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Preface

This book is based on notes from several undergraduate courses the

authors offered for a number of years at the Department of Math-

ematics and Mechanics of Moscow State University. (We hope to

extend this series: the books “Calculi and Languages” and “Com-

putable Functions” are in preparation.)

The main notions of set theory (cardinals, ordinals, transfinite

induction) are among those any professional mathematician should

know (even if (s)he is not a specialist in mathematical logic or set-

theoretic topology). Usually these notions are briefly discussed in the

opening chapters of textbooks on analysis, algebra, or topology, before

passing to the main topic of the book. This is, however, unfortunate—

the subject is sufficiently interesting, important, and simple to deserve

a leisurely treatment.

It is such a leisurely exposition that we are trying to present

here, having in mind a diversified audience: from an advanced high

school student to a professional mathematician (who, on his/her way

to vacations, wants to finally find out what is this transfinite indiction

which is always replaced by Zorn’s Lemma). For deeper insight into

set theory the reader can turn to other books (some of which are

listed in references).

We would like to use this opportunity to express deep gratitude

to our teacher Vladimir Andreevich Uspensky, whose lectures, books,

vii



viii Preface

and comments influenced us (and this book) perhaps even more than

we realize.

We are grateful to the AMS and Sergei Gelfand (who suggested

to translate this book into English) for patience. We also thank Yuri

Burman who helped a lot with the translation.

Finally, we wish to thank all participants of our lectures and

seminars and all readers of preliminary versions of this book.

We would appreciate learning about all errors and typos in the

book found by the readers (and sent by e-mail to ver@mccme.ru or

shen@mccme.ru).

A. Shen, N. K. Vereshchagin



Chapter 1

Sets and Their
Cardinalities

1. Sets

Let us recall several operations on sets and notation for them:

• A set consists of elements . Notation: x ∈ M means that x is

an element of a set M (belongs to M).

• A set A is a subset of a set B (A ⊂ B) if each element of A

is also an element of B. In this case B is called a superset of

A.

• Two sets A and B are equal (A = B) if they consist of the

same elements (i.e., if A ⊂ B and B ⊂ A).

• If A is a subset of B and A �= B, then A is called a proper

subset of B (notation: A � B).

• The empty set ∅ (called also the null set) contains no ele-

ments. It is a subset of any set.

• The intersection A ∩ B of two sets A and B consists of all

elements that belong both to A and to B:

A ∩B = {x | x ∈ A and x ∈ B}.

1

http://dx.doi.org/10.1090/stml/017/01



2 1. Sets and Their Cardinalities

• The union A∪B consists of all elements of A and all elements

of B (and no other elements):

A ∪B = {x | x ∈ A or x ∈ B}.

• The set difference A \ B consists of elements of A that are

not elements of B:

A \B = {x | x ∈ A and x /∈ B}.

There is a special case: if B is a subset of A, the difference

A \B is also called a complement of B in A.

• The symmetric difference A�B consists of all elements that

belong to exactly one of the sets A and B:

A�B = (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

• By {a, b, c} we denote the set that contains a, b, c and no other

elements. Some of the elements a, b, c may coincide; it this

case {a, b, c} consists of one or two elements. This notation

is also used in a less formal way. For example, the set of all

elements of a sequence a0, a1, . . . is denoted by {a0, a1, . . . }
(and sometimes even {ai}). More pedantic notation would

be {ai | i ∈ N}, where N is the set of all natural numbers

(N = {0, 1, 2, . . . }).

The notion of a set is relatively new. It appeared at the end

of the 19th century when Cantor started comparing cardinalities of

sets; see Section 3 of this chapter. The notion of a set turned out to

be convenient and even found its way into high school mathematics.

Instead of saying that equation x2 + 1 = 0 has no solutions, teachers

started explaining that the set of all solutions of this equation is

empty, etc. Some teachers even tried to explain the difference between

the empty set ∅ and the set {∅}, whose only element is the empty set,

but with very limited success. The idea to modernize the high school

curriculum by using set-theoretic language from the very beginning

created a lot of problems.

We assume, however, that the reader is familiar with the set-the-

oretic language, and we will use it freely. Here are some problems for

self-assessment; we hope that most of them will be easy for you.
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Problem 1. Consider the oldest mathematician among chess players

and the oldest chess player among mathematicians. Could they be

two different people?

Problem 2. The same question for the best mathematician among

chess players and the best chess player among mathematicians.

Problem 3. One tenth of mathematicians are chess players, and one

sixth of chess players are mathematicians. Which group (mathemati-

cians or chess players) is bigger? What is the ratio of sizes of these

two groups?

Problem 4. Do there exist sets A, B and C such that A ∩B �= ∅,

A ∩ C = ∅ and (A ∩B) \ C = ∅?

Problem 5. Which of the following formulas (a)–(f) are true for

arbitrary sets A,B,C: (a) (A∩B)∪C = (A∪C)∩(B∪C); (b) (A∪B)∩
C = (A∩C)∪(B∩C); (c) (A∪B)\C = (A\C)∪B; (d) (A∩B)\C =

(A \ C) ∩B; (e) A \ (B ∪ C) = (A \B) ∩ (A \ C); (f) A \ (B ∩ C) =

(A \B) ∪ (A \ C)?

Problem 6. Give formal proofs of all valid formulas from the pre-

vious problem, starting from definitions. (Your proof should go like

this: “We have to prove that the left-hand side equals the right-hand

side. Let x be any element of the left-hand side set. Then . . . .

Therefore, x belongs to the right-hand side set. On the other hand,

let . . . ”.)

Give counterexamples to the formulas which are not always true.

Problem 7. Prove that the symmetric difference operation is asso-

ciative: A� (B � C) = (A�B)� C for any A, B and C. (Hint :

Addition modulo 2 is associative.)

Problem 8. Prove that (A1∩· · ·∩An)� (B1∩· · ·∩Bn) ⊂ (A1�B1)

∪ · · · ∪ (An �Bn) for arbitrary sets A1, . . . , An and B1, . . . , Bn.

Problem 9. Consider an equality whose left-hand side and right-

hand side contain set variables and operations ∩, ∪, \. Prove that if

this equality is false for some sets, then it is false for some sets that

contain at most one element.
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Problem 10. How many different expressions can be formed from

set variables A and B by using union, intersection and set difference?

(Variables and operations can be used more than once. Two expres-

sions are considered identical if they assume the same value for each

set of values of the variables involved.) Solve the same problem for

three sets and for n sets. (Answer in the general case: 22
n−1.)

Problem 11. Solve the same problem if only ∪ and ∩ are allowed.

(For n = 2 and n = 3 this problem is easy to solve; however, no gen-

eral formula for any n is known. This problem is also called “counting

monotone Boolean functions in n variables”.)

Problem 12. How many subsets does an n-element set have?

Problem 13. Assume that A consists of n elements and B ⊂ A

consists of k elements. Find the number of different sets C such that

B ⊂ C ⊂ A.

Problem 14. A set U contains 2n elements. We select k subsets of A

in such a way that none of them is a subset of another one. What is

the maximum possible value of k? (Hint : Maximal k is achieved when

all subsets have n elements. Indeed, imagine the following process:

We start with an empty set and add random elements one by one

until we get U . At most one selected set can appear during this

process. On the other hand, the expected number of selected sets

that appear during this process can be computed using the linearity

of expectation. Take into account that the probability to come across

some set Z ⊂ U is minimal when Z contains n elements, since all the

sets of a given size are equiprobable.)

2. Cardinality

Cardinality of a finite set A is defined as the number of its elements.

Cardinality of a set A is denoted by #A or |A|. This notation will be

extended to infinite sets (see below). The following formula gives the

cardinality of the union of several sets in terms of their cardinalities

and the cardinalities of all their intersections.
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Theorem 1 (Inclusion-Exclusion Principle).

|A ∪B| = |A|+ |B| − |A ∩B|;
|A ∪B ∪ C| = |A|+ |B|+ |C|

− |A ∩B| − |A ∩ C| − |B ∩ C|
+ |A ∩B ∩ C|.

In general, |A1 ∪ · · · ∪ An| equals∑
i

|Ai| −
∑
i<j

|Ai ∩ Aj|+
∑

i<j<k

|Ai ∩Aj ∩Ak| − · · · .

Proof. This formula can be proved by induction on n, but we provide

another, more interesting, proof. Let U be an arbitrary superset of

A1, . . . , An. For a set X ⊂ U consider its characteristic function χX

that is defined on U as follows: χX(x) = 1 for x ∈ X and χX(x) = 0

for x /∈ X. Set-theoretic operations can be expressed in terms of

characteristic functions. For example, the characteristic function of

the intersection of two sets A and B is the product of characteristic

functions of A and B: χA∩B(u) = χA(u)χB(u). If B is a complement

of A in U , then χB(x) = 1− χA(x) for all x ∈ U .

The cardinality of a set X ⊂ U is the sum of all values of χX :

|X| =
∑
u

χX(u).

The union A1 ∪ · · · ∪AN is a complement of the intersection of com-

plements; therefore,

χA1∪···∪An
= 1− (1− χA1

) · · · (1− χAn
).

The right-hand side equals∑
i

χAi
−
∑
i<j

χAi
χAj

+
∑

i<j<k

χAi
χAj

χAk
− · · · .

Summation over all elements of U (both sides of the equality are

integer-valued functions defined on U) gives the Inclusion-Exclusion

Principle.

Problem 15. Prove that |A1 � · · · �An| equals∑
i

|Ai| − 2
∑
i<j

|Ai ∩ Aj |+ 4
∑

i<j<k

|Ai ∩ Aj ∩ Ak| − · · ·

(the coefficients are powers of 2).
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Some other theorems of elementary combinatorics are stated be-

low as exercises. We are mostly interested in the following principle:

if there is a one-to-one correspondence between two sets A and

B, then |A| = |B|.

One-to-one correspondence between two sets means that each element

of the first set corresponds to precisely one element of the second set

(and vice versa).

Here are some problems that use this principle.

Problem 16. Consider 1000 white points and one black point on

a circle. Count all triangles whose vertices are white points. Count

all convex quadrangles formed by three white points and one black

point. Which number is larger? (Solution: The numbers are equal

because each quadrangle corresponds to precisely one triangle formed

by three white vertices of the quadrangle.)

Problem 17. Fix a set of cardinality 100. Count all its 57-subsets,

i.e., subsets of cardinality 57. Count all its subsets of cardinality 43.

Which number is larger? (Hint : 57 + 43 = 100.)

Problem 18. Prove that the number of all binary strings of length n

equals the number of all subsets of the set {1, 2, . . . , n}. (Hint : Each
subset X ⊂ {1, 2, . . . , n} corresponds to its characteristic sequence;

ith element of this sequence equals 1 if and only if i ∈ X.)

Problem 19. Prove that the number of binary sequences of length n

that consist of k ones and n− k zeros equals the number of k-subsets

of an n-set.

The number of k-subsets of an n-set is denoted by
(
n
k

)
and is called

the number of k-combinations of an n-set. It is also called a binomial

coefficient and appears in the binomial expansion (see below).

Problem 20. Prove that(
n

k

)
=

(
n

n− k

)
.

Problem 21. Prove that(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= 2n.
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Problem 22. Let U be any finite set. Prove that the number of

subsets X ⊂ U having even cardinality equals the number of subsets

X ⊂ U having odd cardinality. (Hint : Fix some u ∈ U and consider

pairs formed by subsets that differ only at u.)

Problem 23. Prove that(
n

0

)
−
(
n

1

)
+

(
n

2

)
+ · · ·+ (−1)n

(
n

n

)
= 0.

(Hint : Use the preceding problem.)

Problem 24. Prove the Newton binomial expansion formula:

(a+ b)n =

(
n

0

)
an +

(
n

1

)
an−1b+ · · ·+

(
n

k

)
an−kbk + · · ·+

(
n

n

)
bn.

Problem 25. Consider a nonassociative product of n terms. There

are several ways to insert parentheses that indicate the order of op-

erations. Prove that the number of different ways equals the number

of triangulations of a convex (n+1)-gon by diagonals. (For example,

the product abc can be either (ab)c or a(bc); on the other hand, there

are two ways of cutting a quadrangle into two triangles by a diagonal.

