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Preface

The roots of this book lie in a series of lectures that I presented
at the University of Ioannina, in the summer of 1997. The central
theme is the geometry of Lie groups and homogeneous spaces. These
are notions which are widely used in differential geometry, algebraic
topology, harmonic analysis and mathematical physics. There is no
doubt that there are several books on Lie groups and Lie algebras,
which exhaust these topics thoroughly. Also, homogeneous spaces
are occasionally tackled in more advanced textbooks of differential
geometry.

The present book is designed to provide an introduction to sev-
eral aspects of the geometry of Lie groups and homogeneous spaces,
without becoming too detailed. The aim was to deliver an exposition
at a relatively quick pace, where the fundamental ideas are empha-
sized. Several proofs are provided, when it is necessary to shed light
on the various techniques involved. However, I did not hesitate to
mention more difficult but relevant theorems without proof, in ap-
propriate places. There are several references cited, that the reader
can consult for more details.

The audience I have in mind is advanced undergraduate or grad-
uate students. A first course in differential geometry would be desir-
able, but is not essential since several concepts are presented. Also,
researchers from neighboring fields will have the chance to discover a
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x Preface

pleasant introduction on a variety of topics about Lie groups, homo-
geneous spaces and related applications.

I would like to express my sincere thanks to the editors for their
thorough suggestions on the manuscript, as well as my gratitude to
Professors Jurgen Berndt, Martin A. Guest, Lieven Vanhecke, and
McKenzie Y. Wang for their kindness in making comments on it.

Andreas Arvanitoyeorgos

Athens, August 2003



Introduction

There are several terms which are included in the title of this book,
such as “Lie groups”, “geometry”, and “homogeneous spaces”, so it
maybe worthwhile to provide an explanation about their relation-
ships. We will start with the term “geometry”, which most readers
are familiar with.

Geometry comes from the Greek word “yewuerpeiv”, which means
to measure land. Various techniques for this purpose, including other
practical calculations, were developed by the Babylonians, Egyptians,
and Indians. Beginning around 500 BC, an amazing development was
accomplished, whereby Greek thinkers abstracted a set of definitions,
postulates, and axioms from the existing geometric knowledge, and
showed that the rest of the entire body of geometry could be de-
duced from these. This process led to the creation of the book by
Euclid entitled The Elements. This is what we refer to as Fuclidean
geometry.

However, the fifth postulate of Euclid (the parallel postulate)
attracted the attention of several mathematicians, basically because
there was a feeling that it would be possible to prove it by using
the first four postulates. As a result of this, new geometries ap-
peared (elliptic, hyperbolic), in the sense that they are consistent
without using Euclid’s fifth postulate. These geometries are known
as Non-Euclidean Geometries, and some of the mathematicians that

xi



xii Introduction

contributed to their development were N. I. Lobachevsky, J. Bolyai,
C. F. Gauss, and E. Beltrami.

A detailed theory of surfaces in three-dimensional space was de-
veloped by C. F. Gauss. His main result was the Theorema Egregium,
which states that the curvature of a surface is an “intrinsic” property
of the surface. This means it can be measured and “felt” by someone
who is on the surface, rather than only by observing the surface from
outside.

However, the fundamental question “What is geometry?” still
remained. There are two directions of development after Gauss. The
first, is related to the work of B. Riemann, who conceived a framework
of generalizing the theory of surfaces of Gauss, from two to several
dimensions. The new objects are called Riemannian manifolds, where
a notion of curvature is defined, and is allowed to vary from point to
point, as in the case of a surface. Riemann brought the power of
calculus into geometry in an emphatic way as he introduced metrics
on the spaces of tangent vectors. The result is today called differential
geometry.

The other direction is the one developed by F. Klein, who used
the notion of a transformation group to define geometry. According to
Klein, the objects of study in geometry are the invariant properties
of geometrical figures under the actions of specific transformation
groups. Hence, the consideration of different transformation groups
leads to different kinds of geometry, such as Euclidean geometry, affine
geometry, or projective geometry. For example, Euclidean geometry
is the study of those properties of the plane that remain invariant
under the group of rigid motions of the plane (the Euclidean group).
The groups that were available at that time, and which Klein used
to determine various geometries, were developed by the Norwegian
mathematician Sophus Lie, and are now called Lie groups.

This brings us to the other terms of the title of this book, namely
“Lie groups” and “homogeneous spaces” The theory of Lie has its
roots in the study of symmetries of systems of differential equations,
and the integration techniques for them. At that time, Lie had called
these symmetries “continuous groups” In fact, his main goal was
to develop an analogue of Galois theory for differential equations.
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The equations that Lie studied are now known as equations of Lie
type, and an example of these is the well-known Riccati equation.
Lie developed a method of solving these equations that is related to
the process of “solution by quadrature” (cf. [Fr-Uh, pp. 14, 55|,
[Ku]). In Galois’ terms, for a solution of a polynomial equation with
radicals, there is a corresponding finite group. Correspondingly, to a
solution of a differential equation of Lie type by quadrature, there is
a corresponding continuous group.

The term “Lie group” is generally attributed to E. Cartan (1930).
It is defined as a manifold G endowed with a group structure, such
that the maps G x G — G (z,y) — zy and G —» G z — z7! are
smooth (i.e. differentiable). The simplest examples of Lie groups are
the groups of isometries of R™, C™ or H" (H is the set of quaternions).
Hence, we obtain the orthogonal group O(n), the unitary group U(n),
and the symplectic group Sp(n).

An algebra g can be associated with each Lie group G in a natural
way; this is called the Lie algebra of G. In the early development of
the theory, g was referred to as an “infinitesimal group” The modern
term is attributed by most people to H. Weyl (1934). A fundamental
theorem of Lie states that every Lie group G (in general, a compli-
cated non-linear object) is “almost” determined by its Lie algbera g
(a simpler, linear object). Thus, various calculations concering G are
reduced to algebraic (but often non-trivial) computations on g.

A homogeneous space is a manifold M on which a Lie group acts
transitively. As a consequense of this, M is diffeomorphic to the coset
space G/K, where K is a (closed Lie) subgroup of G. In fact, if we
fix a base point m € M, then K is the subgroup of G that consists of
the points in G that fix m (it is called the isotropy subgroup of m).
As mentioned above, these are the geometries according to Klein, in
the sense that they are obtained from a manifold M and a transitive
action of a Lie group G on M. The advantage is that instead of
studying a geometry with base point m as the pair (M, m) with the
group G acting on M, we could equally study the pair (G, K).

One of the fundamental properties of a homogeneous space is
that, if we know the value of a geometrical quantity (e.g. curvature)
at a given point, then we can calculate the value of this quantity at
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any other point of G/K by using certain maps (translations). Hence,
all calculations reduce to a single point which, for simplicity, can be
chosen to be the identity coset 0 = eK € G/K. Furthermore, in
an important special case where the homogeneous space is reductive,
then the tangent space of G/K at o can be identified in a natural way
with a subspace of g.

As a consequence of this, many hard problems in homogeneous
geometry can be formulated in terms of the group G and the subgroup
K, and then in terms of their corresponding infinitesimal objects g
and &. Such an infinitesimal approach enables us to use linear alge-
bra to tackle non-linear problems (from geometry, analysis, or theory
of differential equations). For example, the equations satisfied by
an Einstein metric (these, according to general relativity, describe
the evolution of the universe) are a complicated non-linear system
of partial differential equations. However, for G-invariant metrics on
a homogeneous space, this system reduces to a system of algebraic
equations, which can be solved in many cases.

There is a large variety of applications of Lie groups in mathe-
matics. They appear in various ways beyond differential geometry,
such as algebraic topology, harmonic analysis, and differential equa-
tions, to name a few. They also possess important applications in
physics, since they become involved in field theories in many ways.
In fact, certain classical Lie groups appear as the building blocks in
various physical theories of matter. Homogeneous spaces, in turn,
have been employed in the physics of elementary particles as mod-
els called supersymmetric sigma models. Also, what physicists call
coherent states, are in one-to-one correspondence with elements in a
homogeneous space.

Before we proceed to the description of the chapters of this book,
we would like to mention that the two generalizations of Euclidean
geometry that we mentioned, namely that of Riemann and that of
Klein, were unified by E. Cartan in his theory of espaces généralizés.
In Cartan’s geometry, at each point m of M, there is a Klein-style
geometry in the tangent space. That is to say, Cartan took Klein’s
geometry and made it local to each tangent space.



Introduction XV

Chapter 1 starts with a simple example of a Lie group that ex-
hibits the manifold and group structure. Then we give a brief review
of manifolds, and then we proceed with the definition of a Lie group.
We define the Lie algebra of a Lie group as the tangent space at
the identity element of the group, and alternatively as the set of its
one-parameter subgroups. We also list a simplified version of Lie’s
theorems.

In Chapter 2, after discussing a few elementary concepts about
representations, we develop the appropriate tools that are needed for
the classification of the compact and connected Lie groups. These are
the adjoint representation, and the maximal torus of a Lie group. We
also introduce a very useful tool, the Killing form, and we provide a
brief insight through the complex semisimple Lie algebras.

Chapter 3 starts with a brief review of Riemannian manifolds,
and then discusses a way to make a Lie group into a Riemannian
manifold. The metrics which are important here are the bi-invariant
metrics, and with respect to such metrics we give formulas for the
connection and the various types of curvatures.

In Chapter 4 we define the notion of a homogeneous space and
provide several examples. We discuss the reductive homogeneous
spaces, and the isotropy representation of such a space.

The geometry of a homogeneous space is discussed in Chapter 5,
where we show how a homogeneous space G/K can become a Rie-
mannian manifold (so we obtain a Riemannian homogeneous space).
The important metrics here are the G-invariant metrics. Formulas
are presented for the connection and the various types of curvatures.

In Chapters 6 and 7 we discuss two important, and generally non-
overlapping, classes of homogeneous spaces, which are the symmetric
spaces and the generalized flag manifolds. One of the most significant
advances of the twentieth century mathematics is Cartan’s classifica-
tion of semisimple Lie groups. This leads to the classification of these
two classes of homogeneous spaces. These spaces have many appli-
cations in real and complex analysis, topology, geometry, dynamical
systems, and physics.
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In Chapter 8 we give three applications of homogeneous spaces.
The first is about homogeneous Einstein metrics. These are Riemann-
ian metrics whose Ricci tensor is proportional to the metric. The
second refers to symplectic geometry, which is rooted in Hamilton’s
laws of optics. Here we present a Hamiltonian system on generalized
flag manifolds. A Hamiltonian system is a special case of an inte-
grable system, which is a subject that has attracted much attention
recently. The third application deals with homogeneous geodesics in
homogeneous spaces. Geodesics are important not only in geometry,
being length minimizing curves, but also have important applications
in mechanics since, for example, the equation of motion of many sys-
tems reduces to the geodesic equation in an appropriate Riemannian
manifold. Here, we present some results about homogeneous spaces,
all of whose geodesics are homogeneous, that is, they are orbits of
one-parameter subgroups. These are usually known in the literature
as g.0. spaces.



Chapter 1

Lie Groups

1. An example of a Lie group

A Lie group is a set that has both a manifold and a group struc-
ture, which are compatible. So, we will begin this discussion with an
example that exhibits these two properties.

Let M, R be the set of all n x n real matrices. We associate to
the matrix A = (a;;) the point in the Euclidean space R"™ whose
coordinates are a1, a;2,- - - ,ann- Hence, topologically M, R is simply
the Euclidean n? space. Next we define the general linear group GL,R
to be the group (under usual matrix multiplication) of all n X n real
matrices A = (a;;) with determinant det A # 0. Since det A is a
polynomial of degree n in the coordinates, it is a smooth function on
M,R. Furthermore, since the set R \ {0} forms an open set in R,
and since the inverse image of an open set under a continuous map is
open, the set GL,R is an open subset of M,R. Hence, topologically
GL,R is an open subset of a Euclidean space, and as such is an n?-
dimensional manifold, as will be seen later on. This takes care of the
manifold and the group structure structure of GL,R. Let us now see
how they interact.

Since (ab)ij = Y aikbk;, the product matrix AB has coordinates
that are smooth functions of the coordinates of A and B. Also, from

1



2 Lie Groups

the formula for the inverse
11
A= det A
(where adjA is the matrix whose entries are the signed cofactors of
each of the entries a;;), we see that the coordinates of A~! are also
smooth functions of those of A. This concludes the description of
the general linear group GL,R as a manifold and as a group, with
the group operations of multiplication and inverse being smooth func-
tions. It is an important example of a Lie group. We will see more
examples of Lie groups later on, after we make a brief review of var-
ious definitions, notations and results about manifolds which will be
used later on.

adjA

2. Smooth manifolds: A review

Generally speaking, a smooth manifold is a topological space M that
locally resembles the Euclidean space R™, with a notion of differen-
tiation that can be established in M. The formal definition is as
follows:

Definition. A smooth (or differentiable) manifold of dimension n is
a Hausdorff topological space M with a collection of pairs (Ug, @)
where U, (chart) is an open subset of M and ¢,: U, — R™ so that:

(a) Each ¢, is a homeomorphism of U, onto an open subset V,
of R™

(b) UaUy = M.

(c) For every a, 3 the transition functions ¢og = ¢pgotp;t: ¢pa(Ua
NUg) — ¢3(UaNUg) are smooth, in the sense of smooth func-
tions between subsets of R™. In this case the charts (Uy, ¢o)
and (Ug, ¢p) are called compatible.

(d) The family {(Uq,¢o)} is maximal relative to the conditions
(b) and (c).

Such a family of sets and maps satisfying (b), (c), and (d) constitutes
a smooth structure on M.

Remark. Condition (d) is a purely technical one. Given a family
of charts satisfying (a)-(c) it can be completed to a maximal one,
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by taking the union of all charts that, together with any of the ones
originally chosen, satisfy condition (c). Hence, with a certain abuse
of language, we say that a smooth manifold is a-set that satisfies
conditions (a)-(c), and the extension to the maximal atlas is done
without further comment.

Examples.

(1) The Euclidean space R™ is an n-dimensional manifold, covered
by only one chart U = R™, ¢: U — R™ the identity map.

(2) The sphere S™ = {z = (%1,%2,...Tn41) € R*1: 22 + 22 +
-+ +z2 ) = 1} in R™! is a manifold of dimension n. It can be covered
by two charts Uy = {z € S™: zp4y > —1} with ¢,: Uy — R™ by

b4 (z) = (1+§i+1v-~’ 1;3;1), and U_ = {z € §": £y, < 1} with
o_(z) = (l_ziﬂ,..., 1_";’:1“). The maps ¢, and ¢_ are called

stereographic projections.

(3) The projective space RP™ is the set of lines in R™*! that pass
through 0 € R™*!. More precisely, RP™ is the quotient space of
R™*!\ {0} by the equivalence relation

(IL‘l,.”,IL'n+1)N(/\1J1,...,A$n+1), /\ER\{O}

The points of RP™ will be denoted by [z1,...,Znt1]. Define the
subsets U; = {[z1,...,Zn41]: T # 0} (¢ = 1,...,n + 1) of RP™.
Then the maps ¢;: U; = R™ (i =1,...,n+ 1) given by

1

o([xr, ... Tn1]) = [z Y iz g Y Tz

are 1-1 and onto. The projective space is covered by the charts
(U1,61), - -+ (Unt1, $ns1)-

(4) Any open subset U of a smooth manifold M is itself a smooth
manifold. The charts of U are the intersections of U with the charts
of M.

(5) If M and N are smooth manifolds, then the Cartesian product

M x N is also a smooth manifold of dimension equal to the sum of
the dimensions of M and N.
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By using charts we can define differentiability for functions be-
tween smooth manifolds.

Definition. Let M and N be two smooth manifolds and f: M —» N
a function. Then f is called smooth (or differentiable) if for any two
charts ¢: U — V and qb U—Vof Mand N respectively, the map

gofop:pUNFHU) -V
is a smooth (differentiable) function between Euclidean spaces.

A diffeomorphism f: M — N is a smooth function that has an
inverse which is also smooth.

Next, we will discuss tangent vectors and vector fields. Let F(M)
be the set of all smooth real-valued functions on a manifold M.

Definition. Let p be a point of a manifold M. A tangent vector to
M at p is a real-valued function v: F(M) — R that satisfies:
(a) v(af +bg) = av(f) + bu(g),
(b) v((fg) )= v(£)g(p) + f(p)v(g) (Leibniz rule) (a,b € R, f,g9 €
F(M)).

At each point p € M let T,,(M) be the set of all tangent vectors
to M at p. Then under the operations

(v +w)(f) = v(f) +w(f),
(av)(f) = av(f),
the set T,,(M) is made into a real vector space of dimension equal to
that of M. A basis for this vector space is constructed as follows:

Take a local chart (U,¢) of p, and let z; (¢ = 1,...,n) be the
ith component of ¢ (i.e., the result of the composition of ¢: U — R™
with the #** projection u;: R™ — R.) Then the function

0
oz, , F(M)—-R
sending each f € F(M) to
of 3(f ¢ 1)
6—%(17) ———(¢(p))
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is a tangent vector to M at p, and the set of all such tangent vectors
fori=1,...,n is a basis for T,(M).

We now set TM = U,T,(M) the disjoint union over all points
of the tangent vectors at each point. Thus a point in this new space
consists of a pair (p,v), where p is a point of M and v is a tangent
vector to M at the point p. The set TM can be made into a manifold
of dimension 2n, called the tangent bundle of M. The map 7: TM —
M given by 7(p,v) = p (p € M, v € T,M) is called the canonical
projection. The manifold structure on TM is chosen so that 7 is a
smooth map. For each p € M the pre-image 7 !(p) is exactly the
tangent space T, M. It is called the fiber over p.

A curve in a manifold M is a smooth map «: I — M, where I is
an open interval in R. There are several equivalent ways to define a
notion of a velocity vector o/ (t) of the curve a at t. Here we will adopt
the following: The velocity vector of a is the vector o/ (t) € Toy)M
defined by

o0 = 2D

for all f € F(M). This definition is motivated from the notion of
directional derivative in advanced calculus. Indeed, let o I — R™ be
a smooth curve in R™ with a(0) = p. Let a(t) = (z1(t),...,z.(t)) €
R™ Then o/(0) = (1(0),...,2,,(0)) = v € R™. Also, let f be a
smooth function defined in a neighborhood of p. Then by restricting
f to the curve «, the directional derivative with respect to the vector

veR™is a(f )
o
vf= =% o

A curve is a special case of a map between manifolds. The notion
of the velocity vector (derivative of the curve) can be extended to
smooth functions between manifolds.

Definition. Let f: M — N be a smooth function. Then, for each
p € M, the differential of f is the function

dfp: TpM ad Tf(p)N
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defined by
dfp(v)(g) =v(go f)
for all v € T,M and g € F(N).

At each point p € M, the differential df, is a linear function
between the tangent spaces.

The following proposition provides a useful method of computing
the differential of a function.

Proposition 1.1. Let f: M — N be a smooth map between two
manifolds, and let p € M and v € T,M. Take any smooth curve
a: I — M with a(0) = p and o/(0) = v. Then the differential of f at
p is given by

) = gFo0)

‘We now come to vector fields. A wvector field X on a manifold M
is a function that assigns to each point p € M a tangent vector X, to
M at p. Thus X: M — TM with X, € T,M. We can think of X as
a collection of arrows, one at each point of M. If X is a vector field
on M and f € F(M), then X f denotes the real-valued function on
M given by

X f(p) =Xp(f) for all p e M.
The vector field X is called smooth if the function X f above is smooth
for all f € F(M). We will denote by X(M) the set of all smooth
vector fields on a manifold M.

Now, the function defined above can be viewed as a map X : F(M)
— F(M) which sends f to Xf. This map has the properties of a
derivation, i.e., the following are satisfied:

X(af +bg) = aX(f) +bX(9) abeER,
X(f9)=X(flg+ fX(9) (Leibniz rule).
Conversely, any derivation D on F(M) comes from a smooth vector
field. In fact, for each p € M define X,: F(M) — R by X,(f) =

D(f)(p). This interpretation of vector fields as derivations leads to
an important operation on vector fields.
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Let X,Y € X(M). Define [X,Y] = XY —Y X. This is a function
from F(M) to F(M) sending each f to X(Y f) —Y (X f). An easy
computation shows that [X,Y] is a derivation on F(M), hence a
smooth vector field on M, which is called the bracket of X and Y
The bracket assigns to each p € M the tangent vector [X,Y], such
that

(X, Yp(£) = Xp(Y ) = Yp(X f)-

Furthermore, the bracket operation has the following properties:

(a) [X,Y]=-[Y,X] (skew-symmetry),
(8) [aX +3Y, 2] = olX, 7] + WY, 2],
[Z,aX +bY] =a[Z, X] + b[Z,Y] (R-bilinearity),
(o) X,IY,Z)|+[Y,[Z,X]]+ [Z,[X,Y]] =0  (Jacobi identity).

The above properties say that the set X' (M) with the operation
“bracket” of vector fields is a real Lie algebra. In general, a real
(respectively complex) Lie algebra is a real (respectively complex)
vector space V with an operation [ |: V x V — V that satisfies
properties (a)-(c) above.

The bracket of vector fields has an interpretation as a derivation
of Y along the “flows” of X to be explained now. The following propo-
sition is a manifold version of the existence and uniqueness theorem
for ordinary differential equations (see e.g. [Bo-Di, p. 37]).

Proposition 1.2. Let X be a smooth vector field on a smooth mani-
fold M, and let p € M. Then there exists an open neighborhood U of
p, an open interval I around 0, and a smooth mapping ¢ : I xU — M
such that the curve ag: I — M given by aq(t) = ¢(t,q) (¢ € U) is
the unique curve that satisfies %"tt—’ = Xa,t) and aq(0) = g.

A curve with the above property is called an integral curve of
the vector field X. If ¢ is kept constant, the above proposition shows
that the assignment g — a4(t) defines a function ¢,: U — M on a
neighborhood U of p. This function is called the local flow of X. The
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local flow has the properties:
(a) @0 is the identity map of U,
(b) ¢s 0 ¢ = psys for all s,t €U,

(c) each flow is a diffeomorphism with ¢; ' = ¢_;.

The interpretation of the bracket [X,Y] is contained in the following
proposition:

Proposition 1.3. Let X,Y be smooth vector fields on a smooth man-
ifold M, p € M, and ¢, the local flow of X in a neighborhood of p.
Then

.1
X, Y]p = Jim ¥, — dg—o(Yy, )]

The above proposition expresses, in a sense, for each p the rate
of change of Y in the direction of X, that is, along the integral curve
of the vector field X passing through p.

Finally a note on submanifolds. Roughly speaking, a submanifold
of a manifold M is a subset of M that acquires its manifold structure
from M. More precisely, we have the following:

Definition. A manifold P is a submanifold of the manifold M -if
(a) P is a topological subspace of M.
(b) The inclusion map j: P < M is smooth and at each point
p € P its differential dj, is one-to-one.

In general, a mapping between manifolds that satisfies property
(b) is called an immersion. In the above definition, if a manifold P is
merely a subset of M which satisfies property (b) only, it is called an
immersed submanifold of M. To conclude the picture, P is called an
imbedding into M if there exists a one-to-one immersion ¢: P — M
such that ¢ is a homeomorphism onto ¢(P).

3. Lie groups

A Lie group is a smooth manifold which is also a group so that the
group operations are smooth functions. More specifically we have:
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Definition. Let G be a smooth manifold. Then G is called a Lie
group if:
(a) G is a group.
(b) The group operations G x G — G, (z,y) — zy and G —
G, z+— z~! are smooth functions.

Examples.

(1) The sets R™,C™, H™ are Lie groups under vector addition.
Here H is the set of quaternions that consists of the numbers ¢ =t +
iz+jy+kz (t,z,y, 2z € R) in R* with basis 1,1, 5, k, and commutation
relations 12 = j2 = k2 = -1, ij = k,ji = —k,ik = —j, ki = j,kj =
—i, 7k = 1.

(2) The sets R*, C*, H* are Lie groups under multiplication. (Here
R* =R\ {0}, etc.).

(3) The unit circle S? is a Lie group. There are two ways to see
this. One is by considering S* in C* with multiplication induced from
C* The other is by using the identification S! = R/Z. The set Z
of integers is a normal subgroup of R, and so R/Z is a group, and
since it is discrete, R/Z is also a manifold. The smooth addition of
R induces a smooth addition in R/Z.

(4) The product G x H of two Lie groups is itself a Lie group with
the product manifold structure, and multiplication (g, h1)(g2, he) =
(9192, h1h2).

(5) The n-torus T™ = S* x  x S' (n times) is a Lie group of
dimension n.

(6) The general linear group GL,R of all invertible n x n real
matrices has been mentioned in Section 1. It can also be identified
with the set Aut(R™) of all invertible linear maps from R”™ to itself.
Similarly, we can define the sets GL,C and GL,H.

The following examples of Lie groups are obtained as closed sub-
groups of the various general linear groups, so we need the following
definitions.

Definition. (a) A Lie subgroup of a Lie group G is a Lie group H
that is an abstract subgroup and an immersed submanifold of G.
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(b) A closed subgroup of a Lie group G is an abstract subgroup
and a closed subset of G.

Notice that for the case of a Lie subgroup, H need not have the
induced topology. However, the following theorem is true [War]:

Theorem 1.4. If H is a closed subgroup of a Lie group G, then H
s a submanifold of G and hence a Lie subgroup of G. In particular,
it has the induced topology.

We can now give more examples of Lie groups that are defined
by using functions on M,R such as the determinant, transpose and
complex conjugate, hence are Lie groups by the previous theorem.

(7) The special linear group is SL,R = {A € GL,R: detA
=1}

(8) The orthogonal group is the group O(n) = {4 € GL,R: AA* =
I}. The condition AA* = I is equivalent to A7 = A! and so
O(n) = f~1(0), where f: GL,R — M,R with f(4) = A™! — At.

(9) The unitary group is the group U(n) = {A € GL,C: AA* =
I3}.

(10) The symplectic group is Sp(n) = {A € GL,H: AA* = I}.
(The conjugate of the quaternion ¢ = t+ iz + jy+ kzis g =t —
iz — jy — kz.) Sometimes it is more convenient to use the equivalent
definition Sp(n) = {A € U(2n): A*J = JA~!}, where J = (? —01).

