 2n−2 sides, we can find a pair to it among 2n−3 sides

not involved yet, and so on.

Now let us form the generating function in two variables N and s,

which is an ordinary generating function in the first variable and

exponential in the second one:

T (N ; s) = 1 + 2sT0(N) + 2s2
T1(N)

1!!
+ 2s3

T2(N)

3!!
+ . . .

= 1 + 2s

∞∑
n=0

sn
Tn(N)

(2n− 1)!!
.

In 1986, an unexpectedly simple and elegant expression for this

generating function was discovered.

Theorem 8.28 (Harer, Zagier). We have

T (N ; s) =

(
1 + s

1− s

)N

.

A proof (unfortunately, incomplete) of this theorem will be given

in the next section.

Remark 8.29. Computation of the generating function T (N ; s) was

not the main goal of the Harer and Zagier paper. The above formula

serves there as a main tool in the calculation of the virtual Euler

characteristic of the moduli spaces of smooth complex curves of given

genus g whatever this means.
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Let us check that the formula in the theorem indeed gives correct

first coefficients of the generating function. We have

T (N ; s) = (1 + s)N (1− s)−N

=

(
1 +

N

1!
s+

N(N − 1)

2!
s2 +

N(N − 1)(N − 2)

3!
s3 + . . .

)
·
(
1 +

N

1!
s+

N(N + 1)

2!
s2 +

N(N + 1)(N + 2)

3!
s3 + . . .

)
= 1 +

(
N

1!
+

N

1!

)
s+

(
N(N − 1)

2!
+

N

1!

N

1!
+

N(N + 1)

2!

)
s2

+

(
N(N − 1)(N − 2)

3!
+

N(N − 1)

2!

N

1!
+

N

1!

N(N + 1)

2!

+
N(N + 1)(N + 2)

3!

)
s3 + . . .

= 1 + 2Ns+ 2N2s2 + 2
2N3 +N

3
s3 + . . . ,

and at least the first terms in the expansion coincide with those we

have computed above.

8.6. Proof of the Harer–Zagier theorem

Let us first look at the sequence of the leading coefficients of the poly-

nomials Tn. This sequence starts with the numbers 1, 1, 2, 5, 14, . . . ,

which hints that it coincides with the Catalan sequence.

Lemma 8.30. The degree of the polynomial Tn is n + 1. The co-

efficient of Nn+1 in the polynomial Tn(N) is cn, the nth Catalan

number.

Proof. The number of vertices of a graph embedded in a surface of

genus g can be found from the Euler formula

2− 2g = V − E + F.

For gluings of a polygon, the right-hand side is V − n + 1, and we

obtain

V = n+ 1− 2g ≤ n+ 1,

since the genus g is non-negative. The last inequality turns into equal-

ity if and only if g = 0, i.e., if the resulting surface is the sphere.
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a
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b

b

Figure 22. Gluing a handle from alternating pairs of sides

Call two pairs of polygon sides alternating if there is a side be-

longing to the second pair between the sides of the first pair, whatever

order of the sides in the first pair we choose. In other words, two pairs

of polygon sides alternate if the segment connecting the midpoints of

the sides of the first pair intersects the segment connecting the mid-

points of the sides of the second pair. If there are alternating pairs

in a partition of the sides of a polygon into pairs, then after gluing

these pairs we obtain a handle (see Fig. 22), and the resulting surface

cannot be the sphere. Conversely, if there are no alternating pairs in

a partition, then the resulting surface is the sphere. Indeed, one can

always choose in such a partition a pair of adjacent sides that must be

glued together. After gluing these two sides we obtain a polygon with

less vertices and a partition of its sides into non-alternating pairs, and

we can proceed by induction.

Partitions of the sides of a 2n-gon into non-alternating pairs are in

a one-to-one correspondence with the set of regular bracket structures

of n pairs of brackets. Indeed, choose some of the vertices of the

polygon for the initial vertex, and move along the boundary of the

polygon in the counterclockwise direction starting at this vertex. We

associate to each of the sides of the polygon we meet a left or a right

bracket according to the following rule: if it is the first side in a pair,

then the corresponding bracket is the left one, otherwise it is the
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Figure 23. A partition of the sides of an octagon into non-
alternating pairs and the corresponding regular bracket struc-

ture

right bracket (see Fig. 23). Clearly, the resulting bracket structure

will be regular, and there is a unique way to get each regular bracket

structure.