For the product abcd and a pentagon there are 5 possibilities.) These

numbers are called Catalan numbers.

3. Equal cardinalities

We say that two sets A and B have the same cardinality if there exists

a one-to-one correspondence between A and B (each element of A

corresponds to exactly one element of B and vice versa). Notation:

A � B.

Evidently, two finite sets A and B have the same cardinality if

and only if |A| = |B| (the number of elements in A equals the number

of elements in B). However, the definition makes sense for infinite sets

as well. For example, let us prove that closed intervals [0, 1] and [0, 2]

have the same cardinality. Indeed, the mapping x 	→ 2x is a one-to-

one correspondence between [0, 1] and [0, 2].

Problem 26. Prove that any two intervals (a, b) and (c, d) have the

same cardinality.
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Problem 27. Prove that any two circles have the same cardinality.

Prove that any two disks have the same cardinality.

Problem 28. Prove that [0, 1) � (0, 1].

The following problem is somewhat more difficult: Prove that

(0, 1) � (0,+∞). It can be done as follows. Note that the mapping

x 	→ 1/x is a one-to-one correspondence between (0, 1) and (1,+∞).

Note also that the mapping x 	→ (x−1) is a one-to-one correspondence

between (1,+∞) and (0,+∞). Therefore their composition, i.e., the

mapping x 	→ (1/x)−1 is a one-to-one correspondence between (0, 1)

and (0,+∞). Q.e.d.

More generally, one can say that the relation “to have the same

cardinality” is an equivalence relation. This means that this relation

is reflexive (A � A for any set A), symmetric (if A � B then B � A)

and transitive (if A � B and B � C then A � C). We have applied

the transitivity property using B = (1,+∞) as an intermediate set.

Other examples:

• The set of all infinite sequences of zeros and ones has the

same cardinality as the set of all subsets of the set N of nat-

ural numbers. (Indeed, for each sequence a0a1a2 . . . con-

sider a set of all i ∈ N such that ai = 1. For example,

the sequence 00000 . . . corresponds to the empty set, the se-

quence 11111 . . . corresponds to the set N, and the sequence

10101010 . . . corresponds to the set of all even numbers.)

• The set of all infinite sequences of digits 0, 1, 2, 3 has the

same cardinality as the set of all infinite sequences of zeros

and ones. (Indeed, one can encode 0, 1, 2, 3 by blocks 00,

01, 10, 11. The inverse mapping splits sequences of zeros and

ones into blocks of length 2. Then each block is replaced by

one of the four digits 0, . . . , 3.)

• The set of all infinite sequences of digits 0, 1, 2 has the same

cardinality as the set of all infinite sequences of zeros and

ones. (A näıve approach: the set of all sequences of dig-

its 0, 1, 2 lies in between two sets of the same cardinality (i.e.,

the set of all sequences of digits 0, 1 and all sequences of digits
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0, 1, 2, 3) and therefore has the same cardinality. This argu-

ment in indeed valid; see the Cantor–Bernstein Theorem in

Section 5 of this chapter. However, we can construct a one-

to-one correspondence explicitly if we encode the digits 0, 1,

and 2 by the blocks 0, 10, and 11. It is easy to see that each

infinite sequence of zeros and ones can be split into these

blocks uniquely from left to right. These three blocks form

the so-called “prefix code”.)

• Generalizing the example above, one can prove that the set

P (U) of all subsets of any set U (it is called the power set of

U) has the same cardinality as the set 2U of all (everywhere

defined) functions of type U → {0, 1}. (Indeed, each subset

X ⊂ U corresponds to its characteristic function χX .)

To continue this list, we need to prove some properties of count-

able sets.

4. Countable sets

A set X is called countable if X has the same cardinality as the

set N of natural numbers. Reformulation: X is countable if X =

{x0, x1, x2, . . . } (here xi corresponds to natural number i; we need a

one-to-one correspondence, so all xi should be different).

For example, the set Z of all integers is countable since Z =

{0, 1,−1, 2,−2, 3,−3, . . . }.

Theorem 2. (a) Any subset of a countable set is finite or countable.

(b) Any infinite set has a countable subset.

(c) The union of a finite or countable family of finite or countable

sets is finite or countable.

Proof. (a) Let B be a subset of a countable set A = {a0, a1, a2, . . . }.
Delete all elements of the sequence a0, a1, . . . that do not belong to

B. The remaining elements form either a finite sequence (B is finite)

or an infinite sequence (B is countable).

(b) Let A be an infinite set. Then A is not empty; let b0 be some

element of A. Since A is infinite, it contains other elements. Let b1
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be one of them (i.e., b1 ∈ A, b1 �= b0). Since A has more than two

elements, we can choose element b2 that differs from b0 and b1, etc.

We get a sequence b0, b1, . . . (since A if infinite, for each i we

can find a new element bi ∈ A). Then the set B = {b0, b1, . . . } is a

countable subset of A. (Note that B may be a proper subset of A

even if A is countable.)

(c) Consider a countable family of countable sets A0, A1, A2, . . . .

Since Ai is countable, the elements of A can be arranged in a sequence

Ai = {ai0, ai1, . . . }. Let us write down all these sequences; we get a

table
a00 a01 a02 a03 . . .

a10 a11 a12 a13 . . .

a20 a21 a22 a23 . . .

a30 a31 a32 a33 . . .

. . . . . . . . . . . . . . .

Now this table can be converted into a sequence. For example, we

can walk along diagonals

a00, a01, a10, a02, a11, a20, a03, a12, a21, a30, . . . .

If all Ai are disjoint, this sequence provides a one-to-one correspon-

dence between N and the union of all Ai. If Ai are not disjoint, we

must delete repetitions.

If we have only finitely many sets (or some sets are finite), some

elements of our sequence disappear and remaining elements form a

finite or countable set.

Problem 29. We have described a one-to-one correspondence be-

tween the set of all ordered pairs of natural numbers (denoted by

N × N) and N: a pair 〈x, y〉 corresponds to some natural number

p(x, y). For example, p(0, 0) = 0, p(0, 1) = 1, p(1, 0) = 2, p(0, 2) = 3,

p(1, 1) = 4, etc. It turns out that p is a polynomial with rational

coefficients. Find this polynomial.

Remark. There is a subtle point in the proof of Theorem 2(b).

We have selected elements of A one by one. We know that (at each

step) some unused element of A does exist. However, there is no rule

that determines which element of A should be selected. More rigorous

approach uses a special axiom, called the axiom of choice. This axiom



4. Countable sets 11

was considered doubtful (and harmful) at the beginning of the 20th

century. However, now people are accustomed to it, and the majority

of contemporary mathematicians use it and do not worry about that.

In the middle of the 20th century Kurt Gödel, perhaps the greatest

logician of the century, proved that the axiom of choice cannot be

refuted (its negation does not follow from the remaining axioms of

set theory, assuming the remaining axioms are consistent). In 1963

Paul Cohen proved that the axiom of choice cannot be derived from

the remaining axioms (if they are consistent). Of course, to explain

the Gödel and Cohen theorems (not to mention their proofs), we

would need to develop axiomatic set theory, and this goes far beyond

the scope of our book.

Problem 30. The axiom of choice is also used in the proof of part (c).

Can you see where? (Answer : We know that the sets Ai are count-

able. This means that for each i there exists a one-to-one correspon-

dence between N and Ai. But the mere existence is not enough; we

have to fix these mappings, and only after that we can construct a

one-to-one correspondence between the union of all Ai and N.)

Some other examples of countable sets:

• The set Q of rational numbers is countable. Indeed, rational

numbers are fractions of two integers. The set of fractions

with a given denominator is countable. Therefore, Q is a

union of a countable family of countable sets. (As we shall

see in Section 6 of this chapter, the set R of all real numbers

is uncountable.)

• The set Nk formed by k-tuples of natural numbers, is count-

able. Let us prove this using induction on k. For k = 2 the

set N2 = N×N (whose elements are pairs of natural numbers)

is a countable union of countable sets {0} × N, {1} × N, . . .

(elements of an ith set are pairs 〈i, something〉). Therefore

N2 is countable.

Similarly, N3 is a countable union of sets {i} × N × N.

Each of these sets is a set of triples with fixed first element.

Therefore, {i}×N×N has the same cardinality as N×N and

is countable (induction assumption).
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The same argument works for N4, N5, etc. (we prove that

Nk+1 is countable using that Nk is countable).

• The set of all finite sequences of natural numbers is count-

able. Indeed, as we have seen, the set of all sequences of a

given length k (i.e., Nk) is countable, so the set of all finite se-

quences of natural numbers is a countable union of countable

sets.

• In the previous example we can replace natural numbers by

elements of any countable (or finite) set. For example, we

can consider the set of all English texts. This set is countable

(text is a finite sequence of letters, digits, punctuation marks

and other ASCII characters). The same is true for the set of

all (possible) computer programs, etc.

• A real number x is said to be algebraic if x is a root of a

nonzero polynomial with integer coefficients. (For example,

any rational number is algebraic since it is a root of a poly-

nomial of degree 1 with integer coefficients;
√
2 and

√
2+

√
3

are also algebraic numbers because x2 − 2 = 0 for x =
√
2

and (x2 − 5)2 − 24 = 0 for x =
√
2 +

√
3.)

The set of all algebraic numbers is countable. Indeed, the

set Z[x] of all polynomials with integer coefficients is count-

able (each polynomial is determined by a finite sequence of in-

teger coefficients), and each (nonzero) polynomial has finitely

many roots (at most n for a polynomial of degree n).

• The set of all periodic decimal fractions is countable. (Indeed,

each periodic fraction can be represented by a finite string

that includes digits, decimal period and parentheses. For

example, 1/6 = 0.16666 . . . can be written as 0.1(6). Now

recall that the set of all finite strings is countable.)

Problem 31. Prove that any family of disjoint open intervals (p, q)

(where p and q are any real numbers such that p < q) is finite or

countable. (Hint : Any interval contains a rational point.)

Problem 32. (a) Prove that any family of disjoint 8-signs on the

plane is countable. (By an 8-sign we mean a union of two tangent

circles of any size; the interior part of the circles is not included.)
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(b) Prove a similar statement for letters T or E on the plane (but not

for M or O!).

Problem 33. A point x ∈ R is called a maximum point for a function

f : R → R if there exists some ε > 0 such that f(x) > f(x + h) for

any h such that |h| < ε and h �= 0. Prove that the set of all maximum

points (for any function f) is either finite or countable.

Problem 34. Let f : R → R be a nondecreasing function. Prove

that f is continuous everywhere except for some countable set.

Theorem 3. If A is infinite and B is countable (or finite), the union

A ∪B has the same cardinality as A.

Proof. Without loss of generality we may assume that A and B are

disjoint: A ∩ B = ∅. Indeed, the intersection A ∩ B can be deleted

from B; the remaining set B ′ = B \A is still countable (or finite).

Let P be a countable subset of A; let Q be the rest: Q = A \ P .

We have to prove that B + P +Q has the same cardinality as P +Q

(we use + instead of ∪ to emphasize that the sets are disjoint). Both

B + P and P are countable. Consider a one-to-one correspondence

between them and extend it to the one-to-one correspondence between

B+P +Q and P +Q (which is the identity on Q: each element q ∈ Q

corresponds to itself).

Problem 35. Using this approach, construct a one-to-one corre-

spondence between the closed interval [0, 1] and the half-open inter-

val [0, 1). (Hint : Take B = {1}.)

Problem 36. Theorem 3 guarantees that adding a finite or countable

set to an infinite set does not change its cardinality. Prove a similar

result for subtraction: If A is infinite and uncountable, and B is finite

or countable, then A \B has the same cardinality as A.

Problem 37. R. Dedekind suggested the following definition of an

infinite set: A set A is infinite if there exists a one-to-one correspon-

dence between A and a proper subset B � A. Show that this property

does characterize infinite sets.
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Using Theorem 3, one can easily prove that the real line R and

each of the intervals ([a, b], (a, b), [a, b), [a,+∞), etc.) have the same

cardinality.