(11) The special orthogonal group is the group SO(n) = {4 €
O(n): det A=1}.

(12) The special unitary group is the group SU(n) = {A € U(n):
det A =1}.

Examples (6), (7), (10)-(12) are known as the classical groups.

The Lie groups O(n),U(n) and Sp(n) can also be defined as
groups of linear isometries of R™, C™ and H" respectively as follows:
Let K € {R,C,H}. We define an inner product { ) on K" by
(z,y) = 2151 + - - + Tn¥n, and let

O(n,K) = {4 € M,,K: (zA,yA) = (z,y) for all z,y € K"}.
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Then it is easy to ckeck that the set O(n,K) is a group equal to
O(n),U(n) and Sp(n), when K = R, C and H respectively.

Here are some simple group isomorphisms for certain matrix Lie
groups. Let S™ = {z € R"*!: |z| = 1}. Then

SO(1) = SU(1) = {e}, 01) = S% SO(2)=UQ1) =S, SU(2) =

We check the last two. For the first, let 2 = z + iy be a complex
number identified with the point (z,y) in R2. There is a one-to-
one correspondence between complex numbers and certain 2 x 2 real
matrices given by

T
Y

Now, the ordinary scalar product on R? defined by (21, 2z2) = z122 +
y1y2 (21 = (®1,91), 22 = (z2,%2)) can also be expressed as %(zliz +
Z122). An easy computation shows that this scalar product corre-
sponds to the scalar product (Aj,As) = %tr(A;A}) in the above
matrix model of R2. Furthermore, the length of a complex number
|z|2 = (z, z) becomes |A|? = det A. By definition, S* = {z = (z,y) €
C: |2| = 1}, and in the matrix model of R? this corresponds to the set
:v —a:y> det A = 1}. This set of matrices can

)
also be described as {B € M,R: BB = I,det M = 1}, which is the

group SO(2). This correspondence is a group isomorphism, where
the operation in both groups is multiplication.

z=a:+iye(C=]R2«—->A=< —a:y)EMgR.

of matrices {4 =

‘We now come to the second isomorphism. Let ¢ = t+iz+ jy+ 2k
be a quaternion, which is identified with the point (t,z,y,z) in R4,
or the point (v1,vs) in C2, where v; = t + iz and vy = y + iz. There
is a one-to-one correspondence between the quaternions and certain
2 X 2 complex matrices given by

U1

Q=t+ia:+jy+zk€]I-II=]R4<—>A=< 22)€M2C,
1

—T
where v; = t + ir and v = y + iz. Via this correspondence the
ordinary scalar product on R* becomes (A;, Az) = 3 tr(A;A}), and,
as before |A|? = det A. By definition, $3 = {q € ]HI lg| = 1}. This
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is a (non-commutative) group via quaternion multiplication. In the
matrix model of R*, S3 corresponds to the set of matrices {4 =

( v Uz) € M,C: det A = 1}. This set can also be described as

—V2 Vi
{B € M,C: BB? = I,det B = 1}, which is the group SU(2). Hence
the correspondence S3 « SU(2) is a group isomorphism. Notice
also, that Sp(1) is isomorphic to S We refer to [Zu] for a further
discussion of the 3-sphere.

All the above group isomorphisms are manifold diffeomorphisms.
A result of H. Hopf states that S°, S, S% are the only spheres that
admit a Lie group structure.

4. The tangent space of a Lie group - Lie
algebras

Lie groups are non-linear objects and their study requires quite a lot
of effort. On the other hand, one of the simplest algebraic objects is
that of a real vector space. In this section we will see that it is possible
to associate to every point of a Lie group G a real vector space, which
is the tangent space of the Lie group at that point. By use of certain
diffeomorphisms on the Lie group (left or right translations) we will
see that it is enough to study the tangent space of a Lie group at
its identity element e. The tangent space at that point is not only
a vector space but, as we will see below, it is isomorphic to what is
defined below to be the Lie algebra of the Lie group G. It is an object
of special importance for the study of a Lie group and its geometry
as we will see later on.

Let a be an element of a Lie group G. We define the maps

L,: G — G, Lu(g) = ag (left translation),
R,: G — G, R,(g9) = ga (right translation).

These maps are smooth, in fact they are diffeomorphisms since, for
example, the inverse of L, is L,-1. Furthermore, they can be used in
order to get around in a Lie group. For instance, any a € G can be
moved to e by L,-1. Finally, the induced map (dLg-1)y: TG — T.G
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is a vector space isomorphism (similarly for the right translations).
Hence we obtain the following:

Proposition 1.5. Any Lie group G is parallelizable, i.e. TG = G X
T.G.

Proof. Let Xy be the value of a vector field X at a point g € G.
Then the map X, — (g,dLy-1(X,)) is the desired isomorphism. [

The following special class of vector fields on a Lie group will play
an important role from now on.

Definition. A vector field X on a Lie group G is left-invariant if
X oLg=dLa(X) for all a € G, or more explicitly Xog = (dLq)q(Xg)
forall a,g € G.

A left-invariant vector field has the important property that it is
determined by its value at the identity element e of the Lie group,
since X, = dL,(X,) for all a € G. Also, since multiplication in G is
smooth, so is a left-invariant vector field.

Let g denote the set of all left-invariant vector fields on a Lie group
G. The usual addition of vector fields and scalar multiplication by
real numbers make g a vector space. Furthermore, g is closed under
the bracket operation on vector fields. Indeed, let X,Y be two left-
invariant vector fields on G, a,p € G, and f a smooth function on G.
Then we have

dLo[X,Y]pf = [X,Y]p(f 0 La) = Xp(Y (f 0 La)) — Yp(X(f 0 La))
= Xp(dLaY)f — Yp(dLoX)f = XpY (f) — Y X (f)
= (XpY -V X)f = [X,Y]pf,
which shows that the bracket of two left-invariant vector fields is
again a left-invariant vector field. Thus g is a Lie algebra, called the

Lie algebra of G. The dimension of this Lie algebra is equal to the
dimension of G because of the following:

Proposition 1.6. The function X — X, defines a linear isomor-
phism between the vector spaces g and T.G.
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Proof. The function is obviously linear, and it is one-to-one, since if
X, =0, then Xy = dLy(X.) = 0 for all g € G. The function is also
onto: Let v € TeG and define the vector field X* by X7 = (dLg)e(v)
for all g € G. Then X" is left-invariant and X7 = v. a

Through this isomorphism we can define a Lie bracket on the
tangent space T.G by [u,v] = [X*, X"]e.

Examples.

(1) The set MR of all n x n real matrices is a Lie algebra if we
set [A, B] = AB — BA.

(2) The Lie algebra of the general linear group GL,R is (canoni-
cally isomorphic) to M,R, the set of all n x n real matrices. Indeed,
recall that GL,R inherits its manifold structure as an open subman-
ifold of M,R. Hence we obtain the following canonical vector space
isomorphisms:

Lie algebra of GL,R = T,(GL,R) = T.(M,,R) = M,,R

where e is the n xn identity matrix. The first isomorphism is obtained
from Proposition 1.6, the second is the open submanifold identifica-
tion, and the third one is the canonical vector. space identification.
By a straightforward coordinate calculation we see that brackets are
also preserved. Similarly, the Lie algebras of GL,C and GL,H are
M,,C and M,,H respectively.

(3) Let V' be a vector space of dimension n. Let End(V') denote
the set of all linear maps from V to itself (endomorphisms of V—this
is diffeomorphic to M,R), and let Aut(V) be the set of invertible
linear maps (automorphisms of V—this is diffeomorphic to GL,R).
The set End(V) becomes a Lie algebra of dimension n? if we set
[f1, f2] = fi o fa— f2 0 fi. On the other hand, Aut(V) is a Lie group
(it inherits a manifold structure as an open subset of End(V'), and
the group operation is the composition of maps), and T.(Aut(V)) =
End(V). (Here, e denotes the identity transformation on V.)

(4) The previous examples extend to complex matrices. The Lie
algebra of GL,,C is M,,C.
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5. One-parameter subgroups

Here we will describe a second characterization of the tangent space
of a Lie group as the set of its one-parameter subgroups. This is also
called the infinitesimal description of a Lie group and it is actually
what Lie called an “infinitesimal group”

Definition. A one-parameter subgroup of a Lie group G is a smooth
homomorphism ¢: (R, +) — G.

Thus ¢: R — G is a curve such that ¢(s+t) = ¢(s)d(t), #(o) =e,
and ¢(—t) = ¢(t)~".

Examples.

(1) The map ¢(t) = €* is a one-parameter subgroup of the additive
Lie group R.

(2) The map ¢(t) = € is a one-parameter subgroup of the circle
S'=U(1).

(3) The map ¢(t) = <
group in U(2).

cost sint

. is a one-parameter sub-
—sint cost

(4) The map
cost sint 0
¢(t)= | —sint cost O
0 0 ¢

is a one-parameter subgroup in GL3R.

The central theorem here is the following:

Theorem 1.7. The map ¢ — d¢o(1) defines a one-to-one correspon-
dence between one-parameter subgroups of G and T.G.

Proof. Let v € T.G and Xy = (dL,)e(v) be (the value of) the
corresponding left-invariant vector field. We need to find a smooth
homomorphism ¢,: R — G. By Proposition 1.2 let ¢: I — G be
the unique integral curve of X such that ¢(0) = e and d¢; = X3
This curve is a homomorphism because if we fix an s € I such that
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s+t e for all t € I, then the curves t — ¢(s +t) and t — @(s)P(t)
satisfy the previous equation (the second curve by the left-invariance
of X7), and take the common value ¢(s) when t = 0. Thus by the
uniqueness of the solution we obtain that

¢(s+1) = ¢(s)g(t) (st €l).

Now extend ¢ to all of R by defining ¢, (¢) = ¢>(%)" for suitably large
n, and this is the desired homomorphism. The map v — ¢, is the
inverse of ¢ — d@o(1) and this completes the proof. d

By using the identification of the tangent space T.G with g, the
set of all left-invariant vector fields in G, we obtain the following:

Corollary 1.8. For each X € g there ezists a unique one-parameter
subgroup ¢x : R — G such that ¢’y (0) = X.

Hence it is possible to organize the set of all one-parameter sub-
groups of a Lie group G into a single map g — G as follows:

Definition. The ezponential mapexp: g — G is defined by exp(X) =
¢x (1), where ¢x is the unique one-parameter subgroup of X.

Next, we will find the relation between ¢x and ¢sx (s € R).
Consider the map h(t) = ¢x(st). This is a one-parameter subgroup
with h/(t) = s¢’y(st), so h’'(0) = s¢'y(0) = sX. On the other hand,
by Corollary 1.8 ¢%(0) = sX, hence by uniqueness it follows that

Px(st) = psx(t).

If we interchange the roles of s,t in the above relation and take s = 1
we also obtain that

exp(tX) = dex(1) = ¢x(2),
hence we obtain the following:
Corollary 1.9. The curve y(t) = exp(tX) (X € g) is the unique
homomorphism in G with v'(0) = X. Also, since ¢px is a homomor-

phism, it follows that exp(s+t)X = exp sX -exptX and (exptX)™! =
exp(—tX).
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Now we compute the differential (dexp)o: g — g of the exponen-
tial map at o € g. Take the curve a(t) =tX in g with a(0) = o and
o/(0) = X € g. Then

2 exp(tX))| =X,

d
(dexp)o(X) = (exp oa) 10 Tt t=0

so (dexp)o is the identity map. By applying the inverse mapping
theorem we obtain:

Proposition 1.10. There is a neighborhood of o € g which is mapped
diffeomorphically by exp onto a neighborhood of e € G.

If V is such a neighborhood of o, then exp(V) = U is called a
normal neighborhood of p.

Before we see various examples we will comment on the term
“infinitesimal” group. If ¢(¢) is a one-parameter subgroup of G, then
we can express its derivative as follows:

#(0) = lim 18(t-+ h) — 9(0)] = Jim Z[($(h) — )(0)] = A(t),

where A is the limit as h — 0 of (#(h)—e)/h. This limit exists because
the group is a manifold whose coordinates are smooth functions. Now,
if A is a matrix, we will see next that the matrix e4? is defined and
the curve ¢(t) = e? is the (unique) solution of the above differential
equation with the initial condition ¢(0) = A. The matrix A is called
the infinitesimal generator of the subgroup ¢(t). For example, if we

cost sint
take the one-parameter subgroup ¢(t) = (—sin ¢ cos t) of U(2),
then

#(t) = —sint  cost 0 1 cost sint
~ \—cost —sint —1 0/ \ —sint cost

The infinitesimal generator of ¢(t) given above is the matrix

a=(20)

in the sense that ¢(t) = e* (matrix exponentiation).
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Examples.

(1) Take G = GL,R with g = M,R. In this example the term
“exponential map” will be justified since it will coincide with the usual
exponential map for matrices. Let A be an n x n real (or complex
matrix). Define the n X n matrix

_I+A+—+ Z AT

The above series converges in M,R. In fact, define the norm ||A|| =
maxi<i<n |A|i, where |A|; is the sum of the absolute values of the
entries in the i*" row. Then ||AB|| < ||4|| [|B]|, and ||[A + B|| <
1Al + I BI|. Thus

et < 144+ ML . _ gia
= 2! ’

which shows that the series converges absolutely, so it converges (this
norm gives the expected topology in M,R). Now, the exponential
map exp: M,R — GL,R is given by exp(A) = e“. Indeed, let A €
M,R. Then the map ¢(t) = et4 is a one-parameter subgroup in
GL,R with ¢’(0) = A, so by Corollary 1.8 it is the exponential map
exp: MR — GL,R. As a consequence of this, we can obtain that
for any A, B € M,R the Lie bracket is given by

[A,B] = AB — BA.

(This is also true for A, B € M,C or M, H.)

Here is a sketch of the proof: Let X4, XB be the corresponding
left-invariant vector fields to 4, B. Then [4, B] = [X4, X B].. On the
other hand, it is an exercise to show that for any two vector fields
X,Y on a manifold M with corresponding flows a; and G; through a
point p which is close to a fixed point 0 € M, the bracket is given by
[X,Y]o = lim¢—g7'(t), where

V(1) = B_i(a_z(B,4(40))))-

Now, an integral curve for X4 through a point g € GL,R is t —
gexptA. So in this case

7(t) = exp(—VtA) exp(—VtB) exp(VtA) exp(VB),
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and since we have matrix groups y(f) = e Vidg~ViBeVidgViB
Finally, the computation of the above limit gives that this is equal to
AB — BA.

(2) The Lie algebra of the orthogonal group O(n) is the set
o(n) = {A € M,R: A* = —A} of all skew-symmetric real matri-
ces. Matrices obeying the condition A® = —A vanish on the diagonal.
Hence, dim O(n) = in(n —1).

Indeed, we will show that T7O(n) = o(n), where I is the identity
matrix. Let y(s) be a curve in M,R with y(0) = I, that lies in
O(n), ie., y(s)*y(s) = I. Diferentiating at s = 0 we obtain that
v'(0)* = —+/(0), thus T1O(n) C o(n). Conversely, let A € o(n). Then
v(s) = e*# is a curve in M,R with v(0) = I and v(R) C O(n) (since
(es4)t = (e°4)~1). Differentiating at s = 0 we obtain 7/(0) = A C
TrO(n), so o(n) C TrO(n).

(3) Similarly, it can be shown that the Lie algebra of the uni-
tary group U(n) is the set u(n) = {A € M,C: A* = —A} of all
skew-hermitian complex matrices. The diagonal entries are all pure
imaginary and dim U(n) = n2.

(4) The Lie algebra of SU(n) is the set su(n) = {A € M,,C: At =
—A and trA = 0}. Here one uses the relation det(e!4) = eftr4,
which is obtained first for an upper triangular matrix and then, by
using the Jordan canonical form, for any matrix A. We obtain that
dim SU(n) =n? — 1.

(5) Similarly, the Lie algebra of SL,R iss[,R = {A € M,R: trA =
0}. Its dimension is n? — 1.

(6) The Lie algebra of the special orthogonal group SO(n) is
the same as the Lie algebra of O(n), ie., so(n) = o(n). Hence
dim SO(n) = in(n—1). g

(7) The Lie algebra of the symplectic group Sp(n) is the set
sp(n) = {A € M,,H: A* = —A}. Due to the appearance of the conju-
gation in the quaternions, it is more helpful to view this as isomorphic
to {A € M, C: A* = —A and A*'J + JA = 0}.

Concerning the topology of these groups, SO(n), O(n), SU(n), U(n)
and Sp(n) are compact (they are closed and bounded subsets of cor-
responding general linear groups). The groups SO(n), U(n), SU(n),
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and Sp(n) are connected. The orthogonality condition for O(n) im-
plies that if A € O(n), then detA = %1, thus O(n) has two connected
components, one of which is SO(n).

6. The Campbell-Baker-Hausdorff formula

‘The relation between exp X expY and exp(X +Y) is given by the
Campell-Baker-Hausdorff (CBH) formula. For the proof we refer to
[Fe] or [War].

Theorem 1.11. Let G be a Lie group with Lie algebra g. Then there
ezists a curve t — Z(t) in g such that

exp(tX) exp(tY) = exp(Z(t)),

where Z(t) has a Taylor series ezpansion Z(t) = > oo, Zn(X,Y),
with Z,(X,Y) = [X,Y], Zo(X,Y) = L[X,Y], and Zs(X,Y) =

Since in most applications it is only the Z;(X,Y) term that is
needed, the above formula is also written as

exp(tX) exp(tY) = exp{t(X +Y) + O(t*)},

where O(t?) is a g-valued smooth function of ¢ such that FO(t?) is
bounded at t = 0.

This theorem has several consequences. For example, Theorem
1.4 is obtained by using the CBH formula. Also, one can show that a
Lie group is abelian (i.e., zy = yz for all z,y € G) if and only if g is
commutative (ie., [X,Y] =0 for all X,Y € g). Also, if G is abelian,
then exp X expY = exp(X +Y). Finally, we can find all abelian Lie
groups:

Proposition 1.12. FEvery connected abelian Lie group is of the form
T* x R""*, where T = R/Z. If G is in addition compact, then G is
a torus.
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7. Lie’s theorems

We will present various theorems that give the precise relation be-
tween Lie groups and their Lie algebras. They are not necessarily in
the original form of Lie’s formulation. For proofs and more details
we refer to [Ca-Se-Mc|, [Du-Ko], [Hs]. We will need the following
definition.

Definition. Let g be an (abstract) Lie algebra and § a vector sub-
space of g.
(a) b is called a Lie subalgebra of g, if [X,Y] € b for all X,Y € b.
(b) b is called an idealin g, if [A,X] €hforall X e hand A €g.

The next proposition gives a first relation between Lie groups and
Lie algebras.

Proposition 1.13. Let ¢: G — H be a Lie group homomorphism.
Then the map do.: g — b is a Lie algebra homomorphism (i.e., a
vector space homomorphism that preserves the Lie brackets in G and
H). Furthermore,

#(exp X) = exp(dpe(X)).
We now list Lie’s results:

Theorem 1.14. (1) For any Lie algebra g there is a Lie group G
(not necessarily unique) whose Lie algebra is g.

(2) Let G be a Lie group with Lie algebra g. If H is a Lie sub-
group of G with Lie algebra Yy, then by is a Lie subalgebra of
g. Conversely, for each Lie subalgebra §y of g, there exists a
unique connected Lie subgroup H of G which has b as its Lie
algebra. Furthermore, normal subgroups of G correspond to
ideals in g.

(3) Let Gy, G> be Lie groups with corresponding Lie algebras g1, g2.
Then if g1 = go (isomorphic as Lie algebras), then Gy and G
are locally isomorphic. If the Lie groups Gy,G2 are simply
connected (i.e. their fundamental groups are trivial), then G
is isomorphic to G.
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Remarks. (a) Part (1) in Theorem 1.14 is a consequence of Ado’s
theorem which states that any finite-dimensional (abstract) real Lie
algebra is isomorphic to a Lie subalgebra of the Lie algebra GL,R for
sufficiently large n.

(b)

()

(d)

Concerning part (2), if j: H — G is the immersion of H in
G, then the required subalgebra is dje(h). Conversely, if b is
a Lie subalgebra of g, then the required subgroup is the one
generated by {exptX: X € h}. If we drop the connectedness
condition, then the Lie subgroup is not unique. For example,
the Lie groups O(n) and SO(n) have the same Lie algebra
o(n).

We cannot drop the simply connectedness condition for G; in
part (3) as, for example, G, = S* and G5 = R have the same
Lie algebras, but are not isomorphic.

Part (3) can be restated in categorical language as follows:
There is a one-to-one correspondence between (i) the cate-
gory of connected, simply connected Lie groups and Lie group
homomorphisms, and (ii) the category of Lie algebras and Lie
algebra homomorphisms.



Chapter 2

Maximal Tori and the
Classification Theorem

The aim of this chapter is to discuss the classification problem for a
compact and connected Lie group. However, our main intention is
not to give a complete treatment of the classification problem, but
to present various fundamental concepts (such as the adjoint repre-
sentation, and the maximal tori) to be used later on. We will also
briefly present the structure theory of the complex semisimple Lie al-
gebras. We will need this later on, when it will be more convenient to
treat various geometrical problems about Lie groups or homogeneous
spaces at the Lie algebra level.

As we will see in a more precise statement in Theorem 2.17, it
is a remarkable fact that the compact and simple groups come in
three families (SU(n), SO(n), Sp(n)), plus five exceptional groups.
A general guideline in mathematics when one needs to approach a
classification problem is to develop useful invariants for the objects
to be studied. For example, for the case of manifolds such invariants
are the dimension, the homotopy groups, and the homology groups.
For Lie groups we already know one invariant: the dimension. Since
our objects are also groups, we have another invariant that can be
considered: the center. For instance, if the group is abelian, then
it coincides with its center. The first concept to be developed, the

23
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adjoint representation of a Lie group is, among other things, a mea-
sure of the non-commutativity of the group. We will start with some
introductory concepts on representations.

1. Representation theory: elementary concepts

There are various reasons for looking at representations. For example,
a representation is a useful tool for understanding the group and its
possible invariants. Also, as Lie groups are often the symmetry groups
of spaces of functions (such as solutions of differential equations),
knowing the ways in which a group can act helps to understand these
spaces.

Definition. A (finite-dimensional) representation of a Lie group G is
a homomorphism ¢: G — Aut(V), where V is a (finite-dimensional)
vector space. The dimension of the representation is the dimension
of the vector space V

Denote the representation of G in V by (G, V) or simply by V
The map ¢ is required to be continuous.

If (G,V) is a representation of G and g € G, v € V, then this
defines an action ®: G XV — G of G on V as follows: ®(g,v) =
#(9)(v). Indeed, if we denote ®(g,v) by g - v, then we easily obtain
that e-v =v and g1 (g2 -v) = (9192 - v), for all g1,92 € G, v €V
For this reason a representation (G, V) is also refered to as a G-space,
and we may use both notations g - v and ¢(g)(v).

If the space V is a real (respectively complex, or quaternionic)
vector space and, if for all g € G, the maps ®(g9): V — V v —
®(g,v) are linear, then the corresponding representation is called real
(respectively complez, or quaternionic).

Definition. Let (G, V) be a representation. A subspace U of V is
called invariant or G-invariant if g- U C U for all g € G.

A representation (G,V) has always at least two invariant sub-
spaces, namely {0} and V' The first is called the trivial subspace.
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Definition. A representation is called srreducible if the only invariant
subspaces are {0} and V'

Definition. Two representations ¢;: G — Aut(V;) and ¢2: G —
Aut(V3) are said to be equivalent (denoted by ¢; = ¢2) if V; and V,
are G-isomorphic, i.e., there exists a linear isomorphism A: V; — V;
such that A(¢1(g)(v)) = ¢2(g)(A(v)), for all g € G and v € V5. In
shorthand A¢; = ¢ A.

This means that the following diagram is commutative:

v $2(9) Va

Given two representations (G, V) and (G, W) of G, we can define
the following representations on the corresponding vector spaces with
the obvious notations:

(a) Dual space: V* with (v,g-v') = (g7 - v,') for all v € V,
v eV

(b) Direct sum: V & W with g (z,y) = (92, gy).

(c) Tensor product: V@ W withg:- (z®y)=9g-zQ®g-v.

(d) The set Hom(V, W) of all homomorphisms from V' to W, with
(g- A)x = gA(g~! - z), for all A € Hom(V,W).

(e) If V is a complex vector space, then we may define the con-
jugate space V that has the same addition as V but scalar
multiplication defined by C x V. — V (z,v) — Zv. Then
(G,V) is a representation of G. If (, ) is a ¢-invariant inner
product on V, then the map v + (,v) gives an isomorphism
=A%

We can also define representations on other algebraic objects such
as wedge products A¥(V), or symmetric products S*(V').
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Below we list a few canonical isomorphisms:

U(VoeW)2(UV)d (UeW),
VOW) 2V W
Hom(V, W) 2 V* @ W,
NV @ W) = (A (V) @ AFTH(W)).

Definition. Let (G,V) and (G, W) be two representations. A map
f: V. — W is called G-equivariant if f(g v) =g f(v) for all g €
G,veV

Theorem 2.1 (Schur’s Lemma — first version). Let V and W
be two irreducible representations of G, and let f: V — W be a G-
equivariant map. Then either f is invertible or f = 0.

Proof. Clearly ker f C V and Im f C W are invariant subspaces.
By the irreducibility assumption it follows that ker f is either {0} or
V, and Im f is either {0} or W The only possibilities are either
ker f = {0} and Im f = W, ie., f is invertible, or ker f = V and
Im f = {0}, ie., f=0. O

Theorem 2.2 (Schur’s Lemma — second version). IfV is an ir-
reducible complez representation, and f € Hom(V, V) is a G-equivariant
map, then f = c Id (identity map) for some c € C.

Proof. By the fundamental theorem of algebra, f has an eigenvalue,
say ¢ € C. Then f — c Id is a G-equivariant map of an irreducuble
representation which is not invertible, and hence must be the zero
map, i.e., f = cId. O

Corollary 2.3. If G is abelian, then any complex irreducible repre-
sentation is one-dimensional.