The proof of the lemma is completed.

The remaining part of the proof of the Harer–Zagier theorem

splits into two stages. The first stage is the following lemma.

Lemma 8.31. Consider the expression t(N,n) = Tn(N)
(2n−1)!! as a func-

tion in n, for N fixed. Then t(N,n) is a polynomial in n of degree

N − 1.

The first proof of this fact, although not a complicated one, uses

a non-trivial technique of integration over the space of Hermitian

N ×N -matrices. Recently a new, purely combinatorial, proof due to

B. Lass appeared. However, it also is laborious. I refer the interested

reader to the original papers.

The remaining part of the proof is purely combinatorial.

Suppose the vertices of the 2n-gon are colored in several colors.

We call a gluing and a coloring compatible if only vertices of the same

color are glued together.
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Lemma 8.32. The number Tn(N) is exactly the number of gluings

of the sides of a 2n-gon compatible with its colorings in (not more

than) N colors.

Proof. Indeed, suppose that after the gluing, the sides of the polygon

form a graph with V vertices. Color each vertex of the graph in one

of N colors. Each such coloring produces a coloring of the vertices of

the polygon compatible with the gluing. And there are exactly NV

ways to color the V vertices of the graph into N colors. Therefore,

the total number of compatible colorings and gluings is the sum of

the numbers NV over all gluings, which coincides with the definition

of the polynomial Tn(N). The lemma is proved.

Introduce the function Tn(N), the number of gluings of the 2n-

gon compatible with colorings of its vertices in exactly N colors. Then

(8.3) Tn(N) =
N∑

L=1

(
N

L

)
Tn(L).

Indeed, there are
(
N
L

)
ways to choose L colors in a given set of N

colors.

Now, we know that T 0(N) = T 1(N) = · · · = TN−2(N) = 0,

since, by Lemma 8.30, there are no gluings compatible with a coloring

of the vertices of the 2n-gon in more than n+ 1 colors. Hence, for a

fixed positive integer N , we know N−1 roots of the function t̄(N,n) =
Tn(N)
(2n−1)!! , which is a polynomial in n of degree N − 1. These roots are

n = 0, 1, 2, . . . , N − 2. Therefore, there exists a constant AN such

that

t̄(N,n) = ANn(n− 1) . . . (n−N + 2)

= AN

(
n

N − 1

)
(N − 1)!.

Substituting this expression in Eq. (8.3) we obtain

Tn(N) = (2n− 1)!!

N∑
L=1

AL

(
n

L− 1

)(
N

L

)
(L− 1)!.
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In particular, the leading coefficient of this polynomial in N is

(2n− 1)!!
An+1

(n+ 1)
.

On the other hand, by Lemma 8.30, this coefficient coincides with the

nth Catalan number,

(2n− 1)!!
An+1

(n+ 1)
= cn =

(2n)!

n!(n+ 1)!
.

This equation gives An+1 = 2n

n! , and hence

Tn(N) = (2n− 1)!!

N∑
L=1

2L−1

(
N

L

)(
n

L− 1

)
.

The last formula gives exactly the coefficient of sn in the expan-

sion of
(

1+s
1−s

)N

:(
1 + s

1− s

)N

= (1 + 2s+ 2s2 + 2s3 + . . . )N

= 1 + s

∞∑
n=0

N∑
L=1

2L
(
N

L

)(
n

L− 1

)
sn,

which completes the proof of the Harer–Zagier theorem.

8.7. Problems

8.1. What is the genus of the surface into which the graph with

rotations from Fig. 15 is embedded?

8.2. Prove that the number of distinct markings of the vertices

of a given tree with n edges with the marks {1, 2, . . . , n + 1} is n

times bigger than the number of markings of its edges with the marks

{1, 2, . . . , n}.
8.3. A binary tree is a tree all of whose vertices have valency either 1

or 3. Prove that the number of vertices in each binary tree is even.

Prove that the number of planted plane binary trees with 2n vertices

coincides with the Catalan number cn−1.

8.4. Prove that the number tn of planted plane ternary trees (that

is, trees all of whose vertices have valency either 4 or 1) with 2(n+1)
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leaves is tn = 1
2n+1

(
3n
n

)
. Derive the generating function for these

numbers.

8.5. Establish a one-to-one correspondence between planted plane

binary trees with 2n vertices and planted plane trees with n+ 1 ver-

tices.