Problem 38. Construct a one-to-one correspondence between the

set [0, 1] ∪ [2, 3] ∪ [4, 5] ∪ · · · and [0, 1].

Problem 39. Prove that the set of all points on the plane has the

same cardinality as the set of all lines. (Hint : The line y = ax + b

corresponds to the pair (a, b); do not forget about vertical lines.)

Problem 40. Prove that a half-plane (the set of all points on one

side of a line) has the same cardinality as the entire plane. (It does

not matter whether we include the boundary line in the half-plane or

not.)

Theorem 4. The interval [0, 1] has the same cardinality as the set

2N of all infinite sequences of zeros and ones.

Proof. Indeed, any real number x ∈ [0, 1] can be represented by an

infinite binary fraction. The first digit (after binary point) is 0 if x

belongs to the left half of [0,1] and is 1 if x belongs to the right half.

To find out the next digit, we divide the selected part in two halves

and see which half contains x, etc.

The same correspondence can be defined “from right to left”: a

sequence x0x1x2 . . . corresponds to the real number
x0

2
+

x1

4
+

x2

8
+ · · · .

(We assume that the reader is familiar with calculus; this assumption

is unavoidable since we speak about real numbers!)

A careful reader will notice that our description ignores an impor-

tant problem: fractions with denominator 2n (for integer n) have two

representations. For example, the fraction 3/8 can be written either

as .011000. . . or as .010111. . . . To get a one-to-one correspondence

we must eliminate sequences of zeros and ones that have only finitely

many zeros (i.e., periodic fractions with period 1). But we know that

periodic fractions form a countable set, so it does not matter whether

we eliminate them or not.

Problem 41. Write down a binary fraction that corresponds to 1/3.
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We have used binary fractions, but we can use ordinary decimal

fractions as well and prove that the set [0, 1] has the same cardinality

as the set of all infinite sequences of digits 0, 1, . . . , 9. (Therefore, the

set of all infinite binary fractions has the same cardinality as the set

of all infinite decimal fractions. This statement can be proved directly

using the trick described on p. 8.)

Now we are ready to prove the following remarkable theorem:

Theorem 5. The unit square (with interior) has the same cardinal-

ity as the closed unit interval.

Proof. Points of a square are determined by their coordinates, so the

unit square has the same cardinality as the set [0, 1] × [0, 1] formed

by pairs 〈x, y〉 (where x, y ∈ [0, 1]). We know already that elements

of [0, 1] can be replaced by sequences of zeros and ones. It remains

to note that a pair of sequences

〈x0x1x2 . . . , y0y1y2 . . . 〉
can be mapped to a “mixed” sequence

x0y0x1y1x2y2 . . .

and this mapping provides one-to-one correspondence between se-

quences and pairs of sequences.

The German mathematician Georg Cantor, who invented set theory,
proved this result in 1877 and was very surprised by it. Indeed, this result
contradicts our intuitive perception of “dimension” (a square has dimen-
sion 2, whereas a line segment has dimension 1; therefore, a square should
have “more points”). Cantor wrote to Dedekind that he was interested
to know whether spaces of different dimension have the same number of
points; he remarked: “it seems that this question should be answered af-
firmatively, though I had a different opinion for several years” (June 20,
1877).

Dedekind answered that Cantor’s result had not made the notion of
dimension meaningless; it only showed that we have to restrict our atten-
tion to one-to-one correspondences that are continuous (in both directions),
and then we can distinguish between spaces of different dimensions. This
conjecture turned out to be true; however, it is quite nontrivial. The first at-
tempts to prove it (including the proof in one of Cantor’s papers) contained
errors. Only thirty years later Brouwer gave a correct proof. (One should
note that for a line segment and a square the proof is simple; problems
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arise in higher dimensions. Let us note also that there exists a continuous
mapping π : [0, 1] → [0, 1]× [0, 1] whose range is [0, 1]× [0, 1]. This strange
mapping is called “Peano’s curve”.)

Theorem 5 has many corollaries: it is easy to prove now that a

disk has the same cardinality as its boundary, the line has the same

cardinality as the plane, etc.

A one-to-one correspondence between the pairs of reals and the

reals can be extended to a one-to-one correspondence between the

triples of reals and the pairs of reals (if a pair 〈x, y〉 corresponds to u,

the triple 〈x, y, z〉 corresponds to 〈u, z〉). Therefore, three-dimensional

space has the same cardinality as the two-dimensional plane (and

therefore the same cardinality as a one-dimensional line). Similar

argument shows that the spaces Rn (= set of all n-tuples of reals) for

all n have the same cardinality.

Problem 42. Prove that the set of all finite sequences of real num-

bers has the same cardinality as the set R (the set of reals).

Problem 43. Prove that the set of all infinite sequences of real

numbers has the same cardinality as R.

Note that we are still unable to show that the set R (or the set

of infinite sequences of zeros and ones) is uncountable. See Section 6

of this chapter.

One says that the set R has the cardinality of the continuum

(because a point can move continuously along a line).

5. Cantor–Bernstein Theorem

We have given a formal definition for the intuitive notion of “having

the same size” (requiring the existence of a one-to-one correspon-

dence). Now we want to give a formal definition that reflects the

intuitive idea of “one set being larger than another”.

We say that the cardinality of a set A does not exceed the cardi-

nality of a set B if there exists a one-to-one correspondence between

A and a subset of B (which may be equal to the entire B).

Problem 44. Professor X suggests the following definition: the car-

dinality of a set A is strictly less than the cardinality of a set B if
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there exists a one-to-one correspondence between A and a proper sub-

set B′ � B. Explain why this definition is not really good. (Hint :

Popular expositions of set theory often start with the following para-

dox that goes back to Galilei. Are there as many squares of integers

(0, 1, 4, 9, 16, . . . ) as all nonnegative integers? Squares are rare: most

nonnegative integers are not squares. On the other hand, there are

as many squares as all natural numbers; i2 corresponds to i.)

The relation “the cardinality of A does not exceed the cardinality

of B” between two sets A and B has the following natural properties:

• If A and B have the same cardinality, then the cardinality

of A does not exceed the cardinality of B. Indeed, if there

exists a one-to-one correspondence between A and B, then

there exists a one-to-one correspondence between A and a

subset B′ of B. (Evident: let B′ = B.)

• If the cardinality of A does not exceed the cardinality of B

and the cardinality of B does not exceed the cardinality of

C, then the cardinality of A does not exceed the cardinality

of C. (Indeed, consider a one-to-one correspondence between

A and some B′ ⊂ B, and another one-to-one correspondence

between B and some C ′ ⊂ C. The latter maps B′ onto some

C′′ ⊂ C ′ ⊂ C (see Figure 1), and C ′′ has the same cardinality

as A.)

� �

��

�

� �

� ��

Figure 1. Transitivity.
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• If the cardinality of A does not exceed the cardinality of B,

and the cardinality of B does not exceed the cardinality of

A, then A and B have the same cardinality. (This innocently

looking statement is quite nontrivial. It is called the Cantor–

Bernstein Theorem and will be proved later in this section.)

• For any two sets A and B either the cardinality of A does not

exceed the cardinality of B or the cardinality of B does not

exceed the cardinality of A. (To prove this statement, we need

to use the so-called “transfinite induction”; see Theorem 25

in Section 6 of Chapter 2.

Theorem 6 (Cantor–Bernstein). Let A and B be two sets. Assume

that there exists a one-to-one correspondence between A and a subset

B1 ⊂ B and a one-to-one correspondence between B and some A1 ⊂
A. Then the sets A and B have the same cardinality (i.e., there exists

a one-to-one correspondence between A and B).

�

��

��

�

��

Figure 2. Cantor–Bernstein Theorem and its special case.

Proof. Consider a one-to-one correspondence between B and A1.

The subset B1 ⊂ B then corresponds to some A2 ⊂ A1 (see Figure 2).

All three sets A, B1 and A2 have the same cardinality. We have to

prove that they have the same cardinality as B (or A1).

Now we may forget about B and prove the following special case

of the Cantor–Bernstein Theorem:
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If A2 ⊂ A1 ⊂ A0 and A2 has the same cardinality as A0, then all

three sets have the same cardinality.

(To make our notation consistent, we denote A by A0.)

�

��

��

��

��

��

��

��
�

�

�

Figure 3. Sets Ai and Ci.

Let f be a function that provides a one-to-one correspondence

A0 → A2 (an element x ∈ A0 corresponds to f(x) ∈ A2). Function

f maps A0 onto A2. Since A1 is a subset of A0, function f maps it

onto some A3 ⊂ A2 (see Figure 3). In a similar way f maps A2 onto

some set A4, and A4 ⊂ A3 because A2 ⊂ A1.

Repeating this procedure, we get a nonincreasing sequence of sets,

A0 ⊃ A1 ⊃ A2 ⊃ A3 ⊃ A4 ⊃ · · · .
A one-to-one function f : A0 → A2 maps Ai onto Ai+2 (notation:

f(Ai) = Ai+2). The set A2n is the set of all elements that are obtained

from some element of A0 by n applications of f . Similarly, A2n+1 is
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the set of elements that are obtained from some element of A1 by n

applications of f .

Important remark: the intersection of all Ai may be nonempty.

Indeed, it consists of all elements x such that f−1 can be applied to

x once, twice, . . . , k times for any k.

We have split A0 into disjoint layers Ci = Ai \ Ai+1 and the

“core” C =
⋂

i Ai.

All layers C0, C2, C4, . . . have the same cardinality because f

provides a one-to-one correspondence between C0 and C2, between

C2 and C4, etc.:

C0
f−→ C2

f−→ C4
f−→ · · · .

The same is true for layers with odd indices:

C1
f−→ C3

f−→ C5
f−→ · · · .

We may also note (though this fact is not used in the sequel) that f is

a permutation on C (i.e., is a one-to-one correspondence between C

and C).

Now it is easy to describe a one-to-one correspondence g between

A0 and A1. Let x ∈ A0. Then g(x) is equal to f(x) for x ∈ C2k

(for any k) and g(x) = x for x ∈ C2k+1 (for any k) and for x ∈ C

(Figure 4).

�� � �� � �� � �� � �� � �� � � � � � �

�� � �� � �� � �� � �� � � � � � �

Figure 4. Vertical arrows are the identity mappings; diagonal
arrows are parts of f .

This theorem (sometimes called also the Schröder–Bernstein Theorem)
was stated (without proof) by Cantor in 1883; he promised to give the
proof in subsequent papers. However, he had not kept his promise, and
first proofs were given by Schröder (1896) and Bernstein (1897). It is clear
from Cantor’s writings that he planned to prove this theorem together
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with another result mentioned above (for any two sets there exists a one-
to-one correspondence between one of them and a subset of the other (see
Theorem 25 in Section 6 of Chapter 2). But it is not clear what argument
Cantor had in mind.

The Cantor–Bernstein Theorem is useful when we want to prove

that two sets have the same cardinality. Here is an example. We

want to prove that a ball and a torus (regarded, with their interiors,

as subsets of three-dimensional space), have the same cardinality.

A small torus inside the ball has the same cardinality as the big

torus; a small ball inside the torus has the same cardinality as the

big one. It remains to apply the Cantor–Bernstein Theorem. (Direct

construction is also possible: both sets can be dissected into circles.

However, our argument is much more general and can be applied to

any two bounded sets with interior points.)

Problem 45. Look again at the problems above and find out which

of them can be easily solved by using the Cantor–Bernstein Theorem.

Problem 46. Prove that any two sets (planar or three-dimensional)

that contain a piece of a line (or a curve), have the same cardinality.

Problem 47. A square is represented as the union of two sets: [0, 1]×
[0, 1] = A ∪ B. Prove that at least one of the sets A and B has the

cardinality of the continuum. (Hint : If either A or B contains a line

segment, one can apply the Cantor–Bernstein Theorem. If (say) A

does not contain a line segment, then each subset {x}×[0, 1] intersects

B, and we can apply the Cantor–Bernstein Theorem again.)

Problem 48. Prove that if [0, 1] = A ∪ B, then either A or B has

the cardinality of the continuum.