Proof. Let ¢: G — Aut(V) be a complex irreducible representation.
Since G is abelian, the map ¢(g) is a G-equivariant self-map of V;
therefore, ¢(g) = c(g) Id for some complex scalar c(g). Since g is
an arbitrary element of G, Im ¢ C C* Id, so any subspace of V is
G-invariant; therefore, it can be irreducible only when dimV =1. O
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Irreducible representations are the building blocks of any repre-
sentation. To formulate this more precisely, we need the following
theorem, whose proof requires the existence of a G-invariant inner
product on V' In order to do so, we first need the existence of a Haar
integral on a compact Lie group G (see for example [Si]).

Theorem 2.4. Let G be a compact Lie group (in fact any compact
topological group), and C(G) the set of all continuous real-valued func-
tions on G. Then there ezists a unique function I: C(G) — R such
that

(a) I(1) =1,

(b) I is positive’ and linear,

(b) I is invariant, i.e., I(f) = I(foLg) = I(Rgof) forallg € G.

1

The number I(f) is denoted by [, f(g)dg and is called a Haar
integral on G. It is usually realized by some form of integration on G.

Theorem 2.5. Let ¢: G — Aut(V) be a representation of a compact
group G. Then there ezists a G-invariant inner product ( , ) on 'V,
ie (g-u,g-v)=(u,v) forallu,v € G and g € G.

Proof. Take an inner product (, ) on V' Then define

(u,v) = /G (6(g)u, $(g)v)dg

for all u,v € V O

A real (resp. complex) representation with a G-invariant inner
(resp. Hermitian) product is called an orthogonal (resp. unitary)
representation.

Theorem 2.6. Any finite-dimensional representation of a compact
group s a direct sum of irreducible representations.

Proof. Let ¢: G — Aut(V) be a representation. Then we proceed by
induction on dim V' If dim V = 1 the result is true trivially. Suppose
we have the result for all representations of dimension < n. Let U

1We say I is positive if I(f) > 0 for f > 0.
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be a non-trivial invariant subspace of dimension n. If U is irreducible
we stop. If not, let U+ = {v € V: (v,u) =0 for all u € U} (by using
an inner product in V). Now U* is an invariant subspace since

(B(9)v,u) = (v,¢(g"Hu) =0

forallg € G, v € UL, u € U,and V = U@ U with dimensions of U
and U+ less than n. Also, if we define representations ¢, and ¢, of G
on the subspaces U and U~ by restriction of ¢ (these representations
are denoted by ¢ [ U and ¢ [ UL respectively), then ¢ = ¢; @ ¢,
(straightforward use of the definitions). By induction, each of U and
U+ is a direct sum of irreducibles, and so is V' O

When we say that a representation ¢: G — Aut(V) is a direct
sum of irreducibles, we will mean that V=V, @ --- ® Vi (V; a sub-
space of V), the restricted (sub)representations ¢;: G — Aut(V;) are
irreducibles, and ¢ = ¢; @ - - - @ ¢, (equivalent representations).

2. The adjoint representation

An automorphism of a Lie group G is a map ¢: G — G that is a
diffeomorphism and a group isomorphism. Let G be a Lie group and
z € G. Then the map I,: G — G sending each g to zgz~! is a
homomorphism and, since I, = R, -1 o L, is a diffecomorphism, it is
called an inner automorphism of G.

Definition. The adjoint representation of G is the homomorphism
Ad: G — Aut(g) given by Ad(g) = (dIy)e.

This is a homomorphism since I, = I, o I,, implies that Adg, =
Ad; o Ady (we take differentials). It is also smooth (see [War]). We
will see soon that, for familiar groups, the adjoint representation is a
very familiar representation.

By taking the derivative of Ad we obtain a representation of g.

Definition. The adjoint representation of g is the homomorphism
ad: g — End(g) given by ad(X) = (dAd).(X).
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Let Z(G) = {g € G: gh = hg for all h € G} and Z(g) = {X €
g: [X,Y] =0for allY € g} denote the centers of G and g respectively.
Then a first consequence is the following:

Proposition 2.7. Let G be a connected Lie group. Then ker Ad =
Z(G) and kerad = Z(g). Furthermore, the Lie algebra of Z(G) is

Z(g).
A second consequence is the following important theorem:

Theorem 2.8. The adjoint representation of g satisfies ad(X)Y =
[X,Y] for all XY € g.

Proof. By definition Ad(g)Y = dI,(Y) = dRy-1dLy(Y) = dRy1Y,
forallg € Gand Y € g. Let z; = exp(tX) be the flow of X € g.
Since X is left-invariant, Ly o x4y = 4 0 Ly for all y € G, which gives
that

z1(y) = z(Ly(e)) = Ly(x+(e)) = yze(e) = Ray(e) (v),

and therefore dz; = dR;, ). Now we use Proposition 1.3 to compute:
.1 1
X, Y] = lim £(¥ — dzy(¥)) = - lim 2(dRy, (V) — ¥)

= —lim + (Ad(z7 ()Y — ¥) = lim - (Ad(z(e))Y )
—ad(X)Y. O

This theorem shows that the bracket operation in g measures the
failure of G to be commutative. Indeed, if G is abelian, then I, = Id,
hence Ad, = Id for all ¢ € G. Thus, by the proof of the above
theorem [X,Y] =0 for all X,Y € g. A Lie algebra that satisfies this
property is called abelian. The converse is true if G is connected (see
[War]).

For the case of a matriz group (that is a subgroup of a general
linear group), the adjoint representation has a simple expression:

Proposition 2.9. IfG is a matriz group, then Ad(g)X = gXg~! for
all g € G, X € g (the multiplication being multiplication of matrices).
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Proof. Let t +— exp(tX) be the one-parameter subgroup of X whose
derivative at t = 0 is X. Since G is a matrix group, the exponential
map is given by the ordinary exponentiation of matrices, and thus we
have:

d d _
Ad(g)X = (dIy)e(X) = o J(exptX)| = azg(exth)g 1
t=0 t=0

d ;x -1 -1
=g — =gX . O
g dte t=09 gaAg

A note on complexification. If V' is a vector space over R, then
we can define the vector space V€ = V ®gC (or simply V ®C), whose
dimension over C equals the dimension of V' over R. We can formally
think of V ®g C as the set

{(X+iY: X,Y €V, i=v-1}.

If g is a Lie algebra over R, then the complezification of g is the Lie
algebra g ® C (or sometimes written with the notation g + ig), with
Lie bracket operation given by

[U+iV, X +iY] = [U, X] — [V, Y] +i([V, X] + [U, Y]

IfT: V — W is a linear map of vector spaces over R, then we can
define the eztension T=T ® Id: V® C — W ® C of T by complex
linearity, that is T(3} v ® z;) = 3. T'(v;) ® 2.

Now, if ¢: G — Aut(V) is a representation of a Lie group G, we
combine the previous concepts to define the complezified representa-
tion ¢ ® C: G — Aut(VC).

Examples.

(1) Let G = SU(2) with Lie algebra su(2) consisting of matrices of

sz

-z —is

Ad: SU(2) — Aut(su(2)). Let A= ( STW ¥+ o gy
U+ T —1y

We know that Ad(A) is a non-singular linear transformation on su(2)

the form . We will compute the adjoint representation
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given by Ad(A)B = ABA™!. To find this transformation (actually
the matrix that corresponds to this transformation), we pick a basis

(6 %) (2o (o)

for su(2), and a calculation on the first of these basis elements gives
that

z+iy u+iv i 0
Ad(—u—l—iv a:—iy) (0 z)

_f iy u+t+w i 0 T—1y —u—1w
T\ —u+iv z—iy)\0 i) \u—div x4y

i@+ —iu? —iv? —2izu+ 2uy + 2zv + 2ivy
~ \ 2iuz + 2zv — 2uy + 2ivy iu? +iv? —iz? — iy?

By similar computations on the other basis elements we obtain that

Ad( z+ iy u+w>

—u+iw T—1iy

z? 4+ 9% —u? —0? —2zv + 2uy 2zu + 2yv
= 2uy + 2zv z? — % +u? —0? —2zy + 2uv
—2zu + 2yv 2Ty + 2uv z? — % —u? 402

Notice that this is a 3 x 3 matrix, which agrees with the dimension
of the representation which is dimsu(2) = 3. From this example it is
evident that the computation of the adjoint representation for SU(n)
is complicated in general. Hence it is often best to leave the adjoint
representation as gXg~!. However, by using some more advanced
representation theory it is possible to express the adjoint representa-

tion of groups such as SU(n) or SO(n), as shown in the next example.

(2) Define the standard representations of GL,R, O(n) and SO(n)
on Mpx1(R) & R”, in which elements of these Lie groups operate
by matrix multiplication on R™, i.e. ¢(g)v = gv. (Recall that a
representation of G defines an action on the vector space V' and vice-
versa). Similarly, we can define the standard representations of the
groups GL,C,SU(n) and U(n) on C™. A representation is called
trivial if each group element acts as the identity transformation. It is
denoted by 1.
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There is some notation used for the standard representations:
denote by ), the standard representation of GL,R, and by A, the
standard representation of SO(n). Actually, A\, = S\n‘SO(n) Often
the same symbol is also used for the standard representation of O(n).
Similarly, we denote by [i, the standard representation of GL,,C and
by un the standard representation of SU(n) (or U(n)). Finally, let
v, denote the standard representation of Sp(n). Then the adjoint
representations of these groups are equivalent to the following repre-

sentations:
AdCR = X ®g X%,
Ad®C = [, ®c L,
AdSO™) — A2) (similarly for O(n)),
AdY™ ® C = i ®c 15, = fin B¢ fin,
AdSY(™ @ C = p, ®c fin — 1,
AdP™ ® C = S,

Here S? and A? denote the second symmetric and exterior power
respectively.

3. The Killing form

We have seen that for any representation (G,V’) of a compact Lie
group G, there exists a G-invariant inner product on V' In particular,
this happens for the adjoint representation of (G,g). We will now
introduce an explicit inner product on g.

Definition. The Killing form? of a Lie algebra g is the function
B: g xg— Rgiven by B(X,Y) = tr(adX o adY).

The following proposition includes some of the properties of the
Killing form.

Proposition 2.10. The Killing form has the following properties:
(a) It is a symmetric bilinear form on g.

2Named after Wilhelm Killing
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(b) If g is the Lie algebra of G, then B is Ad-invariant, that is,
B(X,Y) = B(Ad(9)X,Ad(9)Y) for all g € G and X,Y € g.
In other words, each Ad(g),g € G is B-orthogonal.

(c) Each ad(Z) is skew-symmetric with respect to B, that is,

B(ad(2)X,Y) = —B(X,ad(Z)Y) or B([X, Z],Y) = B(X,[Z,Y)).

Proof. (a) Bilinearity follows from the linearity of X — ad(X) and
the linearity of the trace. Symmetry follows from tr(AB) = tr(BA).
(b) Ifo: g — g is an automorphism of g (i.e. a linear isomorphism
with o[X,Y] = [0X,0Y]), then ad(6X) o0 = 0 0 ad(X), or
ad(0X) = o oad(X) oo~1. Take o0 = Ad(g) and compute:

B(Ad(g)X, Ad(9)Y) = tr(ad(Ad(¢9)X) o ad(Ad(9)Y))
= tr(Ad(g) o ad(X) o Ad(g)* o Ad(g) 0 ad(Y) o Ad(g) %)
= tr(ad(X) cad(Y)) = B(X,Y).

(c) We use the Jacobi identity twice and obtain:

(2, 1X, Y, W] = 2, X], [Y, W]] + [X, [Z, [Y, W]]
=[[2,X],[Y, W]l + X, [[Z, Y], W] + [X, [, [Z, W]]].

Hence

ad(Z) o ad(X) o ad(Y) = ad(ad(Z)X) o ad(Y)
+ad(X) cad(ad(2)Y)
+ad(X) oad(Y) cad(2),

[ad(Z), ad(X) 0ad(Y)] = ad(ad(Z)X) 0 ad(Y) +ad(X) o ad(ad(2)Y).
Since tr([A, B]) = 0, we finally obtain that
B(ad(2)X,Y) + B(X,ad(2)Y) =0. O

The Killing form of a Lie group G is understood to be the Killing
form of its Lie algebra g.
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Definition. A Lie group G is called semisimple if its Killing form is
non-degenerate.

Historically the above definition is known as Cartan’s criterion
for semisimplicity. In that context, a semisimple Lie algebra is one
that has no proper solvable ideas, i.e. whose radical is zero. To make
these abstract algebraic definitions more concrete, simply think of a
semisimple Lie algebra g as one that has no proper subspaces ) with
X, Y]=0if XechandY €g.

Proposition 2.11. If G is semisimple, then Z(g) = 0,

Proof. Let X € Z(g). Then [X,Y] =0 for all Y € g, thus ad(X)
is the zero operator, which gives that B(X, X) = tr(adXadX) = 0.
Since G is semisimple, X = 0. a

Corollary 2.12. The center of a semisimple Lie group is discrete.

The next theorem is important because it demonstrates for which
Lie groups the Killing form defines an inner product.

Theorem 2.13. If G is a compact semisimple Lie group, then its
Killing form is negative definite.

Proof. By Theorem 2.5, since G is compact, there is an Ad-invariant
inner product on g, so Ad(g) is an orthogonal transformation of g.
By a proof similar to (c) of Proposition 2.10, each ad(X) is skew-
symmetric, so let ad(X) = (a;;) relative to an orthonormal basis of
g. Then

B(X,X) =tr(ad(X) oad(X)) =YY ajya; =Y a2 <0.

Since G is semisimple, B is nondegenerate, so the above sum is strictly
less than zero. a

The converse of this theorem is also true but harder to prove (cf.
[Fe], [He]):
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Theorem 2.14. If G is a connected Lie group and B is negative
definite on g, then G is compact and semisimple.

Examples.

(1) We compute the Killing form of SU(2). We first observe
that, as we will prove in the next section, it suffices to compute the
Killing form at certain simpler elements of the Lie algebra su(2) (in
this example at the diagonal elements). We use the basis for su(2)
used in example (1) of the previous section, and we compute that

. 0 0 0
ad(’g _30) =0 o -2
0 206 0
. . . . . . i 0
Then a simple calculation using this basis gives that if X = ( )

0 —if
i 0
and Y = (0 _i¢>,then

B(X,Y) = tr(ad(X)ad(Y)) = —80¢ = 4 tr XY.

(2) The Killing form of U(2). We use the following basis for u(2):

(o) @2 (o) (o)

(i 0 _(ig 0
IfxX = ( 0 i02> and Y = ( 0 i¢2),then
B(X,Y) = tr(ad(X)ad(Y)) = 4(61¢1 + O2¢2) — 2(61 + 62)(é1 + ¢2)
=4tr XY —2tr XtrY.

Notice that if 6; = 62 = ¢1 = ¢ = 1, then B(X,Y) =0, so U(2) is
not semisimple.

(3) The Killing form of SO(3). Consider the basis for so(3) that
consists of the 3 x 3 matrices E)s, E13, Fa3 that have 1 in the (3, 5)
entry, —1 in the (j,4) entry, and 0 elsewhere (1 < i < j < 3). As ob-
served above, it suffices to compute the Killing form for the matrices
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0 6 0 0 ¢ O
X=|l-6 0 0)JandY=|—-9¢ 0 O A computation gives

0 00 0 0O

that
B(X,Y) = tr(ad(X)ad(Y)) = —20¢ = tr XY.

(4) The examples above can be generalized as follows:

U(n): B(X,Y) =2ntr XY —2tr X trY,
SU(n): B(X,Y) = 2ntr XY,
SO(n): B(X,Y) = (n—2)tr XY,

Sp(n): B(X,Y)=2(n+1)tr XY.

4. Maximal tori

The key for the classification of compact and connected Lie groups
are the maximal tori. The circle group S! is the only one-dimensional
compact connected Lie group, and products of several copies of S*
are the only commutative, compact and connected Lie groups. Such
a product is called a torus.

Definition. A torus in a Lie group G is a Lie subgroup that is iso-
morphic to a product S* x  x S*. A torus T is a mazimal torus in
G if for any torus S in G with T'C S C G for a torus S, then T' = S.

Examples.

(1) The group of unit complex numbers S* is a maximal torus in

the group of unit quaternions S°
i0
(2) Theset T = { (60 ege ) } is a maximal torus in SU(2).

(3) The set

[ cos 6 —sinf O
T= sinf cosf O = S0(2)
0 0 1

is a maximal torus in SO(3).
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Remarks.

(1) Any torus is contained in a maximal torus. Indeed, if T' C
' CcTIy C is an increasing sequence of tori in G, then for their
corresponding Lie algebras we have that t C t; C {3 C This is an
increasing sequence of finite-dimensional vector spaces in g, hence it
must be finite.

(2) If G is compact, then any maximal torus T' is a maximal
connected abelian subgroup of G. Indeed, if T' C A with A connected
and abelian, then T C A (the closure of A), which is compact, since
G is compact. But a compact, connected abelian group is a torus,
and T is maximal, so T = A.

(3) If T is a connected Lie subgroup of a compact Lie group G
whose Lie algebra is a maximal abelian subalgebra of g, then T is a
maximal torus in G.

The main result here is the following:

Theorem 2.15. Let G be a compact and connected Lie group. Then:
(a) Any element in G is contained in some mazimal torus.
(b) Any two mazimal tori are conjugate. That is, if T1, T2 are
mazimal tori in G, then there exists an element g € G such
that gTy g~ = T.

From (b) in the above theorem, we see that every maximal torus
has the same dimension. So this is an invariant for a compact and
connected Lie group. Hence we can define:

Definition. The rank of a compact and connected Lie group is the
dimension of a maximal torus.

For the proof of the above theorem as well as for its various
consequences that we list in the next proposition, we refer to several
sources (e.g.—from the most elementary to more advanced—[Fe], [Si],
[Du-Ko], [He]). References [Fe] and partly [Si] provide a geometrical
proof, which can be read after one reads Chapter 3.

Proposition 2.16. Let G be a compact and connected Lie group with
Lie algebra g. Then:
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(1) The ezponential map is onto.

(2) There is a one-to-one correspondence between mazimal tori
T in G and mazimal abelian subspaces by in g. This is given by T <
h = expt, where t is the Lie algebra of T

(8) If T is a mazimal torus in G with Lie algebra t, then G =
UgecgTyg ™! and g = UgecAd(g)t.

(4) The center of G is equal to Nmaximal T

tori
(5) If S is a subset of G, we define the centralizer of S to be the
set C(S) = {9 € G: gz = zg for allz € S}. Then, if T is a mazimal
torus in G, then C(T) =T
(6) Mazimal tori are also mazimal abelian subgroups.

(7) For any X € g, the closure of {exp(tX)} is a compact abelian
subgroup of G, and so a torus.

Examples.

(1) A maximal torus in U(n) is the set
6101 O

T= {diag(ewl,...,ew") = ,
0 eton

hence the rank of U(n) is n. This is obviously a torus. To show that
it is maximal, let A € U(n) be an element that commutes with 7.
Consider the subgroup T; of T consisting of matrices with 1 in the j**
diagonal entry. Then, if t; € T}, we have that t;Ae; = Atje; = Ae;
(here e; is the column vector with 1 at the j** place and 0 elsewhere).
That is, Ae; is left fixed by T}, so Ae; = Aje; for some complex
number A; of modulus 1 (as A € U(n)), therefore \; = ei%. Since
this is true for each j, this means that A = diag(e®®:,...,e**"), so
A €T Hence T is maximal.

(2) A maximal torus of SU(n) is the set
T = {diag(e®:,...,%): 0y + - + 6, = 0},

hence the rank of SU(n) is n — 1. This is a torus because of the iso-
morphism diag(e®:,...,e"%") s diag(e?(®1—0=) ...  ¢i(6n-1-6n)) that
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maps T onto the maximal torus in U(n — 1). Maximality is shown as
before.

Theorem 2.15 can be seen easily in this case: A standard result
of linear algebra says that any A € SU(n) can be diagonalized, that
is, there is a U € SU(n) with UAU ! € T.

cosf sinf

(3) Let rotf = . . Then a maximal torus in
—sinf cosf

SO(2n+1) is the set of “block matrices” {diag(rot s, ...,rot6,,1)}.
The rank of SO(2n + 1) is n.

(4) A maximal torus in SO(2n) is the set {diag(rot 61, ...,rot6,)},
so its rank is n.

(5) A maximal torus in Sp(n) is the set {diag(e®:,...,e"*")}. Its
rank is also n.

Notice that part (a) of Theorem 2.15 and the examples above
justify the simplifications in the computations for the Killing form
that we did in the previous section.

5. The classification of compact and connected
Lie groups

All groups in this section are assumed to be compact and connected.
We will present the classification theorem for such Lie groups. For a
detailed presentation we refer to [Bré-TD).

Definition. A Lie group is called simple if it is non-abelian and it
does not contain any proper normal Lie subgroups.

Equivalently, a Lie group is simple if its Lie algebra is simple, i.e.
it is non-abelian and it has no proper ideals.

Theorem 2.17. (1) Let G be a compact and connected Lie group.
Then there ezists a covering space of G that is isomorphic to the direct
product of a torus and a compact, connected and simply connected Lie
group.
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(2) Every compact, connected and simply connected Lie group 1s
isomorphic to the direct product of simple, compact, connected and
simply connected Lie groups.

(3) The simple, compact, connected and simply connected Lie
groups are the following:

SU(n) (n > 2), SO(2n+1) (n > 3), Sp(n) (n > 2), SO(2n) (n > 4),

Gz, Fy, Eg, FEy, Es.

Remarks.

(1) The group 3’5(71) is denoted by Spin(n), and is the universal
covering group of SO(n). The spin groups are constructed by using
the Clifford algebras. Spin groups are extremely interesting in particle
physics. We refer to [Fe] and [Si] for an elementary presentation.

(2) The Lie algebras of the first four groups are denoted by A,_1,
B, C, and D, respectively. This is Cartan’s classical notation. The
following isomorphisms hold: A; & B, = C,, By = Cy, A3 & Dg,
Dy =2 A, @ A;.

(3) The next five Lie groups in (3) of Theorem 2.17 are called
the ezceptional Lie groups. Their indices indicate the rank, and their
dimensions are 14, 52, 78, 133, and 248 respectively. Each of these
groups has an interesting reason for existing either by a special phe-
nomenon in algebra or a special phenomenon in geometry. We refer
to [Jac], [Wan] for more details on these.

(4) Concerning the idea of the classification, here is how it goes.
We know that a simply connected Lie group is determined by its
Lie algebra, so the compact semisimple Lie algebras are in one-to-
one correspondence (up to isomorphism) with compact Lie groups.
By complexifying these Lie algebras, we obtain a one-to-one corre-
spondence between these, and the complex semisimple Lie algebras.
However the complex semisimple Lie algebras are classified by their,
still to come, root systems, and the root systems are classified by
their bases. A simple description of the bases are the Dynkin dia-
grams, whose complete description is an elementary but nontrivial
combinatorial problem. Hence we finally end-up with a one-to-one
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correspondence between compact simply connected Lie groups and
Dynkin diagrams.

In the next section we will give an overview of the structure of
the complex semisimple Lie algebras.

6. Complex semisimple Lie algebras

The aim of this section is to present the central notions related to the
structure of the complex semisimple Lie algebras. There are several
references for more details, such as [Hu], [Sa], [Se], [Si], [Va], [Wan],
to list a few.

Definitions. (a) Let g be a complex Lie algebra. The adjoint rep-
resentation of g is the homomorphism ad: g — End(g) given by
ad(X)(Y) = [X,Y] for all X,Y € g.
(b) The Killing form of g is the symmetric bilinear form given by
B(X,Y) =tr(adX oadY) (X,Y € g).
(c) The Lie algebra g is called semisimple if its Killing form is
non-degenerate.
(d) It is called simple if it is non-abelian and its only ideals are
{0} and g.
(e) A Cartan subalgebra h of g is a maximal abelian subalgebra
of g, such that for all H € h the endomorphism ad(H) is
diagonalizable.

Remark. Part (c) in the above definition is actually an important
theorem due to Cartan and Killing. The historic definition of a
semisimple Lie algebra is a purely algebraic one, saying that its rad-
ical (its largest solvable ideal) is zero. We avoided this as we do not
use these concepts in this book.

Proposition 2.18. A Lie algbera is semisimple if and only if it is
isomorphic to a product of simple algebras.

Proposition 2.19. (a) Any complez Lie algebra contains a Cartan
subalgebra.

(b) Let G be the group of automorphisms of g generated by the

elements exp(adX) = Y oo L(adX)" (X € g). Then any
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two Cartan subalgebras are conjugate under G. This group 1is
called the adjoint group.

Part (b) looks a bit abstract. In the terminology we have devel-
oped in the previous sections, a simpler version of it says that if G is
a compact Lie group with Lie algbera g, and bh;,hs are two Cartan
subalgebras of g, then there exists a g € G such that Ad(g)h; = ba.
Hence we can give the following definition:

Definition. The rank of a Lie algebra is the dimension of a Cartan
subalgebra.

From now on g will be a complex semisimple Lie algebra and § a
fixed Cartan subalgebra of g. Let h* be the dual space of §. Then for
all a € h* denote by g the corresponding eigenspace of g, that is,

g° ={X €g: ad(H)X = a(H)X for all H € b}.

Any element o € h* such that a # 0 and g* # {0} is called a root
of g. In this case, the set g is called the root space that corresponds
to the root . The set of all roots is denoted by R and is called
the root system of g (relative to b). In particular, g° is the set of
all elements in g that commute with . Since § is maximal Abelian,
we know that g° = h. Furthermore, since the endomorphisms ad(H)
are diagonalizable for all H € § and commute with each other, by
a standard theorem of linear algebra they are simultaneously diago-
nalizable. Hence, we obtain the root space decomposition of g (for a

given b):
g=ho Y g°
a€ER
For each a € R, let H, denote the unique element in h such that
B(H,,H) = a(H) for all H € j. This is called the root vector for a.

The root spaces have the following properties:

Proposition 2.20. (a) If a is a root, then so is —a.
(b) The roots span §* and the root vectors span b.
(c) [8%,8°) C9°™® Ifa+ B ¢ R the bracket is interpreted as 0.
(d) The Killing form is non-degenerate on .
(e) The subspace [g*, 9~ %] of b has dimension 1.
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(f) LetE, €g* and E_, € g Then[E,, E_y] = B(Eo, E_o)H,.
(g) For each a € R the dimension of each g* is 1.
(h) Ifa € R and ka € R for some integer k, then k = £1.