8.6. Enumerate rooted marked forests. (A forest is a graph all of

whose connected components are trees. A forest is rooted if all its

connected components are rooted.)

8.7. Give estimates for the minimal and the maximal genus of a

surface, where the graph Kn, the complete graph with n vertices, can

be embedded. (A complete graph is a graph with each pair of whose

vertices are connected by an edge.)

8.8. Are there embeddings of the Petersen graph (see Fig. 24) into

a) the torus; b) the surface of genus 2?

Figure 24. The Petersen graph

8.9. Is it possible to embed into the torus the graph K4
2 , the 1-

skeleton of the 4-dimensional cube?

8.10. Using the Euler formula prove the easy part of the Kuratovski

theorem: the graphs K5 and K3,3 admit no embeddings in the sphere.

(The graph K3,3 has six vertices split into triples, and each vertex of

the first triple is connected by an edge with each vertex of the second

triple, while there are no edges inside the triples.)

8.11. Is it possible to embed the graphs a) K5; b) K3,3; c) the

Petersen graph into the projective plane? If yes, then describe the

corresponding embeddings.
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8.12. Let Γ be the graph formed by the edges of the icosahedron. The

five edges at each vertex of the icosahedron have a natural cyclic order

. . . 1 � 2 � 3 � 4 � 5 � 1 . . . Let us replace this natural cyclic order

at each vertex with the cyclic order . . . 1 � 3 � 5 � 2 � 4 � 1 . . .

(which leads to the “star icosahedron”). Find the genus of the surface

into which the star icosahedron is embedded.

8.13. Prove that a gluing of the sides of a polygon produces the

sphere if and only if the graph formed by the boundary of the polygon

on the resulting surface is a tree.

8.14. Prove that the genus of a surface which can be glued from the

2n-gon is at most
[
n
2

]
.

8.15. Write out the generating function for the numbers of gluings

of 2n-gons giving the torus.

8.16. Prove that the polynomial Tn(N) is odd for n even and is even

for n odd.

8.17. Describe all pairwise non-isotopic embeddings of the eight-

graph into the torus.

                

                                                                                                               



Final and
Bibliographical Remarks

There are many monographs treating generating functions as their

main subject. We must mention first the two books [GJ] and [S]. Be-

sides rich material which has serious overlap with that of the present

book they also supply a lot of historical data and a huge bibliography.

This is why we allowed ourselves to avoid historical remarks trying

not to draw away the reader’s attention. The bibliography below also

is far from being complete; its main goal is to refer to publications

never mentioned in monographies before.

In spite of the fact that eighty years have passed since the first

edition of the book [PS] was published, it remains one of the best

books in combinatorics and the method of generating functions. Many

problems in the present book came from this one. Other problems

come partly from the books [GJ] and [S] mentioned above, from other

sources, or invented by myself. Enumerative problems in graph theory

are discussed in [HP]. Among the books first published in Russian I

would like to mention [Sa].

The approach to deducing equations for generating functions for

languages generated by unambiguous formal grammars follows the

paper [DV] (see also the references therein). The relationship be-

tween this approach and the Lagrange equation is described in detail
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144 Final and Bibliographical Remarks

in [LZ1, LZ2]. The Bernoulli–Euler triangle was introduced, and at

great length, studied by V. I. Arnold [A1, A2, A3, A4] in connection

with the investigation of various functional spaces.

All information about representation of generating functions in

terms of continued fractions is taken from the papers [F1, F2] by

P. Flajolet. The treating of the asymptotics of coefficients and its

relation to the singularities of the functions follows [FO]. The proof

of the Harer–Zagier theorem is the original one from [HZ], but with

serious deletions. A purely combinatorial proof is given in [L] and a

proof based on the theory of representations of finite groups can be

found in [Z].
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enumerating objects of a certain nature, which results in a 
sequence of positive integers. With each such sequence, one 
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This book is based on the course given by the author at the 
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numerous examples of generating functions. It then discusses 
various topics, such as formal grammars, generating func-
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the exclusion-inclusion principle. In the final chapter, the 
author describes applications of generating functions to 
enumeration of trees, plane graphs, and graphs embedded in 
two-dimensional surfaces.

Throughout the book, the reader is motivated by interesting 
examples rather than by general theories. It also contains a lot 
of exercises to help the reader master the material. Little 
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