The proof of the Cantor–Bernstein Theorem given above can be

explained in more abstract terms (without explicit use of natural

numbers). Recall that f : A → A2 is a one-to-one correspondence

between the set A and its subset A2, while A1 is some intermediate

set.

We say that a set X ⊂ A is “good” (just in this proof) if it

contains A \A1 and is closed under f , i.e., if

X ⊃ (A \A1) + f(X).
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(Here we use “+” instead of “∪” to emphasize that the sets are dis-

joint.) It is easy to see that the intersection of any family of good sets

is a good set. Therefore, the intersection of all good sets is the least

good set (the good set that is a subset of any good set). Let M be

this intersection. It is easy to check that (A \ A1) + f(M) is a good

set. Therefore (since M is a subset of any good set) the inclusion (see

the definition of a good set) becomes the equality for M :

M = (A \A1) + f(M).

Now we can construct a bijection (one-to-one correspondence) g : A →
A1. This bijection g coincides with f on M and coincides with the

identity mapping outside M .

Problem 49. Give a detailed proof for the Cantor–Bernstein Theo-

rem following this scheme.

This argument is useful when we develop axiomatic set theory.

The advantage is that it does not use natural numbers (the notion of

a natural number should be defined in axiomatic set theory, and this

definition is not straightforward). But in fact the arguments remain

the same, because the least good set M equals C0 ∪ C2 ∪ · · ·.
Let us revisit the four possibilities for two sets A and B mentioned

above:

• A has the same cardinality as some subset of B, and B has

the same cardinality as some subset of A. (In this case A

and B have the same cardinality, as the Cantor–Bernstein

Theorem says.)

• A has the same cardinality as some subset of B, but B differs

from all subsets of A (there is no one-to-one correspondence

between B and a subset of A). In this case we say that A has

smaller cardinality than B.

• B has the same cardinality as some subset of A, but not vice

versa (as in the previous case, but with A and B changed

places). In this case A has bigger cardinality than B.

• There is no one-to-one correspondence between A and a sub-

set of B and there is no one-to-one correspondence between
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B and a subset of A. This case is in fact impossible, but we

cannot prove this yet (see Section 6 of Chapter 2).

Problem 50. Prove that a countable set has smaller cardinality that

any (infinite) uncountable one.

Problem 51. Give a detailed proof of the following statement: if

A has smaller cardinality than B, and B has smaller cardinality

than C, then A has smaller cardinality than C (transitivity). (Hint :

Use the Cantor–Bernstein Theorem.)

For a long time we have used the word “cardinality” in a context

like “sets A and B have the same cardinality” or “set A has smaller

cardinality than B”. But what is the cardinality of a given set A?

One may try to define the cardinality of A as the class of all sets

that have the same cardinality as A:

|A| = {X | A � X}.

It is easy to see that |A| = |B| (according to this definition) if and

only if the sets A and B have the same cardinality. Therefore, our

expression “to have the same cardinality” can be understood literally.

The problem is that there are too many sets that have the same

cardinality as A, since we allow anything in the world to be elements

of these sets. There are so many of them that it is difficult to create

a set of all these sets; it may lead to set-theoretical paradoxes (see

Section 6 of this chapter, page 28).

How can we overcome this difficulty? The simplest approach is to

use the word “cardinality” only in phrases like “has the same cardinal-

ity” and “has smaller cardinality” but never speak about cardinalities

as objects. Another approach is to introduce a notion of a “class”;

classes may contain more elements than sets but cannot be elements

of other sets (and classes). This leads to another version of axiomatic

set theory that speaks not only about sets but also about classes.

Then we define the cardinality of A as the class of all sets that have

the same cardinality as A.

Finally, there is a third approach. We can choose for each set

A a “standard” set that has the same cardinality as A. Usually this

standard set is a minimal ordinal that has the same cardinality as A.
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We will not go into details because the construction of ordinals as sets

is beyond the scope of this book. Let us give one example, however:

the cardinality of a set {a, b, c} (the number 3) is the ordinal

{∅, {∅}, {∅, {∅}}}.

Here is what Cantor have said about cardinalities in 1895: “We will
call by the name ‘power’ or ‘cardinal number’ of M the general concept
which, by means of our active faculty of thought, arises from the aggregate
M when we make abstraction of the nature of its various elements m and
of the order in which they are given . . . Since every single element m, if

we abstract from its nature, becomes a ‘unit’, the cardinal number M is
a definite aggregate composed of units, and this number has existence in
our mind as an intellectual image or projection of the given aggregate M .”
[Originally in German; this translation is due to Philip E. B. Jourdain.]

Anyway, we use the notation |A| for the cardinality of A just

as a shortcut: |A| = |B| means that there exists a one-to-one cor-

respondence between A and B; |A| ≤ |B| means that there exists a

one-to-one correspondence betweenA and some subset of B; |A| < |B|
means that A ≤ B but not B ≤ A (see page 22).

6. Cantor’s Theorem

We still do not have any example of an infinite uncountable set. A

classical “diagonal construction” invented by Cantor provides such an

example.

Theorem 7 (Cantor). The set 2N of all infinite sequences of zeros

and ones is uncountable.

Proof. Assume that this set is countable. Then all infinite sequences

of zeros and ones can be numbered: α0, α1, . . . .

Let α0, α1, . . . be the rows of the infinite two-dimensional table:

α0 = α00 α01 α02 . . .

α1 = α10 α11 α12 . . .

α2 = α20 α21 α22 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here αij is the jth element of the ith sequence (αi). Now consider

the sequence on the diagonal: its elements are α00, α11, α22, . . .
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(the ith element of the diagonal sequence is αii, and it equals the ith

element of the ith sequence). Inverting the diagonal sequence, we get

a sequence

βi = 1− αii.

This sequence β differs from αi (has a different ith term). Therefore

β does not appear in the table: β �= αi for any i. But our assumption

was that all infinite sequences of zeros and ones appear among αi.

We get a contradiction that shows that the set 2N of all sequences of

zeros and ones is not countable.

This theorem implies that the set R of real numbers is uncount-

able. (Indeed, we know that R has the same cardinality as the set

of infinite binary fractions.) Therefore, R cannot coincide with the

countable set of algebraic numbers. Therefore, there exists a real

number which is not algebraic (is not a root of any nonzero polyno-

mial with integer coefficients). The nonalgebraic numbers are also

called transcendental numbers.

When Cantor created set theory, it was already known that transcen-
dental numbers do exist. The first example of a transcendental number was
constructed in 1844 by the French mathematician J. Liouville. He proved
that if a real number α can be approximated by rational numbers with high
precision (there exist approximations with denominator m and error that
is very small compared to 1/m), then α is not algebraic. For example, the
number

∑
(1/10n!) satisfies Liouville’s condition. Liouville’s theorem is not

very hard to prove; however, it requires some estimates of approximation
errors, and Cantor’s proof compared with Liouville’s one looks like magic.
Cantor’s proof was published in 1874. This was the first paper devoted
to set theory. Its first section proves that the set of algebraic numbers
is countable, while the second proves that the set of real numbers is not
countable. The general definition of the notion “have the same cardinal-
ity” was introduced three years later (together with the proof that spaces
of different dimension have the same cardinality; see above).

Let us also note that in 1873 the French mathematician Charles Her-
mite has proved that the number e (base of natural logarithms) is not alge-
braic, and in 1882 the German mathematician F. Lindemann proved that
π is transcendental and therefore cannot be constructed using a straight
edge and a compass.

Our next few problems assume that the reader is familiar with

the basic notions of calculus.
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Problem 52. Prove that for any uncountable set A ⊂ R there ex-

ists a condensation point a such that any neighborhood of a has an

uncountable intersection with A. (The statement remains true if we

replace “uncountable set” by “set of the cardinality of the contin-

uum”.)

Problem 53. Prove that a closed set A ⊂ R that has no isolated

points has the cardinality of the continuum.

Problem 54. Prove that any closed set A ⊂ R is either countable

(or finite) or has the cardinality of the continuum. (Hint : Consider

the subset B ⊂ A whose elements are condensation points of A, i.e.,

points b such that every neighborhood of b has an uncountable in-

tersection with A. If B is empty, then A is finite or countable. If

B is not empty, then B is a closed set without isolated points and

therefore has the cardinality of the continuum.)

This problem shows that the statement of the Continuum Hy-

pothesis (CH) is true for all closed subsets. This hypothesis says that

every subset of R is either countable (or finite) or has the cardinality

of the continuum. Cantor proved CH for closed sets and regarded this

proof as the first step towards the proof of CH in the general case,

but this idea failed.

Problem 55. Let A be a countable set of points on the plane. Prove

that the remaining part of the plane is connected: any two points

outside A can be connected by a polygonal line (with two segments)

that does not intersect A.

Let us revisit Cantor’s diagonal construction. We know that the

set of infinite sequences of zeros and ones has the same cardinality

as the set of all subsets of N. (Each subset X corresponds to its

“characteristic sequence” that has ones at places that belong to X.)

Therefore Cantor’s Theorem can be reformulated as follows:

The set N cannot be put into one-to-one correspondence with the

set of all its subsets.

The proof can be translated into this language, too. Imagine that

there exists a one-to-one correspondence i 	→ Ai between natural

numbers and sets of natural numbers. The diagonal sequence now

corresponds to the set D of all i ∈ N such that i ∈ Ai. The sequence
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β that is not covered is the complement of D: B = {i | i /∈ Ai}. It is
clear that B differs from any Ai (at place i).

Now we are ready to generalize this argument and prove the fol-

lowing general form of Cantor’s Theorem:

Theorem 8 (General form of Cantor’s Theorem). For an arbitrary

set X there is no one-to-one correspondence between X and the power

set P (X) (the set of all subsets of X).

Proof. Let ϕ be a one-to-one correspondence between X and P (X)

(and ϕ(x) is a set that corresponds to x ∈ X). Consider the set Z

of all elements x ∈ X that do not belong to the corresponding subset

ϕ(x):

Z = {x ∈ X | x /∈ ϕ(x)}.
Let us prove that Z does not correspond to any element of X, i.e.,

that Z �= ϕ(z) for any z ∈ X. Indeed, assume that Z = ϕ(z) for

some z. Then

z ∈ Z ⇔ z /∈ ϕ(z) ⇔ z /∈ Z

(according to the definition of Z; recall that ϕ(z) = Z). This contra-

diction shows that the set Z does not correspond to any element z

and ϕ is not a one-to-one correspondence.

Note that Theorem 8 and its proof are still valid for the empty X

(in this case P (X) has one element).

Note also that any set X can be put into one-to-one correspon-

dence with some subset of the set P (X). Indeed, each element x ∈ X

corresponds to a singleton {x}. Therefore we can say that X has

smaller cardinality than P (X) (according to the definition on p. 22).

Problem 56. Prove that n < 2n for any natural n = 0, 1, 2, . . . .

Theorem 8 has appeared in Cantor’s paper dated 1890/91. Cantor
considers functions with values 0 and 1 instead of subsets.

Now we have come close to the dangerous point where our intu-

ition about sets becomes self-contradictory. Consider the “universal”

set U that consists of all sets. Then all subsets of U are elements of

U and therefore P (U) ⊂ U . This contradicts Cantor’s Theorem.
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We can unfold this argument and get the so-called Russell’s para-

dox . Traditionally, Russell’s paradox is explained as follows.

Normally a set is not its own element. For example, the set N of

all natural numbers is not a natural number itself and therefore N /∈ N.

On the other hand, one may imagine a set that is its own element.

For example, the set U of all sets is a set and therefore U ∈ U . Let us

say that a set X is “normal” if X is not its own element, i.e., X /∈ X.

Now consider the set N of all normal sets. Is N normal or not? If N

is normal, then N belongs to the set of all normal sets; N ∈ N and

therefore N is not normal. On the other hand, if N is not normal,

then it does not belong to the set N of all normal sets and therefore

is normal. How is that possible?

Another version of this paradox: an adjective is called “self-

referential” if it has the property it describes. For example, the

adjective “English” is self-referential while “Russian” is not. Now

the question: is the adjective “non-self-referential” self-referential or

not? (Any answer immediately leads to a contradiction.)