Elements E, of g* with [Ey, E_s] = Hy (hence B(Eqy, E_p) =
1), are called root elements. Now let hg = ), RH, (the real subspace
of h formed by real linear combinations of the H,,a € R).

Proposition 2.21. (a) The Killing form restricted to hr, is a real
positive-definite bilinear form.

(b) FEvery root « takes real values when restricted to hr.

(c) br is a real form of b, that is h = hr D ibg.

We mention at this point that there are usually more roots than
the dimension of g, i.e. the {H,} are not linearly independent.

Since the Killing form B is non-degenerate on f, we have the
usual isomorphism of § with its dual h*: for each A € h* there is
a unique Hy € h with B(Hx,H) = A(H) for all H € §. Then the
real subspace hg goes over hi the R-span of R. We then transfer the
Killing form to h* (and to hg) by setting (A, u) = B(Hx, H,).

Proposition 2.22. (a) The numbers N(a,() = 2((5:2?)) are integers
whose only possible values are 0,+1,+2,+3. They are called the Car-
tan integers, and are usually put together to form the “Cartan ma-
triz”.
(b) For each o € R we consider the reflection map So: by —
br with respect to the hyperplane orthogonal to o, given by
Sa(A) = /\——2(%"7’\)2&. Notice that So(a) = —a. Then So(R) =
R, that is, the set of roots is tnvariant under all S, .

The set {Sa: a € R} generates a group of isometries of hg called
the Weyl group of R (or of g) with respect to b.

For any o, 3 € R with 8 # *a, we have that [Ey, Ey) = NogEo+p
for some complex number N, g. These numbers determine the “mul-
tiplication table” of g and are called the structure constants of g.
They satisfy the following properties:
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Proposition 2.23. (a) Nag=—Ngo (0,8 € R, a+8#0).

(b) Nop=Npgy=Nyo (0,8,7€ER, a+B+y= 0).

(c) NapgNys~+ NayNspg+ NasNgy=0 (a, 8,7, 0 € R, a+ [+
v+46=0).

(d) The a+ B is a root if and only if Na g is not zero.

(e) It is possible to choose the Toot elements {Eq} in such a way,
so that the structure constants are real numbers satisfying N, g
—N_q,—p. However, something much stronger is true:

(f) (Chevalley) The structure constants can be chosen to be inte-
gers.

The following definition summarizes the previous information.

Definition. Let g be a complex semisimple Lie algebra with b a
Cartan subalgebra, and root system R. Let Hi,...,H; (I=rank of
g) be a basis for h. For each a € R let E, be root elements (gen-
erators of g*) satisfying [E4, E_a] = H,, and such that the struc-
ture constants are integers with N, 3 = —N_, _3. Then the set
{H1,...,H;; E4: a € R} is said to be a Weyl-Chevalley basis for g.

Proposition 2.24. Let R be the root system of a complex semisimple
Lie algebra g (with respect to a fized Cartan subalgebra). Then there
ezists a subset Il = {a1,...,aq} (I = rank of g) such that every root
a € R can be ezpressed uniquely as o = niay + - -+ + njoy, where n;
are integers either all nonnegative or all nonpositive.

Any such set II is called a set of simple roots for R (the terms
fundamental system, simple system, or basis are also used). A set of
simple roots II is called irreducible if there is no nontrivial disjoint
union IT = IT; U II, with (e, 8) =0 for all & € II; and 8 € II,.

A root « is called positive (o > 0) if @ = Zi n;o; with all n; > 0.
Let R* denote the set of all positive roots, and by R~ = {—a: a €
R*}. The choice of the set R is also called an ordering in R and
satisfies the following properties:

(1) R*n(-R*) =0, RTU(—R") =R,

(2) for each a,8 € RT witha+ 3 € R, then o+ 8 € R*

This corresponds to the usual meaning, i.e., for each «, 5 € R,
then o > B if and only if o — 8 € R



6. Complex semisimple Lie algebras 45

Now let IT = {e3,...,a;} be a set of simple roots for the set of
roots R, and recall the number N (o, 8) = %

Definition. The Dynkin diagram of a root system R with a set of
simple roots II consists of a planar graph with ! vertices labeled with
ai,...,0y, and N(o;, ;)N (e, ;) line segments joining the vertex
a; to the one a;. If N(a,8) > 0 and (8,8) > (@, a), draw an arrow
on the line segments from the vertex of 3 (long root) to the vertex of
a (short root).

The fundamental result is the following:

Theorem 2.25. Assigning to each complex semisimple Lie algebra
the Dynkin diagram of the root system of a Cartan subalgebra, sets up
a one-to-one correspondence between the set of such Lie algebras (up
to isomorphism) and fundamental root systems (up to equivalence).
In particular, the simple Lie algberas correspond to irreducible funda-
mental systems.

Next, we list the simple complex Lie algebras and their corre-
sponding Dynkin diagrams.

Name Description Rank Dimension

A 5[l+1C l1>1 l(l + 2)
B 509141C 1>2 l(2l + 1)
c spC  1>3  1(2+1)
Dl 5021(C l > 4 l(2l — 1)
Gy — 2 14
Fy — 4 52
Eg — 6 78
Er — 7 133
Eg — 8 248
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Ay o— —0
Bl O ): o}
i o—o— ——0=<%=0
o
Dy o—o0— 4o<
o
Gy o==0

Fy, o—o==0—-o0

Eg o———o———tr——o—o
Er o——o—o—?—o—o

Eg o o o I ’o)

The Dynkin diagrams encode the combinatorial information of the
root system. By some miracle, these same diagrams encode other
objects, such as singularity types in algebraic geometry.

Definition. A real Lie algebra gg is called a real form of a complex
Lie algbera g, if g is isomorphic to the complexification of gq, that is,

g = do + igdo.

We remark that g may have several non-isomorphic (over R) real
forms. For example, the real orthogonal Lie algebra o(n) = o(n,R) is
a real form of the complex orthogonal Lie algebra o(n,C). However,
the Lie algebra o(p, g) consisting of the operators in R™ that leave the
indefinite form 2% +- - 4+ 22 —22,, — - — 22 invariant, is also a real

form of o(n,C).

An important fact discovered by Weyl is that every complex semi-
simple Lie algebra has a compact real form. Compact means that its
Killing form is negative definite. All compact real forms of g are
conjugate via an inner automorphism.

Any real form gr can be characterized as the fixed point set of
a conjugate-linear involution 7: g — g, which is an automorphism of
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g considered as a real Lie algebra. (This is the complex conjugation
with respect to the real form.) If g = h @ Y, 8 is a root space
decomposition of g, then we may use it to construct a compact real
form gy of g as follows. The conjugate-linear map 79: g — g defined
by
To,bn = —Id, To(Ea) = —E_a

is called the standard involution associated with the root space de-
composition. The set of fixed points of 7y is the desired compact real
form. Explicitly,

go=ibr ® P R(Ex—E_o) ® P R(i(Ea+ E_a)).

a€Rt a€RTt

Another interesting fact is that the elements iH,, F,— F_, and
i(E, + E_,) generate a subalgebra of g isomorphic to su(2). The
isomorphism is given by

. 1 0 0 1 0 ¢
"Ha'_’<0 _1>,Ea_E—aH(_1 0>’EQ+E—a’_’(i O)

Hence g has many such subalgebras. We can also use the root spaces
to obtain homomorphisms into sl(2, C):

. 10 0 1 00
ORI E O S )
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Example.

‘We now exhibit the notions discussed above for the case of g =
A; = sl;11C. A Cartan subalgebra is the set

h={H =diag(a1---a141): a; €C, Y _a; =0}.

We write E;; for the matrix whose (%,j)-entry is 1 and the other
entries are zero. The matrices

Ei—FEif141 (1<iL1) E; (1<i#j<I1+1)

form a basis for g with commutation rules [E;j, Ejx] = Ei (4,5, k
distinct). Let €1,..., €41 be the linear functionals on § defined by
ei(H) = a;. Since [H, Eij] = (a; —aj)E.,;j = (Ei — Ej)(H)E.,;j, the set
of roots is
R={E«,;—Ej:i75j, ].Si,jSl-l—l}

and the E;; (i # j) are the root elements. The corresponding root
spaces are g~ % = CE;;. To compute the Killing form, we take two
elements H, H' € h and by using the basis for g described above, we
obtain

B(H,H') =) (a;i—a;)(aj—a}) =2(1+1) Y aa

1#£] 1<i<i+1
=2(l+ 1) tx(HH").

It follows that the root vectors are

Heme = 2(1 aut D) e~ Ea):

Furthermore,
(f'i —€j,€k — em) = B(Hei—e,-: Hek——em)

= ﬁ tr{(Esi — Ej;)(Exk — Emm)],

_ 1
hence (€; — €;, €& — €;) = 37

Now, let a; = €¢;,—¢€;41 (1 <4 <1!). Thentheset Il = {a,..., 4}
is a set of simple roots, and the corresponding set of positive roots
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is R* = {e&; —¢;: 1 < j}. Hence, there are [ vertices in the Dynkin
diagram of g. The rank is of course [.

Finally, concerning the Weyl group, the reflection Sy2 correspond-
ing to the root €; — €5 consists of the interchange of the coordinates
a, and ap of any H € h. We conclude that the Weyl group of g
is the group Si+;, the symmetric group of permutations of the set
{1,2,...,1+1}.



Chapter 3

The Geometry of a
Compact Lie Group

1. Riemannian manifolds: A review

In this chapter we will study the Riemannian geometry of a Lie group.
That is to say, we will choose an appropriate Riemannian metric,
and compute the various geometrical objects, such as curvature and
geodesics. First we will give a summary of Riemannian manifolds.
References for a first reading would include [C-Ch-La], [DC], [Ga-
Hu-La], [ON], and [Wil].

Definition. A Riemannian metric on a smooth manifold M is a cor-
respondence which associates to each point p € M an inner product
9p = (, )p (that is a symmetric bilinear, positive definite form) on
the tangent space T, M, which varies differentiably in the following
sense: For every pair of smooth vector fields X,Y in a neighborhood
of p, the map p — (Xp,Yp), is smooth. A smooth manifold with a
Riemannian metric is called a Riemannian manifold, and is denoted

by (M, g).

Let 6 (1 <4 < n) be the coordinate vector fields at p in a local
chart around p, and let v, w € T,M with

v—Zu 8:51
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Then gp(v, w) = Y, ; 9i5(p)v'w?, where

gij(p)=g<-3% )
¢ P

We use the notation g = Zi, j gijdz* ® dz? with g;; = g;; or simply
g = Zi, j gijdxidxj If we extend the vectors v, w to corresponding
vector fields V, W, then g(V,W) = (V,W) is a smooth real-valued
function on M. In the language of tensors!, g is a symmetric, non-
degenerate (0, 2) tensor field on M.

‘We will now see when two Riemannian manifiolds are considered
to be the same.

0

?
P 3:1}j

Definition. Let (M, g), (N, g’) be Riemannian manifolds. An isom-
etry is a diffeomorphism f: M — N that preserves the metrics, in
the sense that

9p(4,0) = Gy (dfp(u), dfp(v))  forall p € M,u,v € T,M.

Two Riemannian manifolds are isometric if there is an isometry be-
tween them.

Loosely speaking, a geometrical object or quantity preserved (in
an appropriate sense) by all isometries is called an isometric invariant.
Riemannian geometry is traditionally described as the study of such
invariants.

Examples.

(1) Let M = R™ with T identified with e; = (0,.. .,0).
The metric is given by g(e;,e;) = d;;. In this case R™ is called the
Euclidean space of dimension n.

(2) Immersed manifolds. Let f: M — N be an immersion (that
is smooth, with df,, one-to-one for all p € M). If N has a Riemannian
metric ¢/, then f induces a Riemannian metric g on M by defining

1Tensors are the multilinear extension of vectors and their duals. Further
details on the tensor algebra can be found in advanced linear algebra books. For
details on tensor fields, see, for instance, Chapter 2 of [ON] or Chapter 1, Sec. 2
of [He].
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gp(u,v) = g'f(p) (dfp(u), dfp(v)) (u,v,€ T,M). This metric on M is
called the metric induced by f, and f is called an isometric immersion.

For example, the metric on the sphere S*! = {z € R": 22 +
-+++z2 =1} induced from the Euclidean metric from R™ is called the
canonical metric or the standard metric on S"~!. The induced metric
on an immersed manifold is none other than the first fundamental
form of classical differential geometry.

Let X(M) denote the set of all smooth vector fields of a manifold
M

Definition. An (affine) connection V on a smooth manifold M is a
mapping
V: X(M) x X(M) — X (M)

denoted by (X,Y) — VxY that satisfies the following conditions:

Vx(Y-l- Z) =VxY +VxZ,
VixtevZ = fVxZ +gVy Z,
Vx(fY) = fVxY + X(f)Y (Leibniz rule)

for all X,Y,Z € X(M) and f,g € F(M).

The connection is a way of taking covariant derivatives on a man-
ifold. To be more precise, recall that if X is a vector field on R™ and
V a vector at p € R™, then the classical covariant (or directional)
derivative of X at p in the direction of V' is

X(p+tV)-X(p)
; .

VyX = %im

The vector X (p + ¢tX) lies in Tp4+vR", and the vector X(p) lies in
T,R™. In order to be able to subtract these vectors, the tangent
spaces that they lie in need to be identified with each other. This can
be done in a canonical manner, as both tangent spaces are naturally
isomorphic to R™. On a manifold the tangent space T, M is always
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isomorphic to R™ but not canonically. So it is this concept of iden-
tifying tangent spaces at different points in order to take covariant
derivatives?, that is introduced with the above definition.

The following theorem is also referred to as the “miracle” of Rie-
mannian geometry ([ON]).

Theorem 3.1. Given a Riemannian manifold M, there ezists a unique
connection (called the Levi-Civita or Riemannian connection) such
that

(a) [X’ Y] = VXY_VYX7
(b) X{¥,2) =(VxY,2) +(Y,VxZ)

for all X,Y,Z € X(M). This connection is characterized by the
Koszul formula,

UVxY, Z) =X (Y, 2) + Y (Z,X) — Z(X,Y)
- (X’ [K Z]) + <Ya [Za X]) + (Za [X’ Y])

Condition (b) has a special geometric significance which will be ex-
plained later on.

Definition. (a) A curve in a manifold M is a smooth map a:: I — M,
where I is an open interval in R.

(b) A wector field along a curve a: I — M is a smooth map that
assigns to every t € I a tangent vector V(t) € Typ) M. To say
that V' is smooth means that for any smooth function f on
M, the function ¢t — V(t)f is a smooth function on I.

For example, the velocity vector field do(( %), denoted by (%), is
a vector field along a.

Given a vector field V along «, there is a natural way to define a
vector rate of change V' (t).

2The connection can be extended to a covariant differentiation of tensors
(tensor fields) by using contractions and an extended Leibniz rule. For details,
see the book by Do Carmo [DC] or the book by O’Neill [ON].
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Proposition 3.2. Let M be a Riemannian manifold with Riemann-
ian connection V, and o a curve of M. Then there exists a unique
operator that associa,tes to a vector field V along the curve o another
vector field V'(t) = 7 along a, such that:

(a) —(aV+bW) —aDd—y-f-b%ty (a,b € R).
(0) U )= V+f (f € F(I)).
(¢) IfV is mduced by a vector fieldY € X(M), ie, V(t) =Y (a(t),
DV
then e = Va/(t)Y.

@) Svw) = (L W)+ W, 20,

The vector field V'(t) is called the covariant derivative of V along
a or induced covariant derivative. In the special case that %TV =0, the
vector field V along « is called parallel. We can now give a geometric
interpretation of condition (b) in Theorem 3.1. It can be shown that
this is equivalent to the fact that for any smooth curve a and any pair
of parallel vector fields V and W along a, we have (V, W)=constant.

The following definition is motivated from the notion of a parallel
vector field along a curve:

Definition. A geodesicin a Riemannian manifold M isa curvey: I —
M whose vector field +' is parallel, that is,

D /
_’Y =V’Y’7/=0'

The following theorem gives the local existence and uniqueness
of geodesics.

Theorem 3.3. Let pg € M. Then there exists an open set po € U C
M, and € > 0, such that, for p € M and v € T,M with |v| < ¢,
there erists a unique geodesic v, (—1,1) > M with v,(0) = p and
7,(0) = v.

A geodesic 7y is mazimal if the domain I, of <y is as large as
possible. That is, if ¥ J — M is another geodesic with ¥(0) = p
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and 4'(0) = v, then J C I, and ¥ = 7|s. In the following we will
denote by 7, the maximal geodesic with initial conditions v, (0) = p
and v,(0) =v (v € T,M).

Let v € T, M and suppose there exists a geodesic «v: [0,1] - M
such that v(0) = p and ¥/(0) = v. By Theorem 3.3, such a geodesic
is unique. Then the point (1) € M is denoted by exp,(v) and the
corresponding map T,M — M is called the ezponential map. The
geodesic 7 can be described by the formula

7(t) = exp,(tv),

and hence the exponential map carries lines through the origin of
TpM to geodesics of M through p.

We will now discuss the notion of curvature. The Riemann cur-
vature tensor is one of the basic invariants of a Riemannian manifold.
Originally Riemann introduced the notion of the sectional curvature
in a rather geometric manner, as an extension of the Gauss curvature
for surfaces to arbitrary Riemannian manifolds. His definition was
not a “workable” one. It took several years to reach a formulation
that has the advantage of being easy to use to prove theorems, even
though it is far from Riemann’s original intuitive concept. Besides
various references for Riemannian geometry such as [DC], [Ga-Hu-
La], [Ko-No], [ON], [Spi, Vol. II], [Wil], we also refer to [Kii],
and the article [Ber1] of M. Berger for interpretations of the various
curvatures, on a Riemannian manifold.

Definition. Let M be a Riemannian manifold M with Levi-Civita
connection V. The Riemann curvature tensor is the function

R: X(M) x X(M) x X(M) - X(M)
given by

R(X, Y)Z = V[X’y]Z —VxVyZ+VyVxZ.
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Remarks. (1) The opposite sign convention for R is used quite often.

(2) In tensorial language R is a (1, 3)-tensor field.

(3) Sometimes it is useful to introduce the (0, 4)-tensor, also de-
noted by R, given by R(X,Y,Z,W) = (R(X,Y)Z,W).

(4) If z,y € T,M, the linear operator Ryy: T,M — T,M that
sends z to Ryyz is called the curvature operator.

The following identities are the symmetries of the curvature:
Proposition 3.4. Let z,y,z,w € T,M. Then

(1) Ray = —Rys,

(2) (Razyv, w) = —(Rgyw, v),

(3) (Rzyv,w) = (RuwT, ),

(4) Rgzyz+ Ry,z+ R;zy=0  (first Bianchi identity).

Properties (1) and (3) can be summarized by saying that the
curvature tensor at a point p € M defines a symmetric bilinear form
p on A2T,M given by p(z Ay, z Aw) = R(z,y, z,w).

There is also another symmetry called the second Bianchi identity
which requires more tensorial language to be stated. The covariant
derivative VR of the curvature tensor can be thought of as a (1,4)-
tensor that assigns to four vector fields Z, X,Y,V the vector field
(VzR)xyV = (VzR)(X,Y)V Then

Proposition 3.5 (Second Bianchi identity). If z,y,z € T,M, then
(V:R)(z,y) + (V=R)(y, 2) + (VyR)(z, z) = 0.

A simpler real-valued function that completely determines R is
the sectional curvature.

Let IT be a two-dimensional subspace of T,M and let z,y € Il be
two linearly independent vectors. Then the number

(Rz'yzay>
z,z)(y,y) — (2,)*
does not depend on the choice of the vectors z,y. It is called the
sectional curvature of II at p.

Kp(za y) = (
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The importance of the sectional curvature lies in the fact that it
determines the curvature tensor, as shown in the following theorem.

Theorem 3.6. The curvature tensor at a point p is uniquely deter-
mined by the sectional curvatures of all the two-dimensional subspaces
II of the tangent space T,M at p.

A Riemannian manifold is said to have constant sectional curva-
ture (positive or negative) if K, is a constant (positive or negative)
for all planes II in T,M and for all points p € M. The sphere S™
is such an example. If the sectional curvature is zero at every point,
then the Riemannian manifold is said to be flat. The Euclidean space
R™ is such an example.

The Riemann curvature tensor is a rather complicated object.
Hence, we need to define simpler tensors that are related to it, such
as the Ricci curvature and the scalar curvature. This can be done by
various contractions of the curvature tensor which, of course, involves
losing some information about the manifold. For more conceptual
motivations for these curvatures we refer to [Berl] and [Ga-Hu-La].

Definition. The Ricci curvature Ric(X,Y) of a Riemannian mani-
fold M is the trace of the map Z — R(X, Z2)Y

If E1,..., E, is an orthonormal basis of the tangent space T, M
at a point p, then the Ricci curvature is given by

n
Ric(X,Y) = Y (R(X, E;)Y, Ey).
i=1
This is a symmetric (0, 2)-tensor. It can be viewed as a map Ric: T'M x
TM — R. Alternatively, the Ricci curvature can be defined as a map
r: TM — TM by the formula

Ric(X,Y) = (r(X),Y).

Since the sectional curvature determines the curvature tensor, it
also determines the Ricci curvature. Indeed, by polarization® and

3The identity R(X,Y) = ${R(X +Y,X+Y) - R(X -Y,X - Y)}.
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scalar multiplication, Ric can be reconstructed at each point p from
its values Ric(X, X) on unit vectors at p. Now, if Fi,...,E, is an
orthonormal basis of T, M with X = E;, then we obtain
Ric(X,X) =Y (R(X,E)X,E;) =) K(X,E;).
1=2 =2

If the Ricci curvature is identically zero, M is called Ricci-flat.

Definition. The scalar curvature S of M is the trace of the Ricci
curvature. It is the function on M given by

S() =) _K(E:, E;) =2)  K(E;,Ej),

i#j i<j

relative to an othonormal basis {E1,...,E,} of T,M.

The above expression does not depend on the choice of the basis
on T,M.

Remarks. (1) For a 2-dimensional manifold the curvature tensor is
given by the scalar curvature.

(2) For a 3-dimensional manifold, the curvature tensor is given
by the Ricci curvature. (We refer to [Be] and [Ga-Hu-La] for more
comments on these remarks.)

(3) If (M, g) is a Riemannian manifold and ¢’ = cg (c a non-zero
constant) is a homothety of the metric g, then it turns out that ((ON])
V' =V, R =cR,-K' = c 'K, Ric’ =Ric,and S’ =¢7!8S.

2

2. Left-invariant and bi-invariant metrics

Since a Lie group G is a smooth manifold as well as a group, it is
customary to use Riemannian metrics that link the geometry of G
with its group structure. These metrics have the property that the
left translations L,: G — G are isometries for all ¢ € G, and are
called left-invariant. More precisely, we have:

Definition. A Riemannian metric on a Lie group G is called left-
invariant if (u,v); = ((dLq)¥, (dLe)zV) L, (z) for all a,z € G and
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u,v € TyG. Similarly, a Riemannian metric is right-invariant if each
R,: G — G is an isometry.

Since the tangent space at any point can be translated to the
tangent space at the identity element of the group, the above relation
for left-invariance can be simply written as (u,v) = (dL4(u), dL,(v)).
Now, a left-invariant metric on G is essentially a scalar product on
the Lie algebra g of G. We have the following;:

Proposition 3.7. There is a one-to-one correspondence between left-
invariant metrics on a Lie group G, and scalar products on its Lie
algebra g (or a scalar product on T.G under the canonical isomor-
phismg> X — X.).

Proof. Let (, ) be a left-invariant metric on G, and let X,Y € g.
Then the function (X,Y): G — R is constant on G. Indeed, because
of the left-invariance of the vector fields X, Y as well as of the metric,
we have that for any a € G,

(X, Y)(a) = (Xa,Ya) = (dLyXe,dL,Ye)
= (Xane> = (X7Y)5~

Thus (X,Y) defines a scalar product on g. Conversely, if { , )¢ is a
scalar product on g, then the metric defined by

(:I?, y)a = ((dLa-l)awa (dLa-l)ay)e (a €qG, u,ve TaG),

is a left-invariant metric on G. O

Definition. A metric on G that is both left-invariant and right-
invariant is called bi-invariant

From Theorem 2.4, and the proof of Theorem 2.5 we obtain the
following;:

Theorem 3.8. A compact Lie group possesses a bi-invariant metric.

For the case of bi-invariant metrics, Proposition 3.7 extends as
follows:
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Proposition 3.9. There is a one-to-one correspondence between bi-
invariant metrics on G and Ad-invariant scalar products on g, that
is (Ad(9)X,Ad(9)Y) = (X,Y) forallge G,X,Y € g. Furthermore,
the last condition is equivalent to the relation

([X,Y],2) = (X,[Y, Z]).
Proof. We know that (cf. proof of Theorem 2.8) Ad(g)X = dR,-1X
for all @ € G, X € g and hence, by using the right invariance,
(Ad(g)X,Ad(9)Y) = (dR;-1X,dR,1Y) = (X,Y).
To show the next relation, let exp(tX) be the flow of X. Then

5Z>

([X,Y], Z) = (adxY, Z) = (-:;—tAd(exp £X)Y
t=0

= %(Ad(exth)Y, z) = %(Y, Ad(exp(—1X))Z)

(Y,—adx 2) = —(Y,[X, Z]),

where we used the Ad-invariance of the inner product in the fourth
equality. What we just proved is equivalent to ([X,Y], Z) = (X, [Y, Z]).
O

Example.

By Proposition 2.10, the Killing form of a Lie group is Ad-
invariant. Hence, by Theorem 2.13, if the Lie group G is compact
and semisimple, the Killing form (actually, its negative) provides a
bi-invariant Riemannian metric.

3. Geometrical aspects of a compact Lie group

Here we will examine various geometrical quantities on a Lie group
G with a bi-invariant metric.

Proposition 3.10. Let G be a Lie group with a bi-invariant metric.
Then
(a) The Riemannian connection is given by VxY = 1[X,Y] for
adl XY eg.
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(b) The geodesics of G starting at e are the one-parameter sub-
groups of G.