This reminds of the famous liar’s paradox (“This statement is

false”) or a story about a barber who shaves every man in the village

who does not shave himself. (Question: does the barber shave himself

or not?) [Note for American readers : If the barber story looks like a

paradox to you, this is only because you are a sexist. Of course, the

barber is a woman.]

Trying to develop set theory, we need to isolate the problem and

find out what was illegal in our arguments that have led to Russell’s

paradox. This is quite a nontrivial question, and was widely discussed

during the first half of the 20th century. Here are some conclusions:

• The notion of a set is not intuitively clear. Different people

(and different scientific traditions) may give different mean-

ings to the word “set”.

• Sets are too abstract objects to make the question “What is

in fact true?” meaningful. Recall the Continuum Hypothe-

sis (stated in Cantor’s 1878 paper) saying that any infinite

subset of R is either countable or has the cardinality of the

continuum. Cantor claimed in his paper that CH can be
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proven by some “new approach that uses induction and will

be explained elsewhere”, but in fact he never succeeded in

proving CH. Later people started realizing that CH can be

regarded both as true or false depending on our viewpoint.

Accepting CH or its negation, we come to different theories,

but neither of them is clearly preferable.

The situation is somewhat similar to non-Euclidean ge-

ometries. We may consider Euclid’s fifth postulate (only one

line parallel to a given line can pass through a given point) as

true statement. The resulting geometry is called Euclidean.

On the other hand, we may declare the negation of the fifth

postulate to be an axiom. Then we get non-Euclidean geom-

etry where there exist a point and two lines that both pass

through this point and are parallel to a third line. This ge-

ometry was developed (among others) by Lobachevsky and

is sometimes called Lobachevsky geometry.

Which geometry is the “right” one: Euclidean or non-

Euclidean? This is a not a mathematical question, and we

should ask physicists, not mathematicians. (And modern

physicists will not answer this question either. Instead, they

will explain to you that they use both geometries to construct

models of the real world.)

The same is true for set theory: it is quite clear that nei-

ther mathematicians nor physicists should be asked whether

CH is true or not, and only theology may provide the ultimate

answer. (By the way, Cantor discussed questions related to

set theory with professional theologists.)

• To avoid troubles while reasoning about sets, we have to be

cautious. Some kinds of arguments are especially dangerous.

The safety rules (that work, at least for now) are formulated

in axiomatic set theory. There are several versions of ax-

iomatic set theory. The most well known is ZF (named after

Zermelo and Fraenkel). Adding the axiom of choice AC to

ZF, we get a theory called ZFC.

We will not develop axiomatic set theory in this book. Instead,

we give an informal description of restrictions that are useful to avoid
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paradoxes. It is not allowed to consider the set of all elements with

some property because there are too many “potential candidates”.

The sets can be constructed only stepwise, using the sets already

constructed. For example, for any set X it is allowed to consider the

power set P (X) that consists of all subsets of X (power set axiom).

It is allowed to consider a subset of a given set that is formed by the

elements that have some property (axiom of separation). It is allowed

to consider the union of a given set of sets, i.e., for a given set X it is

allowed to consider the set that consists of all elements of all elements

of X (axiom of union). There are some other axioms.

We will continue our informal exposition but will try to warn the

reader when we come close to a dangerous place, as we have done

when we tried to define the cardinality of a set as the class of all sets

having the same cardinality.

7. Functions

Up to now we have avoided formal definitions when speaking about

functions, their arguments, values, composition of functions, etc. Now

we give more formal definitions.

Let A and B be two sets. Consider the set of all ordered pairs

〈a, b〉 for all a ∈ A and b ∈ B. This set is called the Cartesian product

of A and B and is denoted by A×B. (But what is an “ordered pair”?

We return to this question later; see p. 34.)

Any subset R ⊂ A×B is called a binary relation between elements

of A and B. Sometimes A coincides with B and we get a binary

relation on A. For example, there is a binary relation “to be a divisor

of” on the set N that can be denoted by “|”. One may write that

“〈2, 6〉 ∈ |” (2 is a divisor of 6) and “〈2, 7〉 /∈ |” (2 is not a divisor of

7). However, the “infix” notation (like “2|6”) is traditionally used in

this case.

Problem 57. Are the relations “to be a divisor of” and “to be a

multiple of” the same relation or are they different? (Answer : Of

course, they are different, since an ordered pair 〈a, b〉 differs from the

ordered pair 〈b, a〉.)
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If a function f can be applied to elements of a set A and its values

are elements of a set B, we may consider the relation between elements

of A and B that consists of all pairs 〈x, f(x)〉 (for all x ∈ X). This

relation can be called the graph of the function f . (This terminology

is used in calculus where each function f : R → R has the graph that

consists of all points on the plane having coordinates 〈x, f(x)〉.)
However, from the formal viewpoint it is easier to identify a func-

tion with its graph. We come to the following definition:

A relation F ⊂ A× B is called a (partial) function from A to B

if F does not contain two pairs 〈a, b1〉 and 〈a, b2〉 with b1 �= b2. In

other terms, F is a (partial) function from A to B if for any a ∈ A

there exists at most one element b ∈ B such that 〈a, b〉 ∈ F .

The domain DomF of the function F is the set of all a ∈ A for

which such b exists. For any a ∈ DomF we may regard the value of

F at a as the (only) element b ∈ B such that 〈a, b〉 ∈ F . This element

is denoted by F (a).

All values F (a) for all a ∈ DomF form a set that is called the

range of the function F and is denoted by ValF .

We say that F is undefined on a if a /∈ DomF . Note that our

definition does not require a function from A to B be defined on all

elements of A; its domain may be any subset of A. (And its range

ValF may be any subset of B.)

If F is defined on all elements of A, we write f : A → B and say

that f is a total function defined on A.

Here is an example. An identity function idA : A → A has domain

A and range A; it is a set of pairs 〈a, a〉 (for all a ∈ A), and idA(a) = a

for any a ∈ A. (The subscript A in idA is sometimes omitted when

A is clear from the context.)

The composition of two functions f : A → B and g : B → C is

the function h : A → C such that h(x) = g(f(x)) for any x ∈ A. In

other terms, h is a set of pairs

{〈a, c〉 | 〈a, b〉 ∈ f and 〈b, c〉 ∈ g for some b ∈ B}.

We denote the composition by g ◦ f (note that the function on the

right of the ◦ sign is applied first).
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The composition is an associative operation on functions, i.e.,

h ◦ (f ◦ g) = (h ◦ f) ◦ g; therefore we may omit parentheses when

several functions are composed.

Let f : A → B, and let B′ be a subset of B. Consider the set of

all x ∈ A such that f(x) ∈ B′. This set is called the preimage of B′

under f and is denoted by f−1(B′):

f−1(B′) = {x ∈ A | f(x) ∈ B′}.

The image of a set A′ ⊂ A under f is the set of all values f(a)

for all a ∈ A′. Notation: f(A′). In other terms,

f(A′) = {f(a) | a ∈ A′}
= {b ∈ B | 〈a, b〉 ∈ f for some a ∈ A′}.

A pedantic reader will note that the notation f(. . . ) is used both

for the image of a set and for the value of the function. However, the

risk of misunderstanding is minimal and the meaning is clear from

the context.

Problem 58. Which of the following equalities are true for any

f : A → B, g : B → C, A′, A′′ ⊂ A, B′, B′′ ⊂ B, C ′ ⊂ C?

f(A′ ∩A′′) = f(A′) ∩ f(A′′);

f(A′ ∪A′′) = f(A′) ∪ f(A′′);

f(A′ \A′′) = f(A′) \ f(A′′);

f−1(B′ ∩B′′) = f−1(B′) ∩ f−1(B′′);

f−1(B′ ∪B′′) = f−1(B′) ∪ f−1(B′′);

f−1(B′ \B′′) = f−1(B′) \ f−1(B′′);

f−1(f(A′)) ⊂ A′;

f−1(f(A′)) ⊃ A′;

f(f−1(B′)) ⊂ B′;

f(f−1(B′)) ⊃ B′;

(g ◦ f)(A) = g(f(A));

(g ◦ f)−1(C ′) = f−1(g−1(C ′)).

Functions are also called mappings.
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A function f : A → B is an injection if f(a) �= f(a′) for any

a, a′ ∈ A such that a′ �= a.

A function f : A → B is a surjection if its range coincides with B.

These two definitions are more similar than one may think, as

the following problems show:

Problem 59. Prove that a function f : A → B is an injection if and

only if f has a left inverse, i.e., there exists a function g : B → A such

that g ◦ f = idA. Prove that a function f : A → B is a surjection if

and only if f has a right inverse, i.e., there exists a function g : B → A

such that f ◦ g = idB.

Problem 60. Prove that a function f : A → B is an injection if and

only if the left cancellation property holds: f ◦ g1 = f ◦ g2 implies

g1 = g2 for any two functions g1, g2 whose ranges are subsets of A.

Prove that a function f : A → B is a surjection if and only if the right

cancellation property holds: g1 ◦ f = g2 ◦ f implies g1 = g2 for any

two functions g1, g2 whose domains equal B.

A function f : A → B is a bijection or one-to-one correspondence

if it is injective and surjective.

For each bijection f : A → B there exists an inverse function f−1

such that f−1(y) = x ⇔ f(x) = y.

Problem 61. Let a function f : A → B has both the left inverse

function g1 : B → A and the right inverse function g2 : B → A. Is it

possible that g1 �= g2?

Recall that sets A and B have the same cardinality if there exists

a bijection f : A → B. What can be said about A and B if there

is an injection f : A → B? It is easy to see that f is a one-to-one

correspondence between A and f(A). Therefore, such an injection

exists if and only if B has a subset that has the same cardinality as

A, i.e., if the cardinality of A does not exceed the cardinality of B;

see the definition given in Section 5 of this chapter.

A “dual” result is also true: a surjection f : A → B exists if and

only if the cardinality of B does not exceed the cardinality of A.

Indeed, let f : A → B be a surjection. Then for each b ∈ B there

exists at least one element a ∈ A such that f(a) = b. Selecting one

element for each b ∈ B, we form a set A′ ⊂ A and get a one-to-one
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correspondence between A′ and B. (Note that we again use the axiom

of choice; see p. 10.)

On the other hand, if a subset A′ ⊂ A has the same cardinality

as B and g : A′ → B is a bijection, we can get a surjection f : A → B

by extending g (so that f(x) = g(x) for x ∈ A′; the values f(x) for

x /∈ A′ may be chosen arbitrarily).

Problem 62. Before moving further, find an error in the argument

presented in the previous paragraph.

In fact such an extension is possible only if B is not empty, and so

the correct statement reads as follows: a surjection f : A → B exists

if and only if B is not empty and the cardinality of B does not exceed

the cardinality of A, or if both sets A and B are empty.

There is one more question that we have to discuss: what is an

“ordered pair”? Informally speaking, we need a tool that combines

two objects x and y into one composite object 〈x, y〉 in such a way

that

〈x1, y1〉 = 〈x2, y2〉 ⇔ x1 = x2 and y1 = y2.

One may take the notion of an ordered pair as a basic notion

and regard the equivalence above as an axiom about ordered pairs.

However, more traditional approach uses a trick invented by the Pol-

ish mathematician Kuratowski. Recall that {x} is a set whose only

element is x (a singleton), and {x, y} is a set that consists of x and

y. (So {x, y} = {x} = {y} if x = y.)

Theorem 9 (Ordered pairs). Let us define an ordered pair 〈x, y〉 as
{{x}, {x, y}}. Then

〈x1, y1〉 = 〈x2, y2〉 ⇔ x1 = x2 and y1 = y2.

Proof. Assume that 〈x1, y1〉 = 〈x2, y2〉. By definition this means

that

{{x1}, {x1, y1}} = {{x2}, {x2, y2}}.
Now we have to consider all possibilities case by case (and be careful

not to mix x and {x}).
A. Assume that x1 �= y1. Then the set {x1, y1} consists of two

elements. This set belongs to the left-hand side; therefore it belongs

to the right-hand side. Thus, it must be equal to either {x2} or
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{x2, y2}. The first case is impossible (a two-element set cannot be

equal to a singleton). Therefore, {x1, y1} = {x2, y2}. On the other

hand, the singleton {x1} belongs to the left-hand side; therefore it

belongs to the right-hand side and is equal to {x2} (since it cannot

be equal to a two-element set). Hence x1 = x2 and y1 = y2.

B. The case x2 �= y2 is similar.

C. Let x1 = y1 and x2 = y2. Then {x1, y1} = {x1}, and so the

left-hand side is {{x1}}. For the same reason the right-hand side

is {{x2}}. Therefore, x1 = x2, and all four elements x1, x2, y1, y2
coincide.

Note that a similar theorem is true for other definitions of the or-

dered pair, and there is nothing special about Kuratowski’s definition:

it is just a convenient trick.

Problem 63. Prove a statement similar to Theorem 9 for another

definition of the ordered pair (suggested by Norbert Wiener):

〈x, y〉 = {{∅, {x}}, {{y}}}.

8. Operations on cardinals

Let A and B be two finite sets; A consists of a elements and B consists

of b elements. Then A × B consists of ab elements. This statement

can be taken as a definition of multiplication: ab is the cardinality of

the set A×B, where |A| = a, |B| = b.

We can define addition of natural numbers in a similar way: a+b

is the cardinality of the set A ∪ B, where |A| = a, |B| = b, and the

sets A and B are disjoint.

These definitions allow us to extend addition and multiplication

from natural numbers to any cardinal numbers (cardinalities of ar-

bitrary sets). We define the product of cardinal numbers a and b as

the cardinality of A×B, where A has cardinality a and B has cardi-

nality b. We define the sum of two cardinal numbers a and b as the

cardinality of A ∪B, where A and B are disjoint sets of cardinalities

a and b.

Remarks. 1. As we have explained, the use of cardinals (car-

dinal numbers) as separate entities requires some caution. A safer



36 1. Sets and Their Cardinalities

approach allows only statements like “the cardinality of the set X is

the product of the cardinalities of the sets A and B” (which means

that there exists a one-to-one correspondence between X and A×B)

but does not allow us to talk about cardinal numbers.

A careful reader can verify that all statements about cardinal

numbers that appear in our book can be translated into this language

in a straightforward way.

2. A pedantic reader would also mention that we have to prove

that the cardinality of A×B does not depend on the choice of specific

sets A and B: if A � A′ and B � B′, then A × B � A′ × B′. (This

is indeed evident.) A similar remark can be made about addition.

3. An even more pedantic reader would also mention that we

have to prove that for given A and B we can always find disjoint sets

A′ and B′ that have the same cardinalities as A and B. This is also

evident: let (say) A′ = A× {0} and B′ = B × {1}.
Now we define exponentiation for cardinals. Let A and B be finite

sets that have a and b elements. We have to find a set that can be

naturally defined in terms of A and B and consists of ab elements.

The natural choice is the set of all functions f : B → A (functions

that have domain B and whose values are elements of A). This set is

denoted by AB .

Let us explain why |AB | = ab (for finite sets A and B). Indeed,

to specify a function f ∈ AB we have to specify its value at each

element x ∈ B. For each x ∈ B we have a different possibilities, and

choices for different x are independent; therefore we have a · a · · ·a (b

times) possibilities.

Therefore, we can define ab as the cardinality of the set AB, where

A and B are sets of cardinalities a and b. This definition is consistent

with the standard definition of ab for natural numbers a and b.

Problem 64. What is 00 according to our definition? (Answer : 1.)

Example. Let 2 denote a set that consists of two elements, e.g.,

{0, 1}. What is 2N? According to our definition, this is a set of

all functions f : N → {0, 1}. These functions are infinite sequences

of zeros and ones (a function is a sequence f(0)f(1)f(2) . . . ). There

exists a natural one-to-one correspondence between 2X and P (X) (we
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have seen it for the special case X = N, but the same construction

works for any X).

Standard properties of addition and multiplication (commuta-

tive, associative and distributive laws) are true for the operations on

cardinals:

a+ b = b+ a;

a+ (b+ c) = (a+ b) + c;

a× b = b× a;

a× (b× c) = (a× b)× c;

(a+ b)× c = (a× c) + (b× c).

These laws can be stated without using cardinals as separate

entities. For example, a× b = b× a means that there exists a one-to-

one correspondence between A×B and B×A (indeed, 〈x, y〉 	→ 〈y, x〉
can be used). Other properties are also easy to prove.

Somewhat more work is needed for laws that involve exponenti-

ation:

ab+c = ab × ac;

(ab)c = ac × bc;

(ab)c = ab×c.

Let us prove the first one. What is AB+C for disjoint B and

C? Elements of AB+C are functions of type B ∪ C → A. Such a

function consists of two parts: its restriction to B (that is obtained if

we forget about arguments in C) and its restriction on C. Thus, for

each element of AB+C we get a pair of functions, the first belonging

to AB, the second belonging to AC . This mapping is a one-to-one

correspondence between AB+C and AB ×AC .

A correspondence between (A× B)C and AC × BC is also often

used. For example, an element of (R × R)R is a mapping of type

R → R × R, i.e., a curve t 	→ z(t) = 〈x(t), y(t)〉 on the coordinate

plane. Such a curve is determined by a pair of functions x, y : R → R.

A correspondence between (AB)C and AB×C is used less fre-

quently. An element f ∈ AB×C is a mapping of type B×C → A, i.e.,
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a function of two arguments. The first argument belongs to B, and

the second to C. If we fix the second argument, we get a function

fc : B → A, defined as fc(b) = f(b, c) (to be formal, we should write

f(〈b, c〉) instead of f(b, c)). The mapping c 	→ fc belongs to (AB)C

and corresponds to an element f ∈ AB×C . (A similar construction is

used in algebra when we regard a polynomial in two variables x, y as

a polynomial in one variable x whose coefficients are polynomials in

y; the ring Z[x, y] is isomorphic to (Z[y])[x].)

Cardinality of countable sets is denoted by ℵ0. The continuum

cardinality (the cardinality of R or the set of infinite sequences of

zeros and ones) is denoted by c. By definition, c = 2ℵ0 .

A curious reader would ask: what does subscript 0 in ℵ0 mean?

What is, say, ℵ1? Usually ℵ1 means the minimal uncountable (infi-

nite) cardinal. (As we will see later, it does exist.) The continuum

hypothesis (see p. 28) says that c = ℵ1.

Now we can write known properties of countable sets as identities:

• ℵ0 + n = ℵ0 for finite n (the union of a finite set and a

countable set is countable);

• ℵ0 + ℵ0 = ℵ0 (the union of two countable sets is countable);

• ℵ0 × ℵ0 = ℵ0 (the union of a countable family of countable

sets is countable).

These identities can be combined to get other theorems about

cardinalities. For example,

c× c = 2ℵ0 × 2ℵ0 = 2ℵ0+ℵ0 = 2ℵ0 = c

means that real line and coordinate plane have the same cardinality.

In a similar way,

c
ℵ0 = (2ℵ0)ℵ0 = 2ℵ0×ℵ0 = 2ℵ0 = c.

(The set of infinite sequences of real numbers has the same cardinality

as the set of real numbers.)

Problem 65. Explain the following computation:

c+ c = 1× c+ 1× c = 2× c = 21 × 2ℵ0 = 21+ℵ0 = 2ℵ0 = c.

Problem 66. Prove that ℵ0 × c = c.
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These properties of cardinals are useful together with the Cantor–

Bernstein Theorem. For example, note that

c = 2ℵ0 ≤ ℵ0
ℵ0 ≤ cℵ0 = c;

therefore ℵ0
ℵ0 = c (the set of all infinite sequences of natural numbers

has the cardinality of the continuum).

Problem 67. The latter computation has implicitly used the mono-

tonicity of exponentiation (a1 ≤ a2 implies ab1 ≤ ab2). Prove this

property and similar properties for other operations (they are quite

evident, though).

Problem 68. Construct an explicit one-to-one correspondence be-

tween the infinite sequences of natural numbers and the irrational

numbers in the interval (0, 1) using continuous fractions, i.e., frac-

tions of type 1/(n0 + 1/(n1 + 1/(n2 + · · · ))).
Problem 69. Prove that ℵc

0 = 2c. (Cantor’s Theorem says that this

cardinal is greater than c.)

Problem 70. Find the cardinality of the set of all continuous func-

tions of type R → R. Does it change if we omit the continuity re-

quirement?

Problem 71. Find the cardinality of the set of all monotone func-

tions of type R → R.

Problem 72. A family of subsets of N has the following property:

any two elements of the family have finite intersection. Can this

family have the cardinality of the continuum? The same question if

any two elements of this family have finite symmetric difference.

We shall see later that a× b = a+ b = max(a, b) for any infinite

cardinals a and b, but the proof requires transfinite induction. There-

fore, solving Problems 47 and 48 we had to use a special construction

to prove that a+ b = c implies a = c or b = c. The following theorem

generalizes this trick:

Theorem 10. Assume that

A1 ×A2 × · · · ×An = B1 ∪B2 ∪ · · · ∪Bn.

Then there exists i such that the cardinality of Ai does not exceed the

cardinality of Bi.
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Proof. Consider the projection of Bi ⊂ A1 × · · · × An onto Ai for

i = 1, . . . , n, i.e., the set of all elements of Ai that appear as ith

elements of tuples in Bi. If this projection coincides with Ai (for

some i), the theorem is proved. If not, let xi ∈ Ai be a point that is

not covered. The n-tuple 〈x1, . . . , xn〉 does not belong to any Bi, but

this is impossible because of our assumption.

The statement of Theorem 10 (it is sometimes called Koenig’s

Theorem) involves the Cartesian product of n sets. It can be defined

inductively (e.g., A × B × C consists of triples 〈a, b, c〉 that can be

identified with pairs 〈〈a, b〉, c〉). This approach does not allow us to

define the Cartesian product of a countable family of sets. However,

we can overcome this difficulty and defineA0×A1×A2×· · · (countably
many factors) as the set of all sequences a0, a1, a2, . . . such that ai ∈
Ai (the set of all functions of type N → A0 ∪A1 ∪A2 ∪ · · · such that

a(i) ∈ Ai for all i ∈ N). This definition allows us to extend Koenig’s

Theorem to countable (or even uncountable) products.

Reformulation of Koenig’s Theorem: If bi < ai for all i = 0, 1, . . .

(here ai and bi are cardinal numbers), then

b0 + b1 + b2 + · · · < a0 × a1 × a2 × · · · .

Recalling that c× c× · · · (countably many factors) is cℵ0 = c, we

get the following corollary of Koenig’s Theorem: If a set of continuum

cardinality is a union of a countable family of sets, then at least one

of these sets has continuum cardinality.

Problem 73. Give a detailed proof of the last statement.

Problem 74. Let a0, a1, a2, . . . be cardinals such that ai ≥ 2 for

all i. Prove that

a0 + a1 + a2 + · · · ≤ a0 × a1 × a2 × · · · .

Problem 75. Let m0 < m1 < m2 < · · · be an increasing sequence

of cardinals. Prove that the sum m0+m1+m2+ · · · differs from aℵ0

for any cardinal a.



Chapter 2

Ordered Sets

1. Equivalence relations and orderings

Recall that a binary relation on a set X is defined simply as a subset

R ⊂ X ×X; usually one writes xRy instead of 〈x, y〉 ∈ R.

A binary relation R on X is called an equivalence relation if it

possesses the following properties:

• (reflexivity) xRx for all x ∈ X.

• (symmetry) xRy ⇒ yRx for all x, y ∈ X.

• (transitivity) xRy and yRz ⇒ xRz for all x, y, z ∈ X.

The following obvious statement is used frequently:

Theorem 11. (a) If a set X is split into a union of disjoint subsets,

then the relation “to be in the same subset” is an equivalence relation.

(b) Any equivalence relation can be obtained in such a way.