Proof. (a) We saw in the proof of Proposition 3.7 that the function
(X,Y) is constant, hence Z(X,Y) = 0 for all Z € g. This means
that the first three terms in Koszul’s formula (Theorem 3.1) vanish,
so this reduces to

From Proposition 3.9 the first two summands cancel; hence (VxY, Z) =
%(Z, [X,Y]), which gives the result.

(b) Let a be the one-parameter subgroup corresponding to the
left-invariant vector field X. Then Vo o/ = VxX|, =0, thus
a is a geodesic. O

‘We now come to curvature.

Proposition 3.11. Let G be a Lie group with a bi-invariant metric.
Then for any X,Y,Z € g:
(a) The curvature tensor is given by

R(X,Y)Z = i[[x, Y], Z).

(b) The sectional curvature is given by

1 (xYLIXY)
KXY = 1 xwy) - (x, 77

(c) The Ricci curvature is given by

Ric(X,¥) = { 30X, B I, i)
where {E;} is an orthonormal basis for g. Furthermore,
r(X) =~ SIX, B, B,
i
(d) If G is compact and the bi-invariant metric is the metric com-

ing from the Killing form, then the scalar curvature is given
by S = ; dim(G).
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Proof. (a) By Proposition 3.10 VxY = 1[X,Y], hence by the defi-
nition of the curvature we obtain

R(GY)Z = 5[1X,Y1,7) - 31X, [V, 2]) + {1V, X, Z]).

From the Jacobi identity C([X,[Y,Z]]) := [X,[Y,Z]] + [V, (2, X]] +
[Z,[X,Y]] = 0 (cyclic combination), so the last two summands give
—1[[X,Y], Z] from which the result is obtained.
(b) By the Ad-invariance of the inner product on g (cf. Proposi-
tion 3.9), and part (a), we have

(RX,Y)X,Y) = (X, Y], X],¥) = (X, Y], [X, Y1),

NN

(c) We compute

Ric(X,Y) =tr{Z — R(X,2)Y} = Y (R(X,E;)Y, E;)

= X, BL Y] B = 3K, B, i),

1

where we used the Ad-invariance in the last equality.

To show the expression for r(X) we compute

(~3 UK, B, B, Y) =~ S (X, B, 1B, Y)

= 1 S (X, B I, Bi) = Rie(X, Y)

for all Y € g, from which the result is obtained.
(d) We compute

1

S=trr= Z(T(Ei),Ei) =-2 Z([[E’u E;), E;], E;)

i 2%

1 1.
=1 Z([Ez’, E;l, [E;, Ej)]) = ZdlmG'
4,7
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Definition. A Riemannian manifold (M,g) is called an Finstein
manifold if the Ricci tensor satisfies the equation Ric(X,Y) = cg(X,Y)
for some constant c.

Einstein metrics are privileged metrics on a Riemannian manifold
for various reasons that we will discuss in Chapter 8. For the moment
we have the following:

Proposition 3.12. If G is semisimple and compact, and furnished
with a bi-invariant metric, then

Ric(X,Y) = —iB(X, Y).

Thus, G is an Einstein manifold with respect to the Killing form
metric.

Proof. By Proposition 3.11 and the definition of the Killing form we
have

B(X,Y) = tr(adX oadY) = — Y ([X,[Y; B}, E:)

1

=Y (IY, B, [X, E]) = —4Ric(X,Y). O

We would like to stress that the above results are valid for a
Riemannian metric on G which is bi-invariant, or equivalenly the cor-
responding inner product on g is Ad-invariant. If the metric is simply
left-invariant, then it is possible to obtain more general formulas (cf.
[Ch-EDb]). For instance, the relation

2VxY,Z) = —(X,[Y, Z]) + (Y, [Z, X]) + (Z, [X,Y])
obtained in the proof of Proposition 3.10 gives
1
VxY = 5([X, Y] — (adx)*Y — (ady)*X),

where T™* denotes the adjoint of a linear operator T'. Also, for geodesics
with respect to a left-invariant metric we refer to [Kaj], [Ma], and

[Sz].



Chapter 4

Homogeneous Spaces

1. Coset manifolds

Given a Lie group G and a closed subgroup K, it is possible to build
a smooth manifold on the set G/K = {gK: g € G} of all left cosets
of K in G. Furthermore, we will see that the group G acts in a
natural way on G/K, and this action has the property that any two
points in G/K can be joined by the action of G, i.e., the action is
transitive. This manifold with this transitive action will be called a
homogeneous space, and it includes a large variety of manifolds with
special importance in mathematics and physics.

Consider the coset space G/K, and for later use denote the coset
eK = K by 0. Let m: G — G/K denote the projection that sends
each g € G to the coset gK. Also, foreacha € Glet7,: G/H — G/H
be the (left) translation that sends each gK to agK. If a,b € G, and
L, is the left translation in G, we have

moL,="T,0m, Tab = Tqg © Th.

Proposition 4.1. Let G be a Lie group, and K a closed subgroup of
G. Then there is a unique way to make G/K a manifold so that the
projection m: G — G/K is a submersion; that is, dmy is onto for all
g €G.
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For the proof of this proposition, as well as the other facts in
this section, we refer to [Br-Cl], [Ko-No|, [War|. The manifold
G/K constructed in this way is called a coset manifold. Often in
the literature G/K is called a homogeneous space, but sometimes
this term is kept to mean a manifold M on which a Lie group G
acts transitively, as we will see next. Indeed, we will see that this
distinction is slight.

Definition. A left action of a group G on a manifold M is a smooth
map A: GxM — M such that A(e, m) = m and A(ab, m) = A(a, A(b, m))
for all a,b € G and m € M.

We will denote A(a, m) by a - m or simply by am if there is no
chance of confusion. Similarly, we can define a right action. A space
M with an action of a group G is called a G-space. From now on, G
will be a Lie group and M a smooth manifold.

If A is an action of G on M, then for all @ € G the map \o: M —
M given by A,(m) = A(a,m) is a diffeomorphism of M, thus G is
“represented” as a group of diffeomorphisms or “transformations” of
M. For this reason the Lie group G is also referred to as a transfor-
mation group of the manifold M.

Definition. (a) An action is called transitive if for any m,n € M
there exists a ¢ € G such that g - m = n.
(b) Let m € M. The set G, = {g € G: g- m = m} is called the
isotropy group or isotropy subgroup at m.
(c) The orbit of a point m € M is theset G-m ={g-m: g € G}.

Let G/K be a coset manifold. Then the map G x G/K — G/K
that sends each (a,gK) to agK is called the natural action of G on
G/K. This action is obviously transitive. We will see that every
transitive action can be represented in this way.

Proposition 4.2. Let G x M — M be a transitive action of a Lie
group G on a manifold M, and let K = G,,, be the isotropy subgroup
of a point m. Then:

(a) The subgroup K is a closed subgroup of G.
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(b) The natural map j: G/K — M given by j(gK) = g-m is a dif-
feomorphism. (In other words, the orbit G-m is diffeomorphic
to G/K.)

(c) The dimension of G/K is dim G — dim K.

Definition. A homogeneous space is a manifold M with a transitive
action of a Lie group G. Equivalently, it is a manifold of the form
G/K, where G is a Lie group and K a closed subgroup of G.

Now, let (M, g) be a Riemannian manifold. The set I(M) of all
isometries M — M forms a group under composition of functions. It
is called the isometry group of M, and it is another geometric invariant
of M. Roughly speaking, the larger I(M) is, the simpler M is. We
refer to [Ga-Hu-La], [Ko-No], [ON], and [Oni] for more discussion
of the isometry group. Here we state the following important result:

Theorem 4.3 (Myers-Steenrod). The isometry group of a Riemann-
ian manifold is a Lie group.

Definition. A Riemannian homogeneous space is a Riemannian man-
ifold (M, g) on which its isometry group I(M) acts transitively.

Proposition 4.4. Let M be a Riemannian homogeneous manifold.
Then the isotropy subgroup of a given point is a compact subgroup of
I(M). Furthermore, I(M) is compact if and only if M is compact.

Hence, a Riemannian homogeneous space M is diffeomorphic to
a homogeneous space G/K, where G = I(M) and K is the isotropy
subgroup of a point.

Remarks.

(1) The presentation of a Riemannian homogeneous space M in
the form G/K follows Klein’s Erlangen program in spirit, in which
the various non-Euclidean geometries were recognized as various ex-
amples of coset spaces G/K of Lie groups. More precisely, according
to Klein, a geometry is a connected manifold M with a Lie group G
acting transitively on it. Then all the properties of figures studied in
the geometry remain invariant under G. The diffeomorphism given
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in part (b) of Proposition 4.2 says, in Klein’s terms, that instead of
describing a geometry with base point m as a pair (M, m) together
with the Lie group G, we can describe it equivalently as the pair
(G, K), where K is the isotropy subgroup of m. Hence, several prob-
lems about G/K are formulated in terms of G and K, and then in
terms of their corresponding infinitesimal objects g and £. As a result,
in many instances difficult non-linear problems (e.g. from differential
equations) reduce to algebraic problems.

(2) There may be more than one Lie group acting transitively
on a given Riemannian homogeneous space, so that a manifold may
appear as a Riemannian homoneneous space under different groups
(subgroups of I(M)). This will be evident from the next examples.
However, we refer to [Be, pp. 178-180] and [Ga-Hu-La, p. 63]
for a deeper discussion of this.

Examples.

(1) A Lie group is a homogeneous space in several ways. Here are
two: G = G X G/G = G/{e}. For the first representation of G as a
homogeneous space, G X G acts on G by left and right translations,
and the isotropy subgroup is G diagonally embedded in G x G.

(2) Spheres. The group SO(n + 1) acts on the unit sphere S™
in R™*! by restriction of the natural action of GL,;;R on R+
This action is transitive: if z,y € S™, and if {z,a1,a2,...,a,} and
{y,b1,b2,...,bp} are two orthonormal bases of R™*! inducing the
same orientation, then the transition matrix lies in SO(n + 1). The
isotropy subgroup of (1,0,...,0) € S™ consists of all elements in
SO(n + 1) of the form

1 0
(0 4):

where A € SO(n). This subgroup is identified with SO(n), hence
S™ is diffeomorphic to SO(n + 1)/SO(n), which we write as S™ =
SO(n+1)/SO(n). If we neglect the orientation of bases in R"*!, we
obtain the alternative expression S™ = O(n + 1)/0(n).

(3) The complex and quaternionic analogues of Example 2 are
§ntl = SU(n+1)/SU(n) = U(n +1)/U(n) and S4"*3 = Sp(n +
1)/Sp(n). Notice that S° = O(1), S* = U(1), and S3 = Sp(1).
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(4) Projective spaces. The real projective space RP™ is diffeo-
morphic to SO(n + 1)/0(n) = O(n + 1)/O(n) x O(1), and the com-
plex projective space CP™ is diffeomorphic to SU(n + 1)/U(n) =
U(n+1)/U(n) x U(1).

(5) Grassmann manifolds. Let GriR™ denote the set of all k-
dimensional subspaces in R™ (such a subspace is called a k-plane).
The group O(n) acts naturally on GryR™ by matrix multiplication.
This action is transitive: Let V be the subspace of R™ spanned by the
first k vectors of the canonical basis ey, ..., e, of R® Let W € GryR",
and choose an orthonormal basis €], . . ., e/, of R™ whose first k vectors
span W Then, if A is the matrix that corresponds to the linear map
that sends each e; to €}, then A € O(n) and AV =W The isotropy
subgroup of the subspace V consists of the set of matrices

B 0
0 C

with B € O(k) and C € O(n — k), thus GrgR™ = O(n)/O(k) x
O(n — k). Furthermore, SO(n) also acts transitively on GriR™,
hence GryR™ = SO(n)/S(O(k) x O(n — k)). In particular, RP™ =
SO(n +1)/58(0(n) x O(1)). Here, S(O(k) x O(l)) denotes the sub-
group of SO(k + ) consisting of matrices of the form h = (64 g).
and det(h) = 1.

(6) The complex analogue of Example 5 is Gri,C"* =SU(n)/S(U(k)
x U(n—k)) with CP™ = SU(n+1)/S(U(n) x U(1)) as a special case.

(7) Stiefel manifolds. A k-frame in R™ is a set of k linearly inde-
pendent, orthonormal vectors in R™. Let ViR™ denote the set of all
k-frames in R™. It can be shown ([Br-Cl, p. 92, p. 252]) that V;R"
admits a smooth structure and is diffeomorphic to SO(n)/SO(n —
k) = O(n)/O(n — k). Some special cases are V;R™ = "~ V,R" =
SO(n), and VoR™ = T18™~!, the unit tangent bundle.

(8) The complex analogue of Example 7 are the complex Stiefel
manifolds V;,C" = SU(n)/SU(n — k) =U(n)/U(n — k).

(9) Symmetric spaces. These are homogeneous spaces of special
importance, which will be examined in Chapter 6. Examples 4-6
above are symmetric spaces.
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(10) Flag manifolds. A (full) flagin C™ is an increasing collection
x={VicWVC C Vp—1} of complex subspaces V; of C* with
dimV; = i. Let F, be the set of all flags in C™. The group SU(n)
actson F, by ¢ x = {gV1 C gV2 C C gVa—1}. This action is
transitive: Let eq,...,e, be the canonical basis of C™ and let x° be
the flag obtained by setting V? = spanc{es,...,e;}. Iff x = {V; C
Ve C C Va—1} is an arbitrary flag, then let v; be a unit vector in
Vi. If vy,..., v, have been defined, let vx4+; be a unit vector in Vi
orthogonal to V. In this way we have obtained a set vi,...,vn—1
of orthonormal unit vectors. Let v, be the unit vector orthogonal
to Vp—1 and so that if v; = Y a;je;, then g = (a;;) is in SU(n).
Then g-x° = x, so the action is transitive. Furthermore, the isotropy
subgroup of x° consists of all diagonal matrices in SU(n), which is
a maximal torus in SU(n). Thus F, = SU(n)/S(U(1) x  x U(1))
(n times), and this manifold is called a (full) flag manifold. More
generally, a flag manifold is a homogeneous space of the form G/T,
where G is a semisimple, compact Lie group and T" a maximal torus
in G.

(11) Generalized flag manifolds. The previous example can be
generalized as follows. Let ny,...,ns be a set of positive integers with
ny + -+ +ns =n, and let F(ny,...,ns) be the set of all partial flags
x={Vic CV;}withdimV; =n;+---+n;. The set SU(n) acts
on F(ny,...,n,) as in the previous example, the action is transitive
and the isotropy subgroup of a fixed point is S(U(n;) x  x U(ns)),
the group of matrices of the form diag(A;,...,As) with 4; € U(n;)
and det(A;) - - -det(A4;) = 1. Thus F(ny,...,ns) = SU(n)/S(U(n1)x

x U(ns)), where the set S(U(n;) X  x U(ns)) is the centralizer
of a torus in SU(n). This manifold is called a complez flag manifold.
More generally, a generalized flag manifold is a homogeneous space of
the form G/C(T), where G is a compact and semisimple Lie group,
and C(T) is the centralizer of a torus (not necessarily maximal) in G.
The projective space CP™ and the Grassmann manifolds Gr,C™ are
special cases of generalized flag manifolds.

Generalized flag manifolds will be examined in more detail in
Chapter 7.
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2. Reductive homogeneous spaces

Let G/K be a homogeneous space and recall the projection m: G —
G/K,n(9) = gK. We will compute the differential dr.: g — T,(G/K),
where 0 = m(e) = K. Let X € g and exptX be the corresponding
one-parameter subgroup. Then

dre(X) = i(ﬂ'oexth) = i((exth)K)
dt t=0 dt t=0
From this we obtain that dm.(t) = 0, that is, ker dw. = ¥, hence since
dr is onto (cf. Proposition 1.4), we get the canonical isomorphism

9/t T,(G/K).

In general, for any X € g we can define a vector field X* on G/K by
the formula J
oK = 7 (exptX)gK
t=0
Notice the formula [X*,Y*] = —[X,Y]*

Now, we will consider the following important special case. Let
g and £ denote the Lie algebras of G and K respectively.

Definition. A homogeneous space is called reductive if there exists
a subspace m of g such that g = ¢®m and Ad(k)m C m for all £ € K,
that is, m is Ad(K)-invariant.

The condition Ad(k)m C m implies that [¢,m] C m. The converse
is true if K is connected. Notice that m need not be closed under
bracket, as ¢ is. Hence, as an immediate consequence of the above
isomorphism, if G/ K is reductive, we have the canonical isomorphism

m = T,(G/K).

For example, if G is a compact Lie group, then G/K is reduc-
tive, because we can take m = #1 with respect to an Ad-invariant
inner product on g. Actually, it can be shown that the above def-
inition is not very restrictive: any homogeneous space that admits
a G-invariant metric (see next chapter) is reductive. We refer to
[Kow-Sz] for a detailed proof of this.
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Examples.

(1) Let G/K = SU(3)/S(U(1) x U(1) x U(1)) (a flag manidold).
The Killing form of su(3) is B(X,Y) = 6tr XY, and ¢ is the set
{diag(ia,1b,ic): a+b+c = 0}. Then, with respect to B, the subspace
m = & is the set

0 a + Zbl az + Zbg
—ay + b 0 a3 + ibs a;, b; € R
—ag +iby  —ag + ibs 0

(2) Let G/K = VoR* = SO(4)/S0(2) (a Stiefel manifold). The
Killing form of so(4) is B(X,Y) =2tr XY Then

t=o@= (g )

and, with respect to B,

0 a2 a3 a4
—a;2 0 a3 an
m= aij € R
—a13 —ax3 0 0
—a14 —az 0 0

3. The isotropy representation

The adjoint representation Ad = Ad® of a Lie group is related to
the isotropy representation of a homogeneous space G/K. Recall the
diffeomorphism 7,: G/K — G/K given by 74(9K) = agK (a € G).
Let o be the base-point, corresponding to the coset eK. Then, for
ke K, (o) =o.

Definition. The isotropy representation of the homogeneous space
G/K (or simply of K) is the homomorphism

Ad%¥ K - GIT,G/K)
defined by k — (d7t),. More explicitly, it is given by

AdS/K(k)(X) = (drk)o(X)  for all X € T,(G/K).
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Next, we will explain the precise relation between Ad® and Ade/E

when the homogeneous G/K space is reductive, with reductive de-
composition g = € @ m. First, let us summarize the various represen-
tations that we have defined so far:

Ad®: G — Aut(g)
Ad® K — Aut()
Ad%/K: K - Aut(m).

If we restrict Ad® to K, we obtain the representation Ad¢ X K —

Aut(g). Since K is a Lie subgroup of G, then, for k € K, Ad¥ (k) =
AdG(k)L.

Proposition 4.5. Let G/K be a reductive homogeneous space. Let
keK,XetandY em. Then

AdC(k)(X +Y) = Ad¥ (k) X + Ad®/K (k)Y;
that is, the restriction Ad® . splits into the sum Ad® @ Ad®/X

Proof. Since the sum is direct, it suffices to prove the above equality
for (a) X = 0 and (b) Y = 0. Case (b) is obvious, since this says that
Ad®(k)X = Ad¥ (k)X. In case (a) we need to show that Ad® (k)Y =
Ad®/® (k)Y which is equivalent to Ad® (k)Y = (dr)o(Y). In other
words, we need to show that the isotropy representation of G/K is
equivalent to the adjoint representation of K in m, so by the definition
of the equivalence of two representations (cf. Chapter 2, Section 1) it
suffices to show that the following diagram is commutative:

AdC (k)
_—

m m
dwelml ld"relm

T,(G/K) ¥, T.6/K

The upper horizontal map is obtained from the restriction of AdG(k)
onm and the reductivity property Ad®(k)m C m. Each of the vertical
maps is the canonical isomorphism of m with 7,G/K obtained from
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the restriction of dme: g — T,(G/K) inm. So,let k€ KandY €m
and calculate

= 2 p(Ad(R)EY)K

(dme)o(Ad(K)Y) = d exp(tAd(k)Y)K p
=0

t=0
- ;t(k exp(tY )~ l)K = (dri)s © (exp YK
t=0 t=0
= (dk)o(dme)(Y),
where the third equality was obtained from Proposition 1.13 applied
to the automorphism g — zgz~! of G. |

The following corollary is immediate from the above proof.

Corollary 4.6. The isotropy representation of G/K is equivalent to
the adjoint representation of K in m.

Remark. Ifthe homogeneous space is not reductive, the above corol-
lary is still true with m replaced by g/t (see [Ga-Hu-La, Proposi-
tion 2.41]).

Definition. A homogeneous space is called isotropy irreducible if the
isotropy representation is irreducible (as a real representation).

Examples.

We refer to the formulas at the end of Section 2 of Chapter 2.

(1) We will compute the isotropy representation of the sphere

=850(n+1)/S0(n). Recall the standard representation Ay, : SO(n)

— SO(n) of SO(n), and the fact that AdS°(™ = A2), (cf. Chapter
2, Section 2). We compute

SO(n+1) A2 _ A2
Ad som = A ’\n+1|50(n) =N 1)

=N 0N 10 (N, ®1).

The first summand corresponds to the adjoint representation of SO(n),
and the second summand is zero (the trivial representation 1 is one-
dimensional). Hence, by Proposition 4.5, the isotropy representation
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of the sphere corresponds to the third summand, which is identified
with A, that is, Ad®" = \,. This is irreducible.

(2) Let G/K = O(n+1)/0(1) x O(n) be the real projective space
RP™. Then

O(n+1) A2 _ A2
Ad o(1)x0(n) A ’\"+1|O(1)><O(n) = A (A ®An)

=AM D AZN, © (M1 ® \p).
The first summand is zero, the second corresponds to Ado("), thus
Ad®/¥ = \; ® \,. This is irreducible.
(3) Let G/K = SO(2n)/U(n) (a symmetric space). Here it is
more convenient to compute the complexified isotropy representation.
We compute

AP o C| = A0 ® O)lypy = A*(Nan ® Clygr)
= /\2(/~Ln @ fin) = /\2/1% @ Azﬁn & (Hn ® fin)-

The last summand is the complexified adjoint representation of U(n),
thus AdSOCM/V(M) @ C = A2u,, & A2f,. This is irreducible.

(4) Let G/K = U(3)/U(1) x U(1) x U(1) (a flag manifold of
dimension 6). Let a;: U(1) x U(1) x U(1) — U(1) be the projection
onto the ¢ factor. Then

AdY® g C K= B3 ® paly = Balg ® pslg
=0100:D030 (01D 0o2®03) = (51052 D G3) ® (01 02 D 03)

= (0101 @ G202 @ 5303) & ( @ i ® 0;),
1<i#i<3

where 6;0; means 0; ® ;. Therefore,
Ad®/K =5 5 5 5 5 5
= 0102 @ 0103 © G203 @ 0201 © 0301 D 0303.

This is not irreducible. In fact, it is the direct sum of six one-
dimensional inequivalent complex representations. Hence, the com-
plexified tangent space of G/K is isomorphic to the direct sum of six
one-dimensional complex subspaces

m® = K2 ® K13 Koz ® Koy © K31 ® Kso.
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This splitting determines a splitting of m into a direct sum of three
(irreducible) real subspaces each of dimension two, that is,

m = myo D m3 D mas,

where m; = Ki; ® Kj.
(5) Let G/K = SO(4)/SO(2) (a Stiefel manifold of dimension 5).
We compute

SO(4) A2 — A2
AL o = N nlsom =N 2 @2)

=N onN20 (N ®2)
=N 01006 .
The first summand is the adjoint representation of SO(2), thus
AdSOW/500) _ 1 ¢\ @ .

This is a direct sum of three irreducible representations of dimensions
1, 2 and 2 respectively. The last two are equivalent representations.
We also remark that this decomposition is not unique, and the nor-
malizer of K in G rotates one decomposition into another. This direct
sum induces the direct sum

m=mygdm; Omy

of m into three irreducible subspaces of (real) dimensions 1, 2 and 2
respectively.



Chapter 5

The Geometry
of a Reductive
Homogeneous Space

1. G-invariant metrics

Let (M = G/K, g) be a Riemannian homogeneous space. We assume
that M is reductive with reductive decomposition g = ¥ & m, where
m is identified with the tangent space T,M (o0 = eK). According to
Corollary 4.6 the isotropy representation of G/K is equivalent to the
adjoint representation of K in m. As a consequence of this, many
geometrical questions about M may be reformulated in terms of the
pair (G, K) of Lie groups, and then in terms of the corresponding pair
(g, &) of Lie algebras.

Since M = G/K is a Riemannian homogeneous space, it admits
a metric g which is G-invariant. More precisely, we have:

Definition. Let M = G/K be a homogeneous space. A metric g
on M is called G-invariant if for each a € G the diffeomorphism
7, that sends p € M to a p is an isometry; that is, g(X,Y) =
9(d76(X),d7o(Y)) for all X,Y € T,(G/K) (a € G).

The next proposition gives a simple description of G-invariant
metrics on a homogeneous space.

7
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Proposition 5.1. Let G/K be a homogeneous space. Then there is
a one-to-one correspondence between:
(1) G-invariant Riemannian metrics g on G/K;
(2) Ad®/X _invariant scalar products ( , ) on m; that is, (X,Y) =
(Ad®/X (k) X, AdC/X(k)Y) for all XY €m, k € K; and
(3) (if K is compact and m = €~ with respect to the negative of
the Killing form B of G) Ade/K -equivariant and B-symmetric
operators A: m — m such that (X,Y) = B(AX,Y).
We say that the scalar product is Ad® (K)-invariant or simply Ad(K)-
invariant.

Proof. Given a G-invariant metric g on G/K, by restricting to the
tangent space at o we get a scalar product on m. Due to the commu-
tativity of the diagram in the proof of Proposition 4.5, this product is
Ad®/K invariant. Conversely, let ( , ), be an Ad®/K invariant scalar
product on m = T,(G/K). We extend this product at any point
aK € G/K by setting

(X, Yok = (d75-1(X), d7a-1(Y))o.

This definition does not depend on the choice of the representative a K
of the coset G/K. Indeed, if aK = bK (a,b € G), thenb~'a =k € K,
thus 75 = 7y-1 0 7,. Due to the Ad®/¥ invariance of ( , ), and the
commutativity of the diagram mentioned before, we have that

(d1p-1(X), d1p-1(Y))o = (dTidT,-1(X), dTidTa-1(Y))0
= (d7e-1(X),d75-1(Y))o.

In this way we obtain a Riemannian metric on G/K, which is clearly
G-invariant. For the equivalence of (2) with (3), in one direction it
is a standard result of linear algebra. For the converse, we average
using Haar measure to obtain an Ad®/¥ _invariant scalar product on
g, and then an Ad®/K _invariant scalar product on m. O

Remark. Proposition 5.1 is an instance of an important general phe-
nomenon: there is a one-to-one correspondence between G-invariant
objects on G/K and Ad®/¥-invariant objects at T,(G/K) = m. For
instance, G-invariant tensor fields of type (p, ¢) correspond to AdC/K.
invariant tensors of type (p, q) on m.
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2. The Riemannian connection

Here we will determine the Riemanian connection V for a G-invariant
metric g on a reductive homogeneous space M = G/K. For any
X € g, we recall the vector field X* € X (M) given by
X = i(exth)-o
° dt =0
as well as the isomorphism m = T,(G/K). Using this vector field
and the isomorphism, we may write, for the canonical projection
m: G - G/K, dn(X) = X}, and dn(Xn) = X}. Here X de-
notes the component of X € g in the subspace m. The vector field
X* has certain special properties, namely it is a Killing vector field.
This means that its flows ¢, are isometries and, equivalently, that X*
satisfies the conditions

@) X*g(Y,2) = g([X*, Y], Z) + g(Y, [X", Z])
and

(2) 9(VyX*,Z)+9(VzX"Y)=0

for all Y, Z € X(M). We also note that

®3) (XY™ = —[X,Y]"

We refer to [ON, pp. 250-251, 255-256] and [Be, pp. 40-41] for
proofs of the above statements. Now, by a straightforward application
of Koszul’s formula and condition (1) above, we obtain that if X,Y, Z
are Killing vector fields on any Riemannian manifold (M, g), then

4) 29(VxY,2)=g(X,Y], 2) +g([X, Z],Y) + g(X, [Y, Z]).
Now we can determine the Riemannian connection on M = G/K.
Proposition 5.2. Let X,Y € m. Then
1

(Vx+Y™")o = —E[X’ Yin+U(X,Y),
where U: m x m — m is determined by
(5) 2(U(X’Y)’Z> = ([Z’X]maY>+<X) [Z)Y]m>
for all Z € m.
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Proof. Let X,Y,Z € m. Then, from property (4) and by using (3),
we obtain

29(Vx-Y",2%) = —g([X,Y]", Z%) — g([X, 2]",Y™) — g(X*, [V, Z]")
= _<[Xa Y]m’Z> - ([X: Z]m:Y> - <X: [Ya Z]m)

and hence,
2((Vx+Y")o, Z) + (X, Y]m, Z) = (2, X]m, Y) + (X, [Z,Y]m)
2(Tx-¥ Yo + 31X, VI 2) = (12, Xlm,¥) + (X, [,V ).

This completes the proof. O

Note. In the above proof, (Vx-Y™*), lies in T,(G/K) = m.

Definition. A homogeneous space M = G/K is called naturally re-
ductive if U = 0.

Notice that the notion of naturally reductivity depends on the
choice of the subspace m.

3. Curvature

Here we will give expressions for the sectional curvature, Ricci cur-
vature and scalar curvature for a reductive homogeneous space M =
G/K, following [Be].

Theorem 5.3. Let X,Y € m. Then the sectional curvature of M =
G/K is determined by the equation

(ROGY)X,Y) == S(1X, VI, [X, V) = 5051, Vlm, V)

— S0, X, X) + (U(X,¥), UK, Y))
— (U0, X, ) + (5, X, Ve, Xl

where U is determined by equation (5).
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Proof. We compute
(R(X, Y)X,Y) = (V[x’y]X, Y> — (VXVYX, Y> + (VyVXX, Y>
=—(VyX,[X,Y]) = X(Vy X,Y) + (Vy X, VxY)
+ Y(VxX, Y) — (VxX, VyY)
=|VyX[> = (VxX,VyY)+Y(X,Y],X)
= 1K, Yl + (X, VI, UGG Y)) + U, V)P
—({U(X,X),U(Y,Y)) + (Y, [X,Y]], X)
+([X,Y],[v, X])
= VX, Y)P ~ (U (X, X), U, V) + 71X, Y]l

+ 500 ¥, X, ¥) + 56, [[X, VI, V)
+ ([Y’ [X’ Y]!]m’X> + ([Y’ [X’Y]m]m$X> - |[X$Y]ml2

By using the Ad®/¥-invariance of the inner product (, ), it follows
that ([Y,[X,Y]e]m, X) = (Y, [[X,Y]e, X]m), from which the formula
is obtained. a

Let {X;} be an orthonormal basis of m with respect to (, ). By
polarization and scalar multiplication, the Ricci curvature at a point
is determined as follows:

Proposition 5.4.

Ric(X, X) = = 3 311, Xilnl? = 5 (11X, Xilam, X0

= S L, X, X6) (1, X, X)?

- <[Z’ X]m)X),
where Z = Y, U(X;, X;) is determined by (Z,X) = tr(adX). (In-
deed, (Z,X) = ZK[X, Xi]m’X’i> = Zi(adX(Xi)’Xi> = tr(adX).)

Proof. The computation is straightforward by setting ¥ = X; in
Theorem 5.3, and then calculating Ric(X, X) =Y. (R(X, X;) X, X;).
O
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The above formula can be simplified slightly more by using the
Killing form of g ([Be, p. 184-185]).

Proposition 5.5.

Ric(X, X) = — %2; X, Xilml? — %B(X, X)
+ 3 40X Xyl X)? — {[Z, X, X).
(2]

Finally, the scalar curvature is given as follows:

Proposition 5.6. The scalar curvature of a reductive homogeneous
space is given by

1 1
§=73 Z |[Xs, Xj]m|? — 9 ZB(Xi’Xi) -z
B g

For the case of a naturally reductive homogeneous space, the
above formulas can be simplified drastically. For example, we have:

Proposition 5.7. If G/K is a naturally reductive homogeneous space,
then its sectional curvature is determined by the equation

(ROGY)X, Y) = (X, VI, X, V) + (X, Ve, X Y).

Closing this chapter, we will mention a particularly simple class
of reductive homogeneous spaces. Let G/K be a homogeneous space
with G a semisimple and compact Lie group. Then every bi-invariant
metric of G determines an Ad-invariant scalar product ( ) on g
(cf. Proposition 3.9), hence there exists a reductive decomposition
g = £®m, where m is the orthogonal complement of £ in g with respect
to (, ). Then the restriction of the scalar product (, ) to m induces
a G-invariant Riemannian metric on G/K, which is referred to as a
normal homogeneous Riemannian metric. An important special case
of a normal metric is provided by the following definition.

Definition. The normal homogeneous Riemannian metric on G/K
induced by the negative of the Killing form —B of g is called the
standard homogeneous Riemannian metric.
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In other words, the standard metric is given by (, ) = (—B)|,,,
which is an Ad®/¥ -invariant inner product on m.

Proposition 5.8. For a normal homogeneous space G/K the sec-
tional curvature and Ricci curvature are given respectively as follows:

(ROGY)X,Y) = (X, V], [X, Y1) + (X Vi, [X, V)

Ric(X, X) = —%B(X, X)+ % Z([X, Vile, [X, Vile),

where X, Y € m, and {V;} is a (, )-orthonormal basis in ¥.

Next, we will give two examples of computing the sectional cur-
vature for two simple reductive homogeneous spaces. They are also
naturally reductive.
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Examples.

(1) Let G/K = SO(4)/SO(3) = S3. The Killing form of SO(4)
is B(X,Y) =2tr XY The subgroup SO(3) is identified with the set

of matrices
1 0
0 A)°

where A € SO(3). The reductive decomposition is given by o(4) =
0(3)®m, where 0(3) is the subalgebra of 0(4) consisting of all matrices

of the form
0 0
0 C

where C € 0(3) (3 x 3 skew-symmetric), and m is the subspace of all
4 x 4 matrices of the form

0 -zt

z 03 )’

where z is a column vector in R, and 03 the 3 x 3 zero matrix. We use
the normal metric (X,Y) obtained by restricting —B = —3 tr XY
on m. It is easy the check that the space G/K is naturally reductive,
by verifying the condition

([X7Y]m,Z) = (Xv [Y7 Z]m)

for all X,Y,Z € m. Let e;; denote the 4 x 4 matrix with —1 in the
(¢,7) entry and 1 in the (j,) entry. Then an orthonormal basis for m
with respect to { , ) is {ej2, €13, €14}. We compute the Lie brackets

[612,613] = €23, [6127614] = €24, [6137614] = €34,

from which it is evident that their restrictions to m are the zero matri-
ces. The curvature tensor is determined by the sectional curvatures of
all the 2-dimensional subspaces of m. From Proposition 5.8 we obtain
that

K(€12,613) = ([612,613]e,623) = (6237623> =1.

Similarly, K(ej2,e14) = K(e13,€14) = 1, hence the sectional curva-
ture is constant 1, as expected.
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(2) Let G/K = 0(4)/0(2) x O(2), a Grassmann manifold of
dimension 4. The subgroup K is identified with the set of matrices

(5 &)

where A,C € O(2). The reductive decomposition is given by g =
tE® m, where g = 0(4), ¢ = 0(2) ® 0(2) identified with the set of

matrices of the form
D 0
0 FE

where D, E € 0(2), and m consisting of the set of matrices

0, —X°¢

X 0 )’
where X is a 2 x 2 real matrix. As in the previous example, we use the
metric determined by restricting —iB . This makes the space natu-

rally reductive. A (, )-orthonormal basis of m is the set {e13, €14, €23, €24 }-
A computation of the Lie brackets gives

le13, e14] = €34, [e13,e23] = €12, [e14,€24] = €12, [e23,€24] = €34,
[e13, €24] = [e14, €23] = 0.

Their restrictions to m are the zero matrices; hence by Proposition
5.8 we obtain the sectional curvatures

K(e13,e14) = K(e13,€23) = K(e14,e24) = K(ea3,€24) = 1,
K(e13,€24) = K(€y4,€23) = 0.
We see in this example that the sectional curvature is not constant.

The above examples can be easily generalized to SO(n+1)/SO(n) =
S™ and O(n + k)/O(n) x O(k).
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Symmetric Spaces

1. Introduction

A large class of homogeneous spaces with special geometrical prop-
erties are the symmetric spaces. They were introduced by Cartan in
1925 in his attempt to classify Riemannian manifolds whose curvature
tensor R satisfies the property VR = 0. A characteristic property of
a symmetric space is that every point has a global symmetry that
“reverses” the geodesics through that point. Classical references in
the subject are [He] and [Lo], and the more recent [ON], [Be] and
[Jos].

Definition. A Riemannian manifold M is called locally symmetric if
for every p € M there exists a normal neighborhood U of p such that
the map

Jp = exp,o(—1dp) o exp;1 :U—-M
is an isometry. Here Id,, is the identity map on T, M.

The map j, has the property of “reversing” the geodesics that
pass through the point p. This means that if v,: (—e,e) = U C M
is the (unique) geodesic with +,(0) = p and 7, (o) = v € T, M, then
Jp(1(t)) = w(—t). Indeed, since v,(t) = exp,(tv), we obtain that
Jp(W(t)) = expo(—1Idp)(tv) = exp,(—tv) = W (—t).

For this reason the map jj is called a local geodesic symmetry or
simply a local symmetry. Furthermore, it is obvious that jg =1Id, and

87
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if v € T, M, then (djp)p(v) = (djp)p(7,(0)) = (Jp 0 %)'(0) =1L, (0) =
—uv, hence (djp)p = —Idp. Such an isometry is called an involution.

The main result of Cartan is the following:

Theorem 6.1. A Riemannian manifold with curvature tensor R is
a locally symmetric space if and only if VR = 0.

In particular, manifolds of constant curvature are locally sym-
metric.

Definition. A connected Riemannian manifold M is called a sym-
metric space if for each p € M there exists a (unique) isometry
Jp: M — M such that j,(p) = p and (djp)p, = —1d,.

The map jj, is called a (global) symmetry of M at p. Equivalently,
for every p € M there exists an isometry j,: M — M such that
j2 =1d, and p is an isolated fixed point of jp.

Examples.

(1) The Euclidean space R™ is symmetric. The symmetry at
p € R™ is the map jp(z) =2p —z.

(2) The sphere S™ is symmetric. Since its isometry group acts
transitively on S™, it suffices to display a symmetry at the north pole
p=(1,0,...,0), given by j,(z*,...,2"*) = (¢!, —2?,...,—z" 1),

2. The structure of a symmetric space

It is a remarkable fact that any symmetric space is actually a homo-
geneous space. The group of isometries is constructed by patching
together local symmetries.

Theorem 6.2. A symmetric Riemannian manifold M is homoge-
neous.

Proof. We will first show that M is geodesically complete, that is,
every geodesic v: (0,a) — M is extendible. Indeed, let b be near a
in (0,a) and let j,) be the symmetry at y(b). Since j.() reverses
geodesics through 7(b), the required extension of 7 is j.) © 7.
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To prove that M is homogeneous, it suffices to show that for
every p,q € M there exists an isometry ¢ of M that maps p to q.
Let «: [0,1] — M be a geodesic. Then the symmetry Jy(3) 8t the

point fy(%) is an isometry; call it 43 This isometry reverses geodesics,
hence carries v(0) to y(1). Since M is by definition connected, any two
points p, ¢ € M can be joined by a broken geodesic (this is a piecewise
smooth curve segment whose smooth subsegments are geodesics, for
example a broken geodesic in R? is a polygonal curve). Thus the
desired isometry ¢ that maps p to q is obtained by a finite composition
of the isometries (Z) constructed above. O

Since M is homogeneous, the isometry group I(M) acts tran-
sitively on M, and it can be shown that the identity component
G = I,(M) of I(M) also acts transitively. By the Myers-Steenrod
Theorem (Theorem 4.3) I(M) is a Lie group, thus M can be iden-
tified with the homogeneous space G/K, where K is the isotropy
subgroup of a point p € M. For simplicity take p = eK = o, and let
Jj denote the (global) symmetry of M = G/K at o.

Next, we will see that the symmetry j provides M with further
structure. We define a map o: M — M by o(g) = jogoj. Clearly,
o(g) is an isometry, hence an element of G. Since j? = Id, we can
write 0(g) = jogoj~!. Thus, ¢ G — G is an automorphism. Let
G, = {9 € G: 0(g9) = g} be the set of fixed points of o, and G
its connected component. For the proof of the following theorem we
refer to [ON].

Theorem 6.3. (1) Let M = G/K be a symmetric space with sym-
metry j at o = eK. Then:

(a) 0% =1dg, that is, o is an involution.

(b) The set G, is a closed subgroup of G such that G2 C K C G,.
(These two properties make the pair (G, K) into what is called a sym-
metric pair.)

(2) Conwversely, if G is a connected Lie group, K a closed subgroup
of G, and o an automorphism of G satisfying (a) and (b) above, then
every G-invariant metric on M = G/K makes M into a Riemannian
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symmetric space such that jom = moo. Here j is the symmetry of
M at o, and m: G — M is the projection.

The map o: G — G induces a map &: G/K — G/K which is
called the symmetry of G/K.

Examples.

(1) Let G = O(n), K = O(k) x O(n — k), and o: O(n) — O(n)

given by
(I 0 L, o \!
(=5 )40 i)

Then G, = K and the symmetric space is the Grassmann manifold
G’l"kRn.

(2) A special case is when G = O(n+1), K = O(n), and o: O(n+
1) - O(n +1) is given by

=3 5)40 5)

Then G, = O(1) x O(n),G% = SO(n) and the symmetric space is
the sphere S™.

(3) A Lie group G is a symmetric space determined by the sym-
metric pair (G X G,Ag), where Ag = {(g9,9) € G x G: g € G} and
o(g,h) = (h,9) (9,h € G).

Next we will see an algebraic description of a symmetric space.

Proposition 6.4. Let G/K be a symmetric space with involution o,
and Lie algebras g,% of G and K respectively. Then
(1) t={X €g: do(X) = X}.
(2) If m = {X € g:do(X) = —X}, then g is the direct sum
g=tom.
(3) The subspace m is Ad(K)-invariant, that is, Ad(k)m C m for
all k € K. Hence, a symmetric space is reductive.
(4) The following are true:

t,ECE [E,mlCm, [mm]CEt



3. The geometry of a symmetric space 91

Proof. (1) First, we will show that if k € K, then o(k) = k. Indeed,
the differential of the isometry o(k) at o is dj, o dk, o dj, = dk,,
since dj, = —Id,. Then the result is obtained from the general fact
that if two (local) isometries on a connected manifold have the same
differentials at a point, then they coincide (see, for example, [ON,
p- 91]). Now let X € €. Since, as shown before, 0|, = Idg, we
obtain that do(X) = X. Conversely, let X € g with do(X) = X.
If o is the one-parameter subgroup that corresponds to X, then the
curve o o « is also a one-parameter subgroup of X with the same
initial velocity, hence o0 oa = a. This means that a € G, and in fact
a€G2 CK,thus X €.

(2) The sum is evidently direct. Now let X € g and set X =
H(X + do(X)), Xm = 3(X —do(X)). Since o is an involution, so is
do. Hence do(Xe) = X, 50 X € ¢, and do(Xp) = —~Xm, 50 Xy € m.
Thus g =t +m.

(3) Let X € m and k € K. We need to show that do(Ad(k)X) =
—Ad(k)X. Since o(k) = k, the automorphisms ¢ and I} (inner auto-
morphism) of G commute. Indeed, i (g) = o(kgk™!) = ka(g)k~! =
I,o(g). Thus we have that

do(Ad(k)X) = d(oI})(X) = d(Ixo)(X) = Ad(k)do(X)
= Ad(k)(—X) = —Ad(k)X.

(4) The first inclusion holds since K is a Lie subgroup of G, and the
second because of (3). For the third, if X,Y € m, then
do([X,Y]) = [do(X),do(Y)] = [-X,-Y] = [X, Y],

hence [X,Y] € ¢. O

3. The geometry of a symmetric space

As we saw in Proposition 6.4, a symmetric space is reductive, and
we know that the Ad(K )-invariant subspace m can be naturally iden-
tified with the tangent space T,(G/K). Furthermore, due to (4) of
the same proposition ([m,m] C &) the natural reductivity condition
([X,Y]m, Z) = (X,[Y, Z]m) (X,Y,Z € m) holds trivially. Here (, )



92 Symmetric Spaces

is the scalar product on m, corresponding to the G-invariant metric
of G/K. Thus we obtain

Proposition 6.5. Let M = G/K be a symmetric space. Then

(1) The sectional curvature is determined by
<R(X> Y)X’ Y)= ([[X> Y]: X]a Y>
forall X, Y € m.

(2) The Ricci curvature is given by

Ric(X, X) = —%B(X, X), Xem

Proof. Since M is naturally reductive, the map U of Proposition 5.2
is identically zero. By taking into account the inclusions (4) of Propo-
sition 6.4, the result is obtained by simplifying the curvature formula
in Theorem 5.3. Similarly, the expression for the Ricci curvature is a
direct implication of Proposition 5.5. O

4. Duality

Definition. A symmetric space is said to be of compact type if the
Killing form B of g is negative definite, and of non-compact type if B
is negative definite on ¢ and positive definite on m.

Symmetric spaces of compact (resp. non-compact) type are also
characterized by the fact that their sectional curvature is non-negative
(resp. non-positive). One of the fundamental results in the theory of
symmetric spaces says that every simply connected symmetric space is
isometric to a product of a Euclidean space and isotropy irreducible
symmetric spaces of compact or non-compact type. (Recall that a
homogeneous space is called isotropy irreducible if its isotropy repre-
sentation is irrecucible).

For symmetric spaces which are normal (cf. end of Chapter 5),
there is a notion of duality between spaces of compact and non-
compact type.
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Definition. Two normal symmetric spaces M = G/K and M* =
G*/K* are called dual if the following are true:
(a) There exists an isomorphism of Lie algebras ¢: ¢ — & such
that B*(¢(V),p(W)) = —B(V,W) for all V,W € ¢&.
(b) There exists a linear isometry T': m — m* such that

[T(X), T(Y)] = —¢([X,Y]) forall X,Y €m.

Due to the isomorphisms m & T,M, m* = T,M*, the map T
induces a linear isometry T*: T, M — T,M* Furthermore, dual
spaces have opposite curvatures.

Example.

The dual space to the symmetric space SU (p+¢q)/S(U(p) xU(q))
is the symmetric space SU(p,q)/S({U(p) x U(q)). Here SU(p,q) is
the (non-compact) subgroup of GL,C (n = p + ¢) that leaves the
Hermitian inner product (z,y) = —Z151 — — TpPp + Tpt1Pp+1 +

+ Znin. Alternatively, SU(p,q) = {X € GL,C: L, X[, =
X!, det X = 1}. In particular, the dual of the sphere S™ is the
hyperbolic space H".

We also mention that the isotropy irreducible symmetric spaces
of compact (resp. non-compact) type are divided into two categories
of types I and II (resp. III and IV). We refer to [Be, p. 195] for their
precise definitions. Hence, every simply connected symmetric space
is isometric to a product of the form

R™ x HI X an HIIIx HIV.

Finally, we list the isotropy irreducible symmetric spaces of com-
pact type. For more comments on the following theorem, we refer to
[Be], [He], and [Wo2].

Theorem 6.6. The simply connected, isotropy irreducible symmetric
spaces of compact type are the following:
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(A) Compact simply connected groups

() SU(n), (i) Spin(n), (iti) Sp(n), () Ee, (v) Er, (vi) Es,
(’Ui’i) F4, (vm) Gz.

(B) Classical spaces

(ix) SU(p+q)/S(U(p) x U(q)), (z) SO(p+ q)/SO(p) x SO(q),
(zi) Sp(p+ q)/Sp(p) x Sp(q), (xii)SU(n)/SO(n),
(z3it) SU(2n)/Sp(n), (ziv) SO(2n)/U(n), (zv) Sp(n)/U(n).

(C) Ezceptional spaces

(zvi) Eg/SU(6) x SU(2), (zvii) Eg/SO(10) x SO(2), (zviii) Eg/Fy,
(ziz) Eg¢/Sp(4), (zz) E7/SU(8), (zzi) E7/SO(12) x SU(2),
(zzii) E7/Es x SO(2), (zziii) Eg/SO(16), (zziv) Es/E; x SU(2),
(zzv) Fy/Spin(9), (zzvi) Fy/Sp(3) x Sp(1), (zzvii) G2/SO(4).

The spaces ()—(viii) are of type II (the compact, connected, sim-
ply connected, and simple Lie groups), and the rest are of type L.



Chapter 7

Generalized Flag
Manifolds

1. Introduction

An important class of homogeneous spaces, already mentioned in
Chapter 4, is the class of generalized flag manifolds. These are ho-
mogeneous spaces of the form G/C(S), where G is a compact Lie
group, and C(S) is the centralizer of a torus S in G. Equivalently,
they are precisely the orbits of the adjoint representation of G in its
Lie algebra g.

These homogeneous spaces have interesting geometrical proper-
ties making them useful in both differential geometry and algebraic
geometry. For example, they admit a complex structure, a Kahler
structure and a symplectic structure. They also admit a Kéhler-
Einstein metric. We will present these notions in subsequent chap-
ters. Furthermore, they can be expressed in the form GC/P, where
GF is the complexification of the Lie group G and P a parabolic sub-
group of GC (cf. Section 9). In fact, they exhaust all compact, simply
connected homogeneous Kéhler manifolds. For this reason, they are
also referred to as Kéhlerian C-spaces.

Generalized flag manifolds also appear in physics in a variety of
contexts, e.g., as target manifolds for sigma models or as a geomet-
ric formulation of harmonic superspace [B-F-R]. Furthermore, they

95
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have several analogies with an important class of infinite-dimensional
manifolds, the loop groups. These are spaces of maps from a circle to
a Lie group (cf. [Pr-Se]). Generally speaking, we can say that gen-
eralized flag manifolds are a suggestive class of homogeneous spaces,
where one can test conjectures.

There are many places to find more details on the topics covered
in this chapter. I mention a few: [Alekl], [Alek-Pe], [Arl], [B],
[B-H], [Be, Chapter 8], [B-F-R], [Gul], (Gu2], [Kozl], [Koz2],
[Nis], [Pi], [Sie], [Wa2, Chapter 6], [Wg].

2. Generalized flag manifolds as adjoint orbits

Definition. Let G be a compact Lie group with Lie algebra g, and
let w € g. The adjoint orbit of w is the set M,, = Ad(G)w =
{Ad(g)w: g€ G} Cg.

Let K = K, = {g € G: Ad(g9)w = w} be the isotropy subgroup
of w. Then M, is diffeomorphic to the homogeneous space G/K.
The point w corresponds to the identity coset 0o = eK.

Examples.

(1) Let G = U(n) with g = u(n). Let w = diag(iA1, 1Az, ..., iAn),
where A1,...,\, are distinct real numbers. Then K,, = T, (an n-
torus) so, Ad(U(n))w = F,, the set of all full flags in C™ (cf. Chapter
4, Example 10).

(2) Let G = U(n) with w = diag(i)1,i)e,...,i\,), where \; =

=AM = A, A1 = =X =4 (A # p). In this case K, =
U(k) xU(n—k) and Ad(U(n))w = GriC™, the Grassmann manifold
of k-planes in C™.

(3) Let G = SU(n) with g = su(n). Let w = diag(iA1ln,,iAa]y,,

oyt In,), where Aq,..., A\ are distinct real numbers satisfying
niAd1 +  + nsAs = 0, and where I,,, is the n; X n,; identity ma-
trix. Then Ad(SU(n))w = SU(n)/S{U(n1) x x U(ns)) with
n =mny+  + ns. This example corresponds to the space of par-
tial flags F(n1,...,ns) in C* (cf. Chapter 4, Example 11).
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The homogeneous space G/K,, obtained from an adjoint orbit
has a more precise expression (for a proof see [Du-Ko]):

Proposition 7.1. (1) The set S,, = exp Rw is a torus in G.
(2) The isotropy subgroup K., is the centralizer of the torus Sy,
that is,

Ky, =C(Sy)={9€ G: ghg™ = h for all h € Sy}.

(3) If the torus Sy, is a mazimal torus in G, then C(Sy) = Sy-
(4) The Lie algebra of Ky, is

b, ={X € g: [w,X] =0} =keradw.