Proof. The first statement is absolutely obvious. We prove the sec-

ond to show how to make use of all the properties mentioned in the

definition. Indeed, let R be an equivalence relation. For any element

x ∈ X consider its equivalence class, the set of all y ∈ X such that

xRy.

Let us prove that for any two elements x1, x2 their equivalence

classes are either disjoint or coincide. Let z be a common element
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of the two classes. Then x1Rz and x2Rz, and therefore zRx2 (by

symmetry) and x1Rx2 (by transitivity), and also x2Rx1 (by symme-

try again). Thus for any z the statement x1Rz implies x2Rz (by

transitivity), and vice versa.

It remains to note that by reflexivity any element x belongs to

its own class, which means that the set X is indeed split into disjoint

equivalence classes.

Problem 76. Show that the symmetry and transitivity requirements

can be replaced by the following single requirement: xRz and yRz ⇒
xRy (reflexivity is still needed).

Problem 77. How many equivalence relations are there on the set

{1, 2, 3, 4, 5}?
Problem 78. There are two equivalence relations ∼1 and ∼2 defined

on the set M , having n1 and n2 equivalence classes, respectively. Is

their intersection x ∼ y ⇔ [(x ∼1 y) and (x ∼2 y)] an equivalence

relation? How many classes can it have? What can be said about the

union of the relations?

Problem 79. (Ramsey Theorem.) The set of all k-element subsets

of some infinite set A is split into l classes (k, l are positive integers).

Prove that there exists an infinite set B ⊂ A such that all its k-

element subsets belong to the same class.

(It is evident for k = 1: if an infinite set is split into a finite

number of classes, then one of these classes is infinite. For k = 2 and

l = 2 the statement can be reformulated as follows: given an infinite

set of people, one can choose either infinitely many people such that

any two of them are acquainted or infinitely many people such that

no two of them are acquainted. A finite version of this statement

claims that of every six people there are either three acquaintances

or three people unacquainted with one another; this is a well-known

puzzle.)

The set of all equivalence classes is called the quotient set of the

set X modulo the equivalence relation R. (If the relation respects an

additional structure on X, then one obtains quotient groups, quotient

rings, etc.)
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We will come across equivalence relations many more times, but

our main topic now is orderings (order relations).

A binary relation ≤ on a set X is called a partial order if it has

the following properties:

• (reflexivity) x ≤ x for all x ∈ X;

• (antisymmetry) x ≤ y and y ≤ x ⇒ x = y for all x, y ∈ X;

• (transitivity) x ≤ y and y ≤ z ⇒ x ≤ z for all x, y, z ∈ X.

(Following the tradition, we use the symbol “≤” rather than a letter,

to denote an ordering relation.) The set with a partial order defined

on it is called a partially ordered set, or just poset.

Two elements x, y of a partially ordered set are called comparable

if either x ≤ y or y ≤ x. Notice that the definition of a partially

ordered set does not require that any two elements are comparable.

Such a requirement added, we obtain the definition of the linear order

(called also total order). A set with a linear (= total) order is called

linearly (or totally) ordered set.

Here are some examples of posets:

• Any subset of R with the usual ≤-relation is a linearly ordered

set.

• Consider the following (coordinatewise) order on the set R×R

of pairs of real numbers: (x1, x2) ≤ (y1, y2) if x1 ≤ y1 and

x2 ≤ y2. This order is not linear (for example, the pairs (1, 0)

and (0, 1) are not comparable).

• Consider the following (pointwise) order on the set of all func-

tions of type R → R: f ≤ g if f(x) ≤ g(x) for all x ∈ R. This

order is not linear.

• Consider the following order on the set of positive integers:

x ≤ y if x is a divisor of y. This order is not linear either.

• A relation “any prime factor of the number x is a factor of

the number y” is not an order on the set of positive integers:

it is reflexive and transitive, but not antisymmetric.

• Let U be an arbitrary set. Then the subset relation ⊂ is a

partial order on the set P (U) of all subsets of U .
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• There exists a traditional alphabetical order of letters of the

English alphabet: (a ≤ b ≤ c ≤ · · · ≤ z). This order is

linear — for any two letters it is known which one comes first

(consult a dictionary if necessary).

• There is a lexicographical order (the one used in dictionaries)

on the set of all English words. Its formal definition looks

like that: if a word x is a prefix of a word y, then x ≤ y

(e.g., fact ≤ factor). If neither word is a prefix of the other,

then find the leftmost position in which the letters in two

words are different and look which letter goes first in the

alphabetical order. This ordering is also linear (otherwise

dictionary makers and users would have been in trouble).

• The equality relation ((x ≤ y) ⇔ (x = y)) is also a partial

order, such that no two different elements are comparable.

• An almost real-life example: suppose X is a set of boxes. We

say that x ≤ y if the box x can be put inside the box y (or

if x and y are the same box). Depending on the set of boxes

available, this order may be linear or not.

Let x, y be elements of a partially ordered set X. One says that

x < y if x ≤ y and x �= y. The <-relation has the following properties:

x �< x;

(x < y) and (y < z) ⇒ x < z.

(The first property is evident. Prove the second: assume that x < y

and y < z, that is, x ≤ y, x �= y, y ≤ z and y �= z. Then x ≤ z

by transitivity. If x = z then x ≤ y ≤ x, and therefore x = y by

antisymmetry, contrary to our assumptions.)

Note the usual word usage: we read the sign “≤” as “less or

equal”, and the sign “<” as “less (than)”, assuming implicitly that

x ≤ y if and only if either x < y or x = y. Luckily, this is indeed

true. Another note: expression x > y (x is greater than y) means

that y < x, and expression x ≥ y (x is greater than or equal to y)

means that y ≤ x.

Problem 80. Explain why it is a bad idea to read x ≤ y as “x is not

greater than y”.
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Some authors define a partial ordering as a relation < having the

two properties mentioned above. In this case the relation x ≤ y ⇔
[(x < y) or (x = y)] is a partial ordering according to our definition.

Problem 81. Check the latter assertion.

To avoid confusion, a relation < is sometimes called a strict or-

dering, while the relation ≤ is called a nonstrict ordering. There are

different ways to define a partially ordered set: it is possible to start

with a definition of a nonstrict ordering ≤ (reflexive, antisymmetric

and transitive) and to derive a strict ordering < from it (as we have

done), and it is possible to go in the other direction.

Problem 82. Omitting the property of antisymmetry in the defini-

tion of a partial order, one obtains a definition of a preorder. Prove

that any preorder can be described as follows: the set is split into

disjoint classes such that x ≤ y for any two elements x, y of the same

class, and the quotient set bears a partial order that defines the result

of comparison for two elements of different classes.

Here are some operations on posets.

• Let Y be a subset of a partially ordered set (X,≤). Then a

partial order on the set Y is defined as follows:

(≤Y ) = (≤) ∩ (Y × Y ).

This order is called the induced order. IfX is linearly ordered,

then the induced order on Y is also linear.

• Let X and Y be two disjoint posets. Then one can define a

partial order on their union as follows: an element of X is (by

definition) less than any element of Y , and two elements of

the same set are compared as before. This partially ordered

set is denoted by X + Y and called the sum of posets X and

Y . The ordering on X + Y is linear if both X and Y are

linearly ordered.

The same notation is used for nondisjoint (or even equal)

sets. For example, we can define an ordered set N + N as

follows. Take two disjoint copies of the set of natural num-

bers, {0, 1, . . . } and {0̄, 1̄, . . . }, and consider the set {0, 1, . . . ,
0̄, 1̄, . . . }, where k ≤ l̄ for any k and l, and inside either copy

the ordering is the usual one.
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• Let (X,≤X) and (Y,≤Y ) be two partially ordered sets. There

are several ways to define an ordering on their productX×Y .

One can assume that (x1, y1) ≤ (x2, y2) if x1 ≤X x2 and

y1 ≤Y y2 (componentwise ordering). This ordering is not lin-

ear even if both the original orderings were: if the first com-

ponent is greater for one pair and the second for the other

pair, the pairs are not comparable. To obtain a linear order-

ing, we may agree that some coordinate is “principal”, and

compare first these coordinates, and only afterwards (as a

tie-break) the second ones. If the X-coordinate is “principal”

then (x1, y1) ≤ (x2, y2) if either x1 <X x2 or x1 = x2 and

y1 ≤Y y2. For technical reasons, though, it is more conve-

nient to take the second coordinate as “principal”. Speaking

about a linear ordering on the product of two linearly ordered

sets, we will always assume this latter ordering (the second

coordinates are compared first).

Problem 83. Prove that a partially ordered set N×N (with compo-

nentwise ordering) does not contain an infinite subsetX such that any

two distinct elements of X are noncomparable. Is a similar statement

true for Z× Z?

Problem 84. Prove a similar statement for Nk with the component-

wise ordering.

Problem 85. Let U be a finite set of n elements. Consider the set

P (U) of all the subsets of U partially ordered by inclusion. What

is the maximum possible cardinality of a set S ⊂ P (U) such that

the ordering induced on S is linear? What is the maximum possible

cardinality if no two distinct elements of S are comparable? (Hint :

See Problem 14.)

Problem 86. How many linear orderings are there on a set of n

elements?

Problem 87. Prove that any partial ordering on a finite set can be

extended to a linear ordering (“extension” means that if x ≤ y in the

original ordering, then it is true also in the new ordering).

Problem 88. Let X be an infinite partially ordered set. Prove

that it either contains an infinite subset whose elements are pairwise
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incomparable or it contains an infinite subset such that the induced

ordering on it is linear (or both).

Problem 89. (A finite version of the previous problem.) Let m and

n be positive integers. Prove that any partially ordered set of cardi-

nality mn+ 1 contains either m+ 1 pairwise incomparable elements

or n+ 1 pairwise comparable elements.

Problem 90. A sequence consists of mn+1 numbers. Prove that it

is possible to remove some of them so that remaining elements form

either an increasing sequence of length m+1 or a decreasing sequence

of length n+ 1. (Hint : Use the previous problem.)

Problem 91. Consider the set of all subsets of the set of nonnegative

integers, ordered by inclusion. Does it contain a linearly ordered sub-

set of continuum cardinality? Does it contain a subset of continuum

cardinality such that no two of its elements are comparable?

An element of a poset X is called the greatest element of X if it is

greater than any other element, and a maximal element if no greater

element exist. If the set is not linearly ordered, these two notions

are different: the greatest element is automatically maximal, but the

converse is not necessarily true. (The box capable of containing any

other box is not the same as the box that does not fit anywhere.)

The least element and a minimal elements are defined in a similar

way.

It is easy to see that only one greatest element may exist in a given

partially ordered set, while there may be several maximal elements.

Problem 92. Prove that no two maximal elements are comparable.

Prove that in a finite posetX for any element x there exists a maximal

element y greater than or equal to x.

2. Isomorphisms

Two partially ordered sets are called isomorphic if there exists an

isomorphism, that is, a one-to-one correspondence between them re-

specting the order. (In particular, isomorphic sets have the same

cardinality.) Let us say it again: a bijection f : A → B is an isomor-
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phism of posets A and B if

a1 ≤ a2 ⇔ f(a1) ≤ f(a2)

for any elements a1, a2 ∈ A (the sign “≤” on the left means the

ordering in the set A, and that on the right, in the set B).

It is clear that the isomorphism relation is reflexive (any poset

is isomorphic to itself), symmetric (if X is isomorphic to Y , then Y

is isomorphic to X) and transitive (two sets isomorphic to the third

one are isomorphic). Thus, all partially ordered sets are split into

classes of isomorphic sets, called order types. (Like with cardinalities,

one has to be cautious here: there are too many isomorphic sets, and

therefore it is not safe to speak about order types as sets.)

Theorem 12. Finite linearly ordered sets containing equal number

of elements are isomorphic.

Proof. A finite linearly ordered set must contain the least element.

Indeed, take any element; if it is not the least one, take a smaller one;

if this one is not the least one either, take yet a smaller one, etc. We

obtain a decreasing sequence x > y > z > · · · , which must terminate

somewhere.

Assign the number 1 to the least element, remove it from the set

and take the least element among the rest; assign the number 2 to it,

and so on. It is easy to see that the ordering of elements is the same

as the ordering of numbers, that is, our set is isomorphic to the set

{1, 2, . . . , n}.