Henceforth, we can give the following definition:

Definition. A generalized flag manifold is a homogeneous space of
the form G/K = G/C(S), where G is a compact Lie group and S is a
torus in G. If the torus S is a maximal torus in G, say T, then G/T
is called a flag manifold.

Proposition 7.1 enables us to give a simple description of the
tangent space of M,, at w. We recall the reductive decomposition
g = &, ®my, of g with respect to an Ad-invariant inner product
on g (e.g., with respect to the negative of the Killing form), where
m,, = £5. Then

T (M) = my, = (ker adw)*

However, due to the embedding M,, C g, there is another description
of the tangent space of M,, at w:

d
Tw(Mw) = {% Ad(exth)wlt_—.o Xe g}

= (4 e tX w(exp(—tX))eey X €3}
={Xw—-wX: Xeg}={X,uw]: X eg}
=Imadw C g.

Of course, these two descriptions are the same ([Gul]).
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3. Lie theoretic description of a generalized flag
manifold

Let G/ K be a generalized flag manifold. We assume that G is semisim-
ple and compact, so the Killing form is negative definite on g, thus
giving rise to the reductive decomposition g = €@ m. As described in
the previous section, K is the centralizer of a torus S in G. Let T be
a maximal torus in G containing S. Then T C C(S) = K. Let ) be
the Lie algebra of T' and h€ its complexification. Let R be the root
system of g€ with respect to h and

“=he) ¢*=4°e ) CE,
a€R a€ER

its root space decomposition. Since ¥C contains hC, there exists a
subset Rg of R such that

t“=p°e® ) CE..

a€Rk

Hence we obtain
mC = Z CE,,
a€Rp
where Ryr = R\ Rg. This is called the set of complementary roots.
Thus we obtain that R = Rx U Ry, and finally that

gC =EC®mC

The set {E,: o € Ry} is a basis of the space mC. We recall that
(cf. Chapter 2) the real Lie algebra g is the fixed point set of the
standard involution of g¢ — g€ that maps E,, to —E_,. Then {i(E,+
E_,),Es—E_,}spangn(g*® g™ ).

4. Painted Dynkin diagrams

It is possible to give a complete classification of all generalized flag
manifolds with G semisimple, by the use of the painted Dynkin dia-
grams as follows. Let II be a set of simple roots for the root system
R. Then Il = II N Ry is a set for simple roots for the root sys-
tem Rg. The pair (II,IIx) can be represented graphically by the
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painted Dynkin diagram of type G. This is defined as the Dynkin
diagram of R, with black vertices representing the Dynkin diagram
of the semisimple part of the subalgebra ¢. Hence, the white vertices
represent the simple roots from Iy =11\ k.

Conversely, from a painted Dynkin diagram of type G, we obtain
a generalized flag manifold G/K by the following “recipe”:

(a) Draw the Dynkin diagram for the semisimple algebra g.
(b) Paint any subset of its vertices black.

(c) The subalgebra & is then obtained as the direct sum ¢ =
u(l) @ --- ®u(l) @ ¥, where each white root gives rise to one u(1)-
summand, and the set of black roots together with the connected lines
between them, yield the Dynkin diagram of ¥, the semisimple part of
£

The painted Dynkin diagram determines the decomposition g€ =
£¢ @ mC and, hence, the generalized flag manifold G/K completely
up to isomorphism.

Example.

Let g = eg. We exercise the three steps described above:

(a)

(b) We paint arbitrarily:

*e—O0—0——0

]

1

(c) Then t = su(2) & su(4) ® u(1) ®u(l) ® u(1) ® u(1).
We obtain the generalized flag manifold
Es/SU(2) x SU(4) x U(1)*.

We can summarize the above information in the following theo-
rem (cf. [Alek], [Alek-Pe], [B-F-R], [Wg]):
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Theorem 7.2. There is a one-to-one correspondence between gener-
alized flag manifolds G/K of a compact semisimple Lie group G (up
to isomorphism as homogeneous spaces) and painted Dynkin diagrams
of type G (up to equivalence).

There are simple rules to determine when two painted Dynkin
diagrams are equivalent, but we refer to the previous references for
more details.

Finally, we give the list of generalized flag manifolds of all classical
Lie groups G (up to isomorphism), and the number of non-isomorphic
generalized flag manifolds for the exceptional Lie groups:

Ap—r: SU()/S(U(n) x  xU(ng) xUDL)™)

(=) ni+m, ny>2ng> 2np>1 k>0 m>0).
B,: SO@2n+1)/U(ny)x xU(ng) xUQ)™ x SO(2l+1)
Cn: Sp(n)/U(ny) x  xU(ng) x U1)™ x Sp(l)

D,: SO(2n)/U(ny) x xU(ng) xU1)™ x SO2) (I #1)
(n=Y_ni+m+lny>n> >n>1 k>0, m>0,1>0).

For the exceptional Lie groups Gs, Fy, Fg, E7 and Eg there are 3,

11, 16, 31, and 40 non-isomorphic generalized flag manifolds respec-
tively.

5. T-roots and the isotropy representation

Let G/K be a generalized flag manifold with reductive decomposi-
tion g = € ® m. We decompose the isotropy representation y =
Ad®/® K — Aut(m) into a direct sum

X=X19 - ®Xs

of Ad®/¥ _invariant (or Ad(K)-invariant from now on, for simplicity)
subrepresentations );. This induces a direct sum

(1) m=m - - Om,
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of m into irreducible ad(¥)-invariant submodules. We will now relate
this decomposition with the roots R = Rx U Ry of g€ = €€ @ mC,
with respect to a Cartan subalgebra hC of g€ (hence ¥ as well).
We define the set
t = hgr N Z(¢°),

the intersection of the real space spanned by the root system R, with
the center of €. Then € = tC @ t'C, where t'C is the semisimple part
of ¥¢ We consider the restriction map

K:h* =t ar— o,

and we set Ry = k(R) = k(Rum) (note that k(Rg) = 0). The ele-
ments of Ry are called T-roots. They were introduced in [B-H] and
[Sie]. In general, Rr is not a root system. The significance of the
T-roots is that they correspond to irreducible submodules of m®, with
respect to the complexified isotropy representation xC of G/K.

Theorem 7.3 ([Alek-Pe], [Sie]). There exists a one-to-one corre-
spondence between T-roots & and irreducible ad(¥C)-invariant submod-
ules m¢ of m¢  This correspondence is given by

Rrs¢omi= Y CEa.
wle)=¢

As a consequence, we obtain the decomposition
® ne = - o

of m€ into a direct sum of irreducible ad(¥C)-invariant submodules.
These submodules are inequivalent, because if they were equivalent
as ¥C-modules, then, in particular, they would have been equivalent
as hC modules, but this is impossible because the roots of g€ with
respect to hC are distinct, and root spaces are one-dimensional.

Furthermore, the ad(¥C)-invariant module mg ) m‘_:e (¢ € Rr)
determines an irreducible ad(€)-module m N (mg ® m‘EE), hence we
obtain

m= Y (mfoms).
R
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(Here R} = x(R) is the set of all positive T-roots with respect to a
fixed basis II of R.) In other words, the precise relation between the
decompositions (1) and (2) is that r = 25 and that m{ = m{ ®mC,,
(i=1,...,8).

Examples.

(1) Let M = SU(3)/S(U(1) x U(1) x U(1)) = G/T. A Cartan
subalgebra of the complexification of su(3) has the form

hC = {diag(e1, €2,€3): €; € C}.

The root system consists of the forms R = {+(e;—€3), £(e1—¢€3), £(e2—
€3)}. Here Ry = R, and this is the set of T-roots.

The (complexified) isotropy representation has; been computed in
Example 3 of Section 3 in Chapter 4, and is given by

mC = Ki2® Ki13® Ko3® Koy @ K31 @ Kas.

This shows the correspondence between the set of T-roots and the
ad(¥®)-invariant submodules of mC.

(2) Let M = SO(8)/U(2) x U(2). A Cartan subalgebra of the
complexification of s0(8) has the form

. ]
e = {diag(e1,—€1,€2, —€2, €3, —€3,€4,—€4) : €; € C}.

The root system consists of the forms R = {+(e; ¢€j): 1 <i# j <
4}. Then the root system of the subalgebra ¥C is Rx = {Z(e1 —
€2), (€3 — €4)}, and the complementary roots are Ry = {£(e; £
€3), (€1 + €4), £ (e2 * €3), £(e2 * €4), £(e1 + €2), £(€3 + €4)}. We
choose the set of simple roots to be II = {e; — €3,€62 — €3,€3 —
€4,€3 + €4}. The center of ¢€C as a subalgebra 8f hC has the form
{diag(d,—d1,d1,—d1,d2,—d2,d2,—d2)}. By restricting the comple-
mentary roots Ry, to the above set, we obtain that the set of T-roots
is {:i:(dl + dg), :|:2d1, :]:2(12}.

Next, we will show the precise correspondence between the ele-
ments of the above set of T-roots and the ad(¥C)-invariant submodules
of m®.
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Let Ag: SO(8) — SO(8) and pg: U(2) — U(2) be the stan-
dard representations of SO(8) and U(2) respectively, and p(z) U(2) x
U(2) — U(2) the projection to the i*® factor (i = 1,2). Then

Ad®9® g C
U2)xU(2)

= A (AS ® C'U(2)XU(2)) = A ([l(l) (1) ®”’(2) o) /J’(Z))
= 7240 & A20 @ 4 1D @ A2uD @ 2P @ AZD

i o i ou P o u o i

where we denoted by “-” the tensor product ®. The part u(l) (1) &)

“gz) ( ) is the complexified adjoint representation of U(2) x U(2),
and the remaining part is the complexified isotropy representation x€
of M. By setting pu = /\2u§‘), W= /\z,ugz), we obtain

X = pemon e e (1) @ (S 1)@ (15 @ (- S?).

This induces the decomposition

Cc _ ..C (o} C (o} (o} C
m- = m2d1 ® m—2d1 @ m2d2 @ m—2d2 ® md1+d2 ® m—(d1+d2)

[} [}
® My, —d, ® M_(d;,—dy)

The correspondence with the T-roots has now been exhibited. Fur-
thermore, we obtain the decomposition m = m; ® my, © my & my into
submodules of (real) dimensions 2, 2, 8, and 8 respectively. Notice
that the sum of these dimensions equals 20, the dimension of M.

6. G-invariant Riemannian metrics.

We recall that if M = G/K is a homogeneous space, then according
to Proposition 5.1, any G-invariant metric on M is determined by
an Ad®/¥invariant scalar product on m. Let G be semisimple and
compact, so that the Killing form on g is negative definite. Let m =
my ®- - -dm; be the decomposition of the isotropy representation into
irreducible submodules. A G-invariant Riemannian metric is called
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diagonal, if the corresponding Ad®/¥-invariant scalar product ( , )
on m can be expressed as

(3) (v )=21 (=B)ly, ++ + 25 (=B,

where z,, ..., are positive constants.

In particular, the B-symmetric operator A: m — m that deter-
mines the scalar product of Proposition 5.1 is given by

A=z 1dm, + -+ zs1dnm,

If the m;’s are pairwise inequivalent representations, then the decom-
position of m is unique, and (3) exhausts all G-invariant metrics on
G/K. Otherwise, we need not only a positive variable z; for each
irreducible submodule m;, but also a parametrization of the space of
all Ad®/¥ -equivariant maps between each pair of equivalent repre-
sentations. We refer to Chapter 8, Section 5 for an example in this
case.

Now, let M = G/K be a generalized flag manifold. Then, as we
have seen in Section 5, the submodules m; are inequivalent, hence
the expression (3) describes all G-invariant metrics on M. Each such
metric depends on s positive parameters z,, ..., Zs.

Due to several advantages, it is standard practice to extend ( , )
without any change in notation (a common, but dirty, trick) from m
to the complexification m€ by complex linearity. Hence, a G-invariant
metric on M can be described by an ad(£C)-invariant scalar product

g on mC.

Let {w®: a € R} be a vector space basis in (m®)*, which is dual
to the basis {E,: @ € Ry} (w*(Ep) = 05). We fix a system of
positive roots RT = R} N R},, and let R} = x(R+).

Proposition 7.4 ([Alek-Pe]). Any real ad(C)-invariant scalar prod-
uct g on m® has the form

€RY, geRt  acxI(E)

where wV p = %(w ® p+ p Quw), and the g, are positive constants
such that go = gp if o|p = B|p. Thus, a G-invariant metric on
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a generalized flag manifold depends (modulo a scale factor) on R:_‘,,‘
parameters.

7. G-invariant complex structures and Kahler
metrics

In this section we will exploit the existence of a complex structure
and a Kahler metric on a generalized flag manifold.

An almost complex structure on a Riemannian manifold M is a
(1,1)-tensor J on M satisfying J? = — Id, where J is thought of as a
linear transformation! J, on each tangent space T,(M). We denote
with the same letter its extension to the complexification T,MC If
we set

THOM = {X € T,MC: J,X =iX} and
TOYM = {X € T,MC: J,X = —iX},

then we obtain that T,M€ = TS"O M & TV M.

An almost complex structure J is called a complez structure or an
integrable complex structure if VxJ = 0, where V is the Riemannian
connection of M. A complex structure means that the manifiold has
coordinates that are complex-valued and with holomorphic transition
functions. That is to say, they locally look like C™, both geometri-
cally and analytically. If M = G/K is a homogeneous space with
reductive decomposition g = @ m, and o = eK, then an almost com-
plex structure is called G-invariant if J, commutes with the isotropy
representation of G/ K; that is,

J,(Ad®/ X (k) X) = AdC/% (k)J,X, for all k € &, X € m.

Now let M = G/K be a generalized flag manifold with root space
decomposition g€ = bC®Za€RK ;) D Ry, 8%+ We choose a subset

1A (1,1)-tensor A can be interpreted as a linear transformation on each
tangent space as follows. At the point p € M, Ap can be written as a sum
Zi & ® X; where £ € T; (M) and X; € TP(M). Then AP(Y) = Z,L f,(Y)Xz
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R}\",I of Rjs that satisfies the conditions:
() R=Rg UR},URy;, where Ry ={—a:a€ R},
(b) if « € R UR},, B € Rf; and a + B € R, then a + 8 € R},

Condition (a) defines an ordering in Rjps (cf. Chapter 2, Section 6),
and both conditions (a) and (b) define an invariant ordering R}, in
Ryyp.

Proposition 7.5. There is a one-to-one correspondence between G-
invariant complez structures on M and invariant orderings R}, in
Ry given by

JoEio = +iE, (a € RY)).

For a proof and further discussions on G-invariant complex struc-
tures on generalized flag manifolds we refer to [Alek-Pe], [B-H],
[B'F'R]v [Fr 6]: [NiS], [Wg]

Definition. A Riemannian manifold (M, g) is called Hermitian if it
admits a complex structure J such that g(JX,JY) = ¢(X,Y) for all
X, Y eT,M.

On a Hermitian manifold we define the fundamental 2-form or
Kabhler form w by setting w(X,Y) = g(JX,Y). This 2-form deter-
mines a bilinear form w;, on T, M.

Definition. A Hermitian manifold M is called Kahler if its funda-
mental 2-form is closed, that is dw = 0.

If M = G/K is a homogeneous space, then, similarly with the
complex structure setting, we have a notion of a G-invariant form w
determined by an Ad®/¥ _invariant bilinear form w, on m or, without

change in the notation, on m®

It can be shown that a G-invariant form w on M is closed if and
only if
wWo([X, Y]m, Z) + wo([Y, Z]m, X) + wo([Z, X]m,Y) =0,

for all X,Y,Z € m. Since the Killing form B is non-degenerate on
m, w, can be expressed in terms of a unique B-antisymmetric linear
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transformation €2, on m such that
wo(X,Y) = B(Q,X,Y).

It turns out ([B-F-R]) that for a closed form w,, 2, must be of the
form ©, = ad(7,) (7o € g), and hence we have

(4) “-)O(X’ Y) = B([7O’X])Y) = B('Yoa [X’ Y])

Moreover, 7, is K-invariant, i.e., Ad(k)y, = «, for each k € K, and
infinitesimaly ¢ C ker ad(7,), with equality if w is non-degenerate. In
this case v, € Z(¥).

What is interesting, is that the adjoint orbit itself can be rep-
resented as Ad(G)v, ([B-F-R, p. 614]). Incidentally, the form w
plays a role in symplectic geometry; it is exactly the Kirillov-Kostant-
Souriau form on the coadjoint orbit Ad*: G — Aut(g*) (adjoint orbits
are identified with coadjoint orbits via the Killing form of g).

Now, by Proposition 7.5 we obtain

iga if & € Ry,
wo(anE—a) = g(JoanE—a) = " T M
—igq if @ € Ry,
and
wo(Ba,Eg) =0if o+ ¢ R.
On the other hand, by (4) we have that

(5) ‘:Uo(Eaa E—a) = B(’Yoa [an E—a]) = B('Yo, Ha) = a(’)’o)y
and so,
1
201(70) if « € R,
9o = 1
—ga(%) if a € Ry
9(Eoa,Eg)=0ifa+ 8 ¢ R,
where v, is an appropriate element in the center of . In order to
have a non-degenerate metric g and closed form w, we should have
a(7,) # 0 for all @ € Ry, so y must belong to a certain chamber in T
Chambers in the set of T-roots are the connected components of the

set T\ I, where I is the union of the hyperplanes {¢ = 0: £ € Rr}
in T.
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The above metric g satisfies the condition of a Kéhler metric on
the generalized flag manifold M = G/K. Hence, in view of Proposi-
tion 7.5, the Kéhler structure depends upon the choice of the invariant
ordering R}, in Rpr. We obtain:

Proposition 7.6 ([B]). Let M = G/K be a generalized flag mani-
fold, and let J be a G-invariant complex structure of M corresponding
to an ordering Rl of Ryr. Then there exist a one-to-one correspon-
dence between chambers in T and Kdhler metrics compatible with J.

We finally give a useful criterion for a G-invariant metric to be
Kahler ([Wo-Gr]).

Proposition 7.7. A G-invariant metric ¢ on M as described in
Proposition 7.4 is Kahler (with respect to a choice of a G-invariant
complez structure) if and only if

9e + 9n =Ggesn  for all&,m,&+n € RE.

8. G-invariant Kahler-Einstein metrics

We recall that a Riemannian manifold (M, g) is called an Einstein
manifold if Ric(g) = cg for some constant c. Here we will see that
if M is a generalized flag manifold, then for each G-invariant com-
plex structure on M there exists a G-invariant Kéhler-Einstein metric
(which is essentially unique).

For a Kahler manifold (M, g, J,w) it is convenient to introduce
the Ricci 2-form p by p(X,Y) = Ric(JX,Y), so a Kéhler metric is
Einstein if and only if

p(X,)Y) = aw(X,Y).

Let M = G/K be a generalized flag manifold, and let us fix an invari-
ant ordering R]T,I, hence a G-invariant complex structure J. It can be
shown ([B-H], [B-F-R]) that the Ricci 2-form at the point o = eK,
evaluated at the basis {E,: a € Ry}, is given by

po(Ea, E_qa) = 2i(5, ),
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where § = 1 ZﬂeRL B, and (, ) is the inner product on (hC)* induced
by the Killing form on g€ It is evident now, that if we choose in (5)
Yo = constant X J, then the equation p,(Eqy, E_qo) = cwo(Eq, E_q)
is satisfied. Hence, the metric gy with

go = constant Xx (4, ),

is a G-invariant Kahler-Einstein metric on M, compatible with the
complex structure J that corresponds to the invariant ordering R"A;I.

Proposition 7.8. Let M = G/K be a generalized flag manifold.
Given a G-invariant complez structure J on M, there ezists a unique
G-invariant Kdhler-FEinstein metric g5 (up to a scalar). This is given
by
1
JeoRfjogr={ga=cx(fa):d=5 Y B}

2
BERY,

Examples.

(1) Let M = SU(3)/S(U(1) x U(1) x U(1)). The isotropy rep-
resentation is decomposed into three irreducible subrepresentations
(cf. Example 3, Section 3 of Chapter 4), and is given by m =
miz @ my3 D myz, each of (real) dimension 2. Hence, a G-invariant
metric depends on three positive parameters gi2, g13,ges. A Cartan
subalgbera in the complexification of su(3) is given by

K)C = {diag(€1, €2,€3): € € C, €1 + €2 + €3 = 0}.

The set or roots is R = {£(€e;—¢€3), +(e2—€3), (€1 —€3)}. Choose the
ordering R* = {e; — €2, €2 —€3,€61 —€3}. So,if g€ = hC Y-0cr CEq,
then a complex structure is given by

iX if X € CE,, a € RT,

Jo(X) =
o(X) {—iXier(CEa, a€R”

It is evident that there are 6 = 3! ways that we can select an ordering
in R, hence according to Proposition 7.6 there are six SU(3)-invariant
Kahler metrics. We find that § = } 5 g+ B = 2(€1 — €3). Then, with
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respect to the above ordering, a Kéhler-Einstein metric is given (up
to scale) by

912 = (0, @) = (2(€1 — €3), €1 — €3) = 2,
g13 = (6’ a) = (2(61 - 63),61 - 63) = 4’
g23 = (6, @) = (2(e1 —€3), €2 — €3) = 2,

so it is determined (up to scale) by the triplet (2,4, 2). There are two
more Kahler-Einstein metrics (2,2, 4) and (4, 2, 2) with respect to the
two other pairs of complex structures.

(2) Let M = SO(8)/U(2) x U(2). We refer to Example 2 of
Section 5 for the roots, T-roots, etc. The isotropy representation is
decomposed into four irreducible componets m = m; ®my; G msz D my
of dimensions 2, 2,8 and 8 respectively, each corresponding to a pair
of T-roots +2d;, +2d3, £(d; + d3), £(d; — da).

We define the invariant ordering R"A'{, = {e1+e€3,€1+€4, €2+€3, €2+
€4, —€1+€3,—€1+€4, —€3+€3, —€2+€4, €1 +€2, €3+€4}, and we take the
complex structure J that corresponds to this invariant ordering. Here
it is more complicated to enumerate all possible invariant orderings.
It turns out that there are eight invariant orderings ([Wg]), so eight
SO(8)-invariant complex structures given by J,Ei, = +iE, (o €
R}).

Since m = m; & my ® mg @ my (each corresponding to a pair
of T-roots), an SO(8)-invariant metric is specified by four positive
parameters g, ga, g3, g4, where

91 =9(E—ecrtess Ber—c3) = 9(B-eress Bey—c)
= 9(E—etes Bey—e3) = 9(E—eytess Eey—ea),
g2 = g(Eel+ea’ E—(€1+€3)) = g(Eel+e4> E—(61+e4))

= 9(E€2+€4’ E—(62+€4))’
93 =9(Eci4ezs E_(e14e5))
94 = 9(Bestess E—(egtes))-

We find that § = %ZﬂeRL 8 = %(61 + €2 + 5eg + 5eq). Thus the
Kéhler-Einstein metric compatible with the complex structure J is
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given by

g1 = (—€1 +€3,0) =2, g2 = (1 + €3,8) = 3,
g3=(e1+e€,0)=1,  gs=(e3+¢€4,0)=5,

so it is determined (up to scale) by the ordered numbers (2,1, 3, 5).

In both examples it is easy to see that the components of the G-
invariant metric g satisfy the relations g¢+g, = getn (€, m, &+ € RY)
of Proposition 7.7.

9. Generalized flag manifolds as complex
manifolds

A generalized flag manifold G/K can be identified with GC/P, where
GC is the complexification of the Lie group G, and P is a parabolic

subgroup of GC. This is a Lie subgroup of GC containing a Borel
subgroup, i.e., a maximal solvable subgroup. We see this as follows:

Let g€ = hC + > wcr 8 be the root space decomposition of g€
We fix a basis II for R, and let Rt be the set of positive roots with
respect to II. Then the subset

b=§yCo Z g*
a€ERT

is a Borel subalgebra (i.e., a maximal solvable subalgebra) of gC.
Example.

If G = SU(n), then G = s!,C and b consists of the upper
triangular matrices in s, C.

The Borel subalgebra b defined above is called the standard Borel
subalgebra of g€. Every Borel subalgebra is conjugate to this ([Hul]).
A parabolic subalgebra of g€ is one that contains a Borel subalgebra.
They can be constructed as follows:

Let IIx be a subset II, and let

Rg =spanllx N R,
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so that ¥€ = h°®Y", . p. 9° is asubalgebra of g€. Let Rf, = RT\Rk
and takeu =) . rt, 8% Then, the subalgebra

p= tCou
contains §C, and is hence parabolic.

Finally, we mention that the generalized flag manifolds exhaust
all compact, simply connected homogeneous Kéahler manifolds as was
shown in [B] and [Wg]. For this reason, they are also (occasionally)
referred to in the literature as Kahlerian C-spaces.



Chapter 8

Advanced topics

1. Einstein metrics on homogeneous spaces

We have already mentioned that a Riemannian manifold (M, g) is
called an Finstein manifold if the Ricci curvature of g satisfies the
equation Ric(g) = cg for some constant ¢. Einstein metrics are gener-
ally considered as privileged metrics on a given Riemannian manifold.
There are several reasons that justify this statement, and the simplest
is the one that appears in the very first pages in the book by Besse
([Be, pp. 1-5]).

If a manifold has dimension 2 (a classical surface), a privileged
metric can be considered as one with constant Gauss curvature. In an
attempt to generalize this to an arbitrary Riemannian manifold, we
have the option to impose constancy to the three notions of curvature
that exist there: the sectional curvature, the Ricci curvature, and the
scalar curvature. Constancy of the sectional curvature is too strong
a condition, as in this case a simply connected Riemannian manifold
of dimension n (other than 3) is locally isometric to either the sphere
S™, the Euclidean space R™, or the hyperbolic space H®. On the
other hand, constancy of the scalar curvature turns out to be too
weak a condition, as there are infinite families of Riemannian metrics
on a given manifold that satisfy this property. Hence, we are left
to impose constancy of the Ricci curvature, which reduces to the
equation Ric(g) = cg.

113
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Another reason that Einstein metrics are considered to be privi-
leged metrics, is that they appear as critical points of the total scalar
curvature functional g — [;,Syd voly, defined on the set of all Rie-
mannian metrics of volume 1 (cf. [Ber2], [Ber3], [Mu]).

Finally, Einstein metrics are related to general relativity. Indeed,
Einstein had proposed the field equations for the interaction between
gravity and space-time, as Ric(g) — 3509 — Ag = T, where T is the
energy-momentum tensor, and A the cosmological constant. In the
vacuum (T" = 0), the field equations reduce to Ric(g) = cg.

The general question of classification of all homogeneous spaces
that admit an Einstein metric, as well as the complete description of
all G-invariant Einstein metrics on a given Riemannian homogeneous
space (M = G/K,g), is still open. The bibliography on the subject
is vast, and I will not make any attempt to present it. The book by
Besse (it contains results up to 1986) is certainly a good start, as well
as the article of W. Ziller in [Zi]. More recent results are collected in
[L-Wa). In this section we will present a few results about Einstein
metrics on homogeneous spaces that have been mentioned so far in
this book.

Isotropy irreducible spaces.

Let M = G/K be a homogeneous space with reductive decompo-
sition g = £ @ m, and isotropy representation AdS/E K Aut(m).
We assume that G is compact. Then we have the following:

Theorem 8.1 (J. A. Wolf). If M = G/K is an isotropy irreducible
homogeneous space, then M admits a unique (up to homotheties) G-
invariant Riemannian metric. This metric is Einstein.

Proof. Since G is compact, it admits an Ad-invariant scalar product
(e.g., minus the Killing form) which, by restriction to the subspace
m, induces a G-invariant metric on M (recall that for the case of the
Killing form, this metric is called standard, cf. Chapter 5). Let g,¢’
be two such metrics. Since the isotropy representation is irreducible,
the subspace m cannot be decomposed into a direct sum of irreducible
Ad®/K _modules, hence the two metrics gl, and ¢’|, are proportional.



1. Einstein metrics on homogeneous spaces 115

In particular, the Ricci tensor Ric at the point o = eK is an Ad®/%.
invariant symmetric bilinear form, thus Ric = cg at the point o, and
by the invariance at any other point, hence g is Einstein.

In [Wol] Wolf classified all isotropy irreducible homogeneous
spaces which are not symmetric, assuming that the identity com-
ponent of K acts irreducibly on m. Symmetric spaces are isotropy
irreducible, hence Einstein manifolds. For further results about Ein-
stein metrics on symmetric spaces we refer to [Kel] and its references.

Normal homogeneous spaces.

Recall that a normal homogeneous space G/K is a Riemannian
homogeneous space with a G-invariant metric, which is induced from
a bi-invariant metric on G. In [Wa-Zil] M. Wang and W. Ziller
classified all homogeneous spaces, with G simple, for which the nor-
mal metric is Einstein. Their classification is based on the following
procedure.

We first need the notion of the Casimir operator of a representa-
tion of a Lie algebra. Let p: g — Gl(V) be a representation of a Lie
algebra g, and § an ideal of g with dimh = n. We assume that the
bilinear form 7(X,Y) = tr(p(X)op(Y)) (X,Y € g) is non-degenerate
when restricted to h x h. Let {X;}, {X/} be dual bases of b (that is,
7(Xs, X;) = 6;5). Then the element

Zp ) o p(X])

is an endomorphism of V' that commutes with every endomorphism
p(A) (A € g), and is called the Casimir operator (or Casimir element)
of p. Tt can be shown that tr C = n.

If we denote by x the isotropy representation of G/K, then the
Ricci curvature of G/K can be expressed by using the Casimir oper-
ator of .

Theorem 8.2 (M. Wang and W. Ziller). If G/K is a normal homo-
geneous space, then

Ric(X, X) = —zll-B(X, X)+ —;-B(CX,_BX, X).
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Corollary 8.3. A normal homogeneous space is Einstein if and only
if Cy,—B = cld for some constant c.

From the above corollary we see that the classification reduces
to the computation of the Casimir operator of the isotropy repre-
sentation of G/K. This is done for the case that G is simple. The
semisimple case has been studied by E. D. Rodionov in [Ro1], [Ro2].

Einstein metrics on generalized flag manifolds.

The generalized flag manifolds have been presented in the pre-
vious chapter. They are orbits of the adjoint representation of a
compact Lie group G, and equivalently, they are homogeneous spaces
of the form G/C(S), where S is a torus in G. As we saw in Sections 7
and 8 of Chapter 7, generalized flag manifolds admit a finite number
of G-invariant complex structures, and there is a one-to-one corre-
spondence between complex structures (up to sign) and G-invariant
Kahler-Einstein metrics (up to a constant factor). Furthermore, for
some of these spaces the standard metric is Einstein, since they ap-
pear in the list of Wang and Ziller ((Wa-Zil]) of normal homogeneous
spaces.

The question of finding other G-invariant Einstein metrics on
generalized flag manifolds has been studied by D.V Alekseevsky,
M. Kimura, Y. Sakane, and the author in [Alek2], [Ki], [Sak], and
[Ar1] respectively. Kimura used the variational approach to find G-
invariant Einstein metrics as described in [Wa-Zi2]. It is remarkable
that the Einstein equation for a generalized flag manifold reduces to
a non-linear algebraic system of equations. In fact, this is only a spe-
cial case of how Lie theory can be applied to transfer problems from
analysis to algebra. For example, the Ricci curvature of a G-invariant
metric on a generalized flag manifold as described in Proposition 7.4,
can be expressed in Lie terms as shown in [Arl]. By using this expres-
sion of the Ricci curvature it is possible to give solutions for certain
large families of generalized flag.
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Theorem 8.4 ([Arl], [Ki]). For the space SU(n)/S(U(n1)xU(ng)x
U(nsz)) (n=n1+mne +n3) the Finstein equation reduces to the system

ni+n;+ 5 Z

k;éz 7

2y _
= g,k (9% — (9ik — 958)%) = 945>

of three equations with three unknowns gi2, g13,g2s- The solution of
this system is the following:

(a) g12 =n1+n2, gi13 =mn1+2n2+n3, gaz = na + ng;
g12 =n1+n2+2n3, gi13 =n1+n3, g3z =nz+ns;
g12 =n1+ng, gi13 =n1+n3, g2z =2n;+ ny+ n3;
(d) g12 =n1+n2, 913 =n1+n3, gz =ng+ns.
Hence it admits (up to scale) precisely four SU(n)-invariant Einstein

metrics. The metrics (a)-(c) are Kihler metrics and the metric (d) is
non-Kdhler. If n1 = ny = ng, the metric (d) is the standard metric.

Theorem 8.5 ([Arl]). For the space SU(n)/S(U(1) x  x U(1))
(n times), the Einstein equation reduces to the system

2+ 5 Z —— (g% — (gik — 9i%)°) = Gij
k# j 9ik 95k

of 3n(n—1) equations with in(n—1) unknowns gi; (1 <i < j <n).
For n = 3, the system admits the four solutions as a special case of
Theorem 8.4. Formn > 4, it admits at least %' +1+n solutions (hence
FEinstein metrics up to scale). The n!/2 metrics are Kdhler-Einstein
metrics, one is the standard metric, and the remaining n Einstein
metrics are given explicitly as follows:

gsizgsjzn_l (i#s,j#.ﬁ),
gr=n+1 (k1#s),
for each (1 <s<mn).

Example. Apply the previous theorem for the flag manifold M =
SU(3)/S(U(1)xU(1) xU(1)). We know that (cf. Example 4, Section
3, Chapter 4) the isotropy representation is decomposed as m = m;2®
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m13 @ a3, hence a SU(3)-invariant metric depends on three positive
numbers g2, gi3, and gos. The system in Theorem 8.5 reduces to

925 — i3 — 923 + 6913923 = 2912913923,
923 — g% — ga3 + 6912023 = 2912913923,
923 — 9% — g3 + 6912013 = 2912913923

The four solutions (up to scale) are given by: (a) gi2 = g13 = g3,
(b) g12 = 923, 913 = 212, (¢) g13 = G12, 923 = 2013, (d) g13 = o3,
g12 = 2gi3. Solution (a) corresponds to the standard metric, and
solutions (b)—(d) are Kéahler-Einstein metrics.

An improved version of Theorem 8.5 was obtained by Y. Sakane
in [Sak] by the use of Grobner bases.! In fact, he gave a new class of
Einstein metrics when n = 2m (m > 2), and a complete solution for
SU4)/S(U(1) xU(1) x U(1) x U(1)). It is possible to find Einstein
metrics for several other examples of generalized flag manifolds, es-
pecially if the isotropy representation decomposes into three or four
irreducible components, so that there are not too many unknowns
that determine the G-invariant metric. We refer to [Ki| and [Arl]
for more such examples.

2. Homogeneous spaces in symplectic geometry

A symplectic manifold is a manifold of even-dimension equipped with
a 2-form w that is closed, and non-degenerate. We have seen examples
of homogeneous spaces that are symplectic manifolds, namely the
generalized flag manifolds, viewed as adjoint orbits of a Lie group.
In Chapter 7 we have discussed several aspects about the geometry
of generalized flag manifolds; here we will consider an application
related to the existence of the symplectic structure, which will be a
Hamiltonian system. This consists of a symplectic manifold M, a
function H: M — R, and a differential equation of the form ¢ = V.7,
where V# is a vector field such that w(V¥, ) = dH. A classical such
example, as we will see, are Newton’s equations for the motion of a

1This is a basis on a polynomial ideal generated by a set of polynomials (a
notion often used in algebraic geometry). One of the uses of Grobner bases is to
solve algebraic systems of equations.
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particle in a field with potential V' In this section we will give an
important example of a Hamiltonian system on an adjoint orbit.

Hamiltonian systems are special examples of integrable systems.
An integrable system is a certain differential equation which has a
special algebraic and geometric significance. For a survey of integrable
systems from the point of view of Lie groups and Lie algebras we refer
to the book by A. Perelomov ([Pe]), and to several articles in [At2].
For integrable systems related to harmonic maps and loop groups,
as well as for recent developments we refer to the book by M. Guest
[Gul]. Our approach follows closely this book.

A classical Hamiltonian system.

Definition. A symplectic manifold is a manifold M equipped with a
2-form w which is closed (dw=0) and non-degenerate (i.e., f w(X,Y) =
0 for all Y € T,M, then X = 0).

The form w is called a symplectic form on M.

Let H: M — R be a function on a symplectic manifold M. Then
a Hamiltonian system on M is an equation of the form

(1) z = EH’

where z: R — M is a path in M, and V¥ is a vector field on M
such that w(VH,. ) = dH. The function H is called the Hamilton-
ian function of the system, and V¥ is called the Hamiltonian vector
field of the system. The terminology has its origin in the classical
formulation of Hamiltonian mechanics (see for example [Arn]).

A classical Hamiltonian system is obtained from Newton’s equa-

tions
ov

9g;
for the motion of a particle of mass m in a field with potential V' =
V(g), which is a function of the position ¢ = (qu, . . ., ¢n) of the particle
in R™. If we define the momentum and total energy to be p; = mg;
(G=1,...,n) and H(p,q) = 5, 7, p; + V(q) respectively, then we

qu =
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obtain Hamilton’s equations
O0H O0H
9 = OH 9B
(2) %= 5p BT "
Let grad H: R™ x R™ — R be the gradient of H defined as
((grad H)p, q) = dHp(q)

for all p,q € R™ x R™, with respect to the standard inner product on
R™ x R™. If we set

t
(D (0 ~I
w-(qt),andJ—(I O)’

then equations (2) become

z = J(grad H),.

This equation is of the form (1) with V# = J grad H, provided we de-
fine w(X,Y) = (JX,Y). A short computation shows that w satisfies
dw = 0. More generally, the above procedure can be applied when-
ever we have a Riemannian manifold (M, g) with a complex structure
J, and a 2-form w defined by w(X,Y) = ¢(JX,Y), and satisfying
dw = 0. The next example will use these ingredients to define a
Hamiltonian system.

A Hamiltonian system on generalized flag manifolds.

‘We will discuss an example of a Hamiltonian system on a general-
ized flag manifold M,, = Ad(G)w = G/K, viewed as an adjoint orbit
for some w € g. Notice the embedding M,, C g. We need to define a
Hamiltonian function and a symplectic form on M,,. Let g = ¢dm be
the reductive decomposition with respect to an Ad®-invariant inner
product (, ) on g (as usual, if G is compact, we can take this to be
the negative of the Killing form on G).

Let Q € g. Then define H?: M,, — R by the formula
HA(Ad(g)w) = (Ad(g)w, Q).

This is called a height function, or a projection Hamiltonian on the
adjoint orbit M,,. (This is related to another natural function that
could have been considered, the distance function K9(Ad(g)w) =
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|Ad(g)w — QJ?. Since K9 = a + bH®, for some constants a, b, it is
enough to study the first function.

Next, we need to define the symplectic form w. This will be a
G-invariant 2-form, hence it will correspond to an AdS/® invariant
bilinear form w, on m. We define this as

wo(X,Y) = (w,[X,Y]) (X,Y € m),

and compare this with (4) of Section 7 in Chapter 7. In that section
we saw that w is closed, and it is easy to see that it is non-degenerate.
Hence, we have obtained a Hamiltonian system

®3) &=V

on the adjoint orbit Ad(G)W

We recall that we had also defined a complex structure J on
the adjoint orbit, by J,EFy, = +iE,, for each a € R*Aj,, the set of
complementary roots. This complex structure satisfies the property
wo(X,Y) = g(JoEq, E—q), with respect to a G-invariant metric, as
defined in Proposition 7.4. Now, we can see that, with this choice of
a complex structure and G-invariant metric on M,,, we have that

VH = Jgrad HY

Indeed, it is enough to verify that such a V¥ satisfies w,(V,X) =
dH?(X) for all X € mC€. We simply need to check this on the basis
{Es: a € Ry}. Let a € R}, (similarly for o € Ry;). By definition
of the gradient vector field grad H?,

dH?(X) = g(X,grad H?).
Hence, we need to verify the equality
wo(Jo grad HY, E,) = g(E,, gradHQ),

for each a € R};. If grad H? € CE, (a € R};), both sides vanish. If
grad HY € CE, (a € R},), then they are both equal to a multiple of
Ja, hence we are done. Thus the Hamiltonian system (3) reduces to

4) & = J(grad HY),.
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Also, because of the relation w,(X,Y) = g(J,X,Y’), we obtain that
grad HQ = JVH and it turns out (cf. [Pi, (4.7), (4.10)]) that
VH = Q* Thus (4) reduces further to

(5) 5=—Qp.
Now, because of the embedding M,, C g, we have that

" d
Qz:Ad(g)w = (E Ad(exp tQ)Ad(g)wltzo

= 9 (exp 1@ Ad(gu(exp(—1Q))lmo = (.3,

and thus, equation (5) finally reduces to

& = [z, Q]
which is a differential equation for z: R — M,,.
Proposition 8.6. The (unique) solution to the differential equation

z=[z,Q], z(0)=w

is given by z(t) = Ad(exp(—tQ))w.
Proof. We check that this is indeed a solution:

#(6) = - 2(t+ 8)lpmg = 5 Ad(exp(~(+ )@y

= Ad(exp(4Q) g Ad(exp(—s@)u|

= Ad(exp(—tQ))[-Q, w] = Ad(exp(—1Q))[w, Q]
= [Ad(exp(—tQ))W, Q] = [z(¢),Q]. O

The above differential equation is of the form
L =L, M|

which is called a Laz equation. Such equations are important in the
theory of integrable systems. For example, Hamiltonian systems for
the Toda Lattice (that is, systems which describe the motion of par-
ticles moving in a straight line, with “exponential interactions”), are
equivalent to a Lax equation. We refer to the recent book by M.
Guest ([Gul]) and its references, for more details.
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3. Homogeneous geodesics in homogeneous
spaces

Geodesics in a Riemannian manifold generalize the notion of a straight
line in a Euclidean space, being curves that minimize length. In fact,
a fundamental theorem in Riemannian geometry says the following:

Theorem 8.7 (Hopf-Rinow). Let (M, g) be a connected Riemannian
manifold. We define the distance between any two points p and q in
M as the minimum length (with respect to g) of all curves from p to
q. This distance makes M into a metric space, and we assume that
it is complete (i.e., every Cauchy sequence converges). Then, any
two points p,q in M can be joined by a geodesic whose length is the
distance from p to q.

Besides their importance in geometry, geodesics also have applica-
tions in mechanics. More specifically, the motion of a rigid body along
geodesics in the group SO(3) of rotations of the three-dimensional
Euclidean space equipped with a left-invariant metric, has special
importance; it is called Euclidean motion of a rigid body ([Arn, pp.
318-323|). Such an example is the motion of a body in an ideal
(incompressible and inviscid) fluid.

If G is a Lie group with a bi-invariant metric, then we have seen
in Chapter 3, Section 3 that geodesics in G through the point e are
the one-parameter subgroups of G, that is, curves of the form v(t) =
exptX (X € g). If the metric is simply left-invariant, then a geodesic
is a one-parameter subgroup if and only if (adx)*X =0forall X € g
(cf. [Ch-Eb, p. 64]). Furthermore, V V. Kajker in [Kaj] showed
that a connected Lie group has at least one homogeneous geodesic
(the term to be defined later on) through the identity element e, and
J. Szenthe in [Sz] proved that if the Lie group is compact, semisimple
and of rank > 2, then there are infinitely many homogeneous geodesics
through e. In [Ma] R. A. Marinosci has obtained more results in this
direction. In mechanics, such geodesics are called stationary rotations
(cf. [Arn, p. 328]). These are rotations of a rigid body for which
the angular velocity is constant.
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If M = G/K is a Riemannian homogeneous space, then a geodesic
through a point p € M is called homogeneous if it is an orbit of a
one-parameter subgroup of isometries of M. Hence it is of the form
7(t) = (exptX) -p (X € g\ {0}). Such geodesics have been studied
by several authors. In [Kos| and [Vi], B. Kostant and E. B. Vinberg
found a simple condition that the orbit v(t) = exptX - o through the
point 0 = eK € G/K is a geodesic. Homogeneous geodesics also have
important applications in mechanics. For example, the equation of
motion of many systems in classical mechanics reduces to the geodesic
equation in an appropriate Riemannian manifold. Such geodesics are
called by V. A. Arnold relative equilibriums (cf. [Arn, p. 379].

From the above we see that Riemannian homogeneous spaces such
that all geodesics are homogeneous, are of special importance. They
are usually known as g.o. spaces. Examples of such spaces are the
naturally reductive homogeneous spaces. For some time it was in-
correctly believed (e.g., [Am-Si, Theorem 5.4]), that these are the
only spaces such that all geodesics are orbits. However, in [Ka] A.
Kaplan gave examples of g.o. spaces which are in no way naturally
reductive.

A systematic study of g.o. spaces was initiated by O. Kowalski
and L. Vanhecke in [Kow-Va], who classified all g.o. spaces of di-
mension < 6. Later on, C. Gordon in [Go] described g.o. spaces M
that are nilmanifolds (i.e., a nilpotent Lie group with a left-invariant
metric). Also, in [Kow-Sz|, O. Kowalski and J. Szenthe showed
that every homogeneous Riemannian manifold admits at least one
homogeneous geodesic through each point. Another approach for the
description of g.o. spaces by using the notion of a geodesic graph was
proposed by O. Kowalski and S. Nikévié in [Kow-Ni] and Z. Dusek
in [Dus1], [Dus2]. An explicit description of homogeneous geodesics
in certain examples, was recently given in [Kow-Ni-V]]. Finally, in
[Alek-Ar] D. V. Alekseevsky and the author initiated a study of G-
invariant metrics on generalized flag manifolds, under which these are
g.0. Spaces.
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Homogeneous spaces all of whose geodesics are orbits
(g.o. spaces).

Let M be a Riemannian homogeneous space, that is a homoge-
neous space M = G/K with a G-invariant metric g. Assume for
simplicity that G is compact, and let g = £ & m be a reductive de-
composition (for example, with respect to the negative of the Killing
form B of G). Recall that the G-invariant metric determines an
Ad®/X_invariant inner product ( , ) on m, and an Ad®/¥-invariant
B-symmetric operator A on m.

We also recall that a homogeneous space G/K is called natu-
rally reductive (cf. definition after Proposition 5.2) if there exists a
reductive decomposition satisfying

(X, Y]m, Z) + (X, Z]m,Y) =0  forall X,Y,Z €m.

An important characteristic property of naturally reductive ho-
mogeneous spaces is given in the next proposition. Its proof uses
results about Riemannian submersions that we have not developed in
this book. We refer to [ON] or [Ch-Eb] for a proof.

Proposition 8.8. Let M = G/K be a naturally reductive homoge-
neous space. Then, each geodesic of M starting at o = eK is given
by

() = (exptX) -0, X €m.

We have seen in Chapter 6 that symmetric spaces are naturally
reductive, hence their geodesics are of the above form.

The existence of homogeneous geodesics in any Riemannian ho-
mogeneous space is guaranteed by the following theorem:

Theorem 8.9 ([Kow-Sz]). Every Riemannian homogeneous space
(M = G/K,g) admits at least one homogenous geodesic through each
point o € M. If, in addition, the group G is semisimple, then M ad-
mits n = dim M mutually orthogonal homogeneous geodesics through
the origin 0o = eK.

Homogeneous spaces all of whose geodesics are such orbits have
special importance:
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Definition. A g.0. space is a Riemannian manifold (M,g) all of
whose geodesics are orbits of one-parameter subgroups of isometries.
This means that there exists a transitive group G of isometries such
that M = G/K, and so that every geodesic in M is of the form
(exptX)-p, (X €9, p € M).

Note that we can always choose G to be Io(M). Also, it is enough
to check whether all geodesics through a single point (say o = eK)
are of the form «y(t) = (exptX) - 0. Indeed, any other point in M is
of the form a - o, with a € G, and the geodesics through a - o are then
of the form a7(t) = exp(tAd(a)X) (a- o).

Definition. A nonzero element X in g is called a geodesic vector if
the curve (t) = (exptX) - o is a geodesic.

The following proposition gives a characterization of homoge-
neous geodesics in terms of geodesic vectors.

Proposition 8.10 ([Kos|, [Vi], [Kow-Va]). Let M = G/K be a
Riemannian homogeneous space. Then the orbit y(t) = (exptX) - o
is a geodesic in M if and only if one of the following conditions is
fulfilled:

(a) [X,A(Xm)| €t

(b) ([Xe, Xm],Y) = (X, [Xm,Y]m) for all Y € m.

() ([X,Y]m,Xm) =0 for allY € m.

As usual X, and X; denote the components of X € g=t®m in
m and ¥ respectively.

Low-dimensional examples.

In an attempt to clarify the question of scarcity of g.o. spaces in
comparison with the naturally reductive spaces, O. Kowalski and L.
Vanhecke in [Kow-Va, Theorems 4.1, 4.4, 5.3|, classified all Rie-
mannian homogeneous spaces of dimension < 6. In higher dimensions
the problem is generally open. Their results can be summarized as
follows:

Theorem 8.11. Let M = G/K be a Riemannian homogeneous
g.0. space of dimension n.
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(1) If n <4, then M is naturally reductive.

(2) If n =25, then M is either naturally reductive or of “isotropy”
type SU(2). These are certain homogeneous spaces of the form
G/SU(2), either compact or non-compact. Furthermore, they
are either naturally reductive, or it is possible to express M in
the form G'/U(2), so that they become naturally reductive.

(3) If n = 6, it is possible to give a list of all simply connected
such spaces that are in no way naturally reductive (that is, in
any group extension of G). In the compact case, there is only
the homogeneous space SU(5)/U(2).

The example SU(5)/U(2) is the first example of a compact sim-
ply connected Riemannian space which is in no way naturally reduc-
tive. The non-compact examples for the case n = 6 are closely re-
lated to Kaplan’s 6-dimensional example. For other recent results on
g.o. spaces we refer to [Alek-Ar], [Ma] and [Dus-Kow-Ni].
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complexification 30
connection 53
constant (sectional) curvature 58
coset manifold 66
covariant derivative 55
curvature, sectional 57
scalar 59
functional 114
Ricci 58
curvature operator 57
tensor 56
curve 5, 54

Derivation 6

diffeomorphism 4

differential 5

duality of symmetric spaces 92

Dynkin diagram 40, 45
painted 99

Einstein manifold 64, 113
endomorphism 14

equivalent representations 25
exceptional Lie groups 40
exponential map 16, 56

Flag manifold 70, 97
flat 58
flow (local) 7

G-equivariant map 26
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Levi-Civita connection 54
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Lie’s theorems 21
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ordering 44
invariant 106
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Painted Dynkin diagram 99
parabolic subgroup 111
projection 5, 65

projective space 3, 69
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Rank of Lie group 37
of Lie algebra 42
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representation 24
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complexified 30
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real 24
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Riemannian metric 51
manifold 51
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right-invariant metric 60
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root 42
basis 44
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Schur’s lemma 26
sectional curvature 57
semisimple Lie algebra 41
Lie group 34
simple Lie algebra 41
Lie group 39
skew-hermitian matrix 19
skew-symmetric matrix 19
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special linear group 10
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spin group 40
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metric 82
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stereographic projection 3
Stiefel manifold 69
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immersed 8
symmetric space 88

compact type 92
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symmetry 88, 90
symplectic form 119
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Tangent bundle 5
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transformation group 66
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torus 9, 36

T-roots 101

Unitary group 10

Vector field 6
along a curve 54
left-invariant 13

velocity vector 5

‘Weyl group 43
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It is remarkable that so much about Lie groups could be
packed into this small book. But after reading it, students will
be well-prepared to continue with more advanced, graduate-
level topics in differential geometry or the theory of Lie
groups.

The theory of Lie groups involves many areas of mathe-
matics. In this book, Arvanitoyeorgos outlines enough of the
prerequisites to get the reader started. He then chooses a path
through this rich and diverse theory that aims for an under-
standing of the geometry of Lie groups and homogeneous
spaces. In this way, he avoids the extra detail needed for a
thorough discussion of other topics.

Lie groups and homogeneous spaces are especially useful to
study in geometry, as they provide excellent examples where
quantities (such as curvature) are easier to compute. A good
understanding of them provides lasting intuition, especially
in differential geometry.

The book is suitable for advanced undergraduates, graduate
students, and research mathematicians interested in differen-
tial geometry and neighboring fields, such as topology,
harmonic analysis, and mathematical physics.

For additional information
and updates on this book, visit

www.ams.org/bookpages/stml-22
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