Problem 93. Prove that the set of all positive divisors of the number

30 ordered by the relation “to be a divisor of” is isomorphic to the

set of all subsets of the set {a, b, c} ordered by inclusion.

Problem 94. Consider the set of all almost-zero sequences of non-

negative integers, that is, the set of sequences such that all but a finite

number of their elements are equal to zero. Introduce the component-

wise ordering in this set: (a0, a1, . . . ) ≤ (b0, b1, . . . ) if ai ≤ bi for all

i. Prove that this partially ordered set is isomorphic to the partially

ordered set of all positive integers with the ordering “to be a divisor

of”.
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If a bijection f : A → A (where A is a poset) is an isomorphism,

f is frequently called an automorphism of A. The identity mapping is

always an automorphism, but some partially ordered sets have more

automorphisms. For example, the function x 	→ x+1 is an automor-

phism of the ordered set Z of integers (with a usual ordering). The

same formula does not define an automorphism of the set of positive

integers because in this case the mapping is not one-to-one.

Problem 95. Show that the ordered set N of nonnegative integers

has only one automorphism (the identity mapping).

Problem 96. Consider the set P (A) of all the subsets of some k-

element set A, partially ordered by inclusion. Find the number of

automorphisms of P (A).

Problem 97. Prove that the set of positive integers with partial

order “to be a divisor of” has many automorphisms: the set of all

automorphisms of this set has continuum cardinality.

Here are some examples of linearly ordered sets that have the

same cardinality but are not isomorphic (by Theorem 12 they are all

infinite).

• The interval [0, 1] (with the usual ordering) is not isomorphic

to the set R because the interval has the greatest element, but

R does not. (Evidently, an isomorphism maps the greatest

element to the greatest element.)

• The set Z (of integers with the usual ordering) is not isomor-

phic to the set Q (of rational numbers). Indeed, let α : Z → Q

be an isomorphism. Take two adjacent integers, say, 2 and 3.

The isomorphism α would map them to two rational numbers

α(2) and α(3) such that α(2) < α(3) (because 2 < 3). Then

rational numbers between α(2) and α(3) should be images

(under α) of some integers between 2 and 3—but there are

no such integers.

• A more complicated example of nonisomorphic sets is Z and

Z + Z. Take two copies of zero in Z + Z; as usual, denote

them 0 and 0̄, with 0 < 0̄. An isomorphism Z+Z → Z would

map them to some integers, a and b, such that a < b. Then

all the elements between 0 and 0̄ (there are infinitely many of
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them, 1, 2, 3, . . . ,−3̄,−2̄,−1̄) should be mapped to integers

between a and b, but there is only a finite number of them.

The nature of this example is different from the previous

one because it is impossible to express the difference between

the ordered sets Z and Z + Z by a formula (which would

be true in one set but false in another). One says that the

ordered sets Z and Z+ Z are “elementary equivalent”.

Problem 98. Prove that the linearly ordered sets Z× N and Z× Z

(with the ordering described on page 46) are not isomorphic.

Problem 99. Are the linearly ordered sets N×Z and Z×Z isomor-

phic?

Problem 100. Are the linearly ordered sets Q × Z and Q × N iso-

morphic?

The mapping x 	→
√
2x is an isomorphism between the intervals

(0, 1) and (0,
√
2). However, it does not define an isomorphism be-

tween the sets of rational points of these intervals (that is, between

Q∩(0, 1) and Q∩(0,
√
2)) because multiplication by

√
2 maps rational

numbers to irrational ones. Nevertheless, it is possible to construct

an isomorphism between these sets. To do this, take increasing se-

quences of rational numbers 0 < x1 < x2 < · · · and 0 < y1 < y2 < · · ·
convergent to 1 and to

√
2, respectively, and consider a piecewise lin-

ear function f mapping xi to yi and linear on each interval [xi, xi+1]

(see Figure 5). It is easy to see that the function f is a desired iso-

morphism.

Problem 101. Show that the set of rational points of the interval

(0, 1) is isomorphic to the set Q. (Hint : Here it is also possible

to construct a piecewise linear automorphism. This problem has,

however, another solution: note that the mapping x 	→ 1/x sends

rational numbers to rational numbers.)

The next problem requires a more sophisticated construction (per-

haps the simplest solution is to use Theorem 13):

Problem 102. Prove that the set of binary-rational points of the

interval (0, 1) is isomorphic to the set Q. (The number is binary-

rational if it has the form m/2n where m is an integer and n is a

positive integer.)
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Figure 5. The piecewise linear isomorphism.

Two elements x, y of a linearly ordered set are called adjacent if

x < y and there are no elements between them, that is, there is no z

such that x < z < y. A linearly ordered set is called dense if it has no

adjacent elements (that is, there exists an element between any two

of its elements).

Theorem 13. Any two countable dense linearly ordered sets without

the greatest and the least element are isomorphic.

Proof. Let X and Y be two sets satisfying the hypothesis. Con-

struct an isomorphism between them step by step. After n steps we

would have two n-element subsets Xn ⊂ X and Yn ⊂ Y (we call their

elements “used”) and an order-preserving one-to-one correspondence

between used elements. A step consists in taking an unused element

of one of the sets (say, X) and comparing it with all the used elements

of X. It may be greater than all of them, smaller than all of them,

or may get between two of them, say the ith and (i + 1)th greatest

elements. In all the cases we can find an unused element of Y be-

ing in the same position with respect to the elements of the set Yn

(greater than all, smaller than all, or between the ith and the (i+1)th

greatest elements). Here we are using the hypothesis that Y has no

greatest element, no least element, and no adjacent elements. After

that, we add the chosen elements to Xn and Yn and put them into

correspondence.
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To arrive finally to an isomorphism between the sets X and Y we

must make sure that all the elements of both sets would be used at

some step. This can be done as follows: since both sets are countable,

enumerate their elements and take the unused element with the least

number, from X in the odd-numbered steps and from Y in the even-

numbered steps. This completes the proof.

Problem 103. How many different (nonisomorphic) countable dense

linearly ordered sets (if nothing is known about the greatest and the

least element) are there? (Answer : Four.)

Problem 104. Give an example of two dense linearly ordered sets

of continuum cardinality not isomorphic to each other. (Hint : Try

Q+ R and R+Q.)

Theorem 14. Any countable linearly ordered set is isomorphic to a

subset of the set Q.

Note that we could replace Q by any countable dense set without

the greatest and the least element because they are all isomorphic.

Proof. The proof of this theorem is similar to that of Theorem 13,

but one must take new unused elements from one side only (from

the given set), and look for their counterparts in the set of rational

numbers.

Another proof: note that any countable linearly ordered set X

is isomorphic to a subset of the Q × X, and the set Q × X is a

dense set without the least and the greatest element (and therefore is

isomorphic to Q according to Theorem 13).

3. Well-founded orderings

One of the possible forms of the Induction Principle reads as follows:

Let A(n) be some property of a nonnegative integer n. Assume

that we are able to prove A(n) under the assumption that A(m) is

true for all m < n. Then A(n) is true for all nonnegative integers.

(Note that we suppose that A(0) can be proved without any as-

sumptions because no smaller nonnegative integers exist.)
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What are partially ordered sets such that a similar principle is

true for them? The following simple theorem gives an answer:

Theorem 15. For a partially ordered set X the following three prop-

erties are equivalent:

(a) Any nonempty subset of the set X has a minimal element.

(b) There is no infinite strictly decreasing sequence x0 > x1 >

x2 > · · · of elements of the set X.

(c) The following induction principle is true for X: if (for every

x ∈ X) a property A(y) for all y < x implies A(x), then A(x) holds

for all x ∈ X. Formally it is written like this:

∀x(∀y((y < x) ⇒ A(y)) ⇒ A(x)) ⇒ ∀xA(x).

Proof. Let us prove first that properties (a) and (b) are equivalent. If

x0 > x1 > x2 > · · · is an infinite decreasing sequence, then the set of

its values has no minimal element. Thus, (a) implies (b). Conversely,

if B is a nonempty set without a minimal element, then it is possible to

construct an infinite decreasing sequence as follows. Take an arbitrary

element b0 ∈ B. By assumption, it is not minimal, so one can find

b1 ∈ B such that b0 > b1. For the same reason, there exists b2 ∈
B such that b1 > b2, etc. The elements b0, b1, . . . form an infinite

decreasing sequence.

Now derive the induction principle from the existence of a mini-

mal element for any set. Let A(x) be an arbitrary property which is

not true for some element of the set X. Consider a nonempty set B

of all the elements not possessing the property A. Let x be a min-

imal element of the set B. By assumption, B contains no smaller

elements, and therefore all the elements y < x possess property A.

By the hypothesis, A(x) must be true—a contradiction.

Now let us use the induction princliple to prove that any subset

contains a minimal element. Let B be a subset without a minimal

element. We prove by induction that B is empty. Take the property

A(x) to be x /∈ B. If A(y) is true for all y < x, then B contains no

element less than x. Therefore, if x were an element of B (i.e., if A(x)

were false), then x would be a minimal element of B, but B has no

such elements.



54 2. Ordered Sets

The orderings with properties (a)–(c) are called well-founded.

What examples of well-founded orderings do we know? First, it is

our initial example, the set of nonnegative integers. Another example

is the set N × N of pairs of nonnegative integers (the pair having a

smaller second term is smaller; for breaking ties, compare the first

terms). Indeed, let us check condition (b). It is convenient to refor-

mulate it as follows: any sequence u0 ≥ u1 ≥ u2 ≥ · · · of elements

of the set stabilizes (i.e., starting from some term, all its terms are

equal); evidently, this is an equivalent formulation.

Let a sequence of pairs

(x0, y0) ≥ (x1, y1) ≥ (x2, y2) ≥ · · ·
be given. By the definition of the ordering (second terms are com-

pared first), we have y0 ≥ y1 ≥ y2 ≥ · · · , and therefore the sequence

yi of nonnegative integers stabilizes. After this, the sequence xi must

be nonincreasing, and therefore it stabilizes, too.

The same argument is applicable to a more general situation.

Theorem 16. Let A and B be two well-founded partially ordered

sets. Then their product A×B with the following ordering:

(a1, b1) ≤ (a2, b2) ⇔ [(b1 < b2) or (b1 = b2 and a1 ≤ a2)]

is well founded.

Proof. The second terms of the sequence (a0, b0) ≥ (a1, b1) ≥ · · ·
stabilize; then the first terms stabilize, too.

This theorem implies a similar statement for N × N × N, for Nk

and, generally, for a product of finitely many well-founded posets.

It is even simpler to prove that the sum A+B of two well-founded

partially ordered sets A and B is well founded: the sequence x0 ≥
x1 ≥ x2 ≥ · · · is either contained in B (and then we use the well-

foundedness of B) or contains an element of A. In the latter case,

all the subsequent elements are elements of A, and we use the well-

foundedness of A.

Writing a program (or solving a problem at a math competition),

one often has to prove that some process cannot continue infinitely

long. For example, having written a loop, we often want to be sure
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that the program will eventually leave it. To do this we can, for

example, introduce some nonnegative integer parameter and ensure

it decreases in every step. Then, if this parameter initially equals N ,

the number of iterations is at most N .

There are situations, though, when one cannot estimate the num-

ber of iterations but can nevertheless guarantee that the loop cannot

be executed forever. This happens when there is a parameter taking

its values in some well-founded set and decreasing at every iteration.

Here is an example of a problem using this idea:

Dr. Faust signed a contract with Mephistopheles: every day he

gives Mephistopheles a coin, and in exchange gets any set of coins

he wishes, but all the coins must be of a lesser value (coins come

in a finite number of denominations). Dr. Faust is not allowed to

change (or earn) money anywhere else, but can spend money as he

wishes. Dr. Faust loses when he has no more coins left. Prove that

Mephistopheles will eventually win, whatever set of coins Dr. Faust

initially had.

Solution: Suppose there are k denominations of coins. The re-

quired parameter is defined as follows: count the coins of every type

Dr. Faust has (n1 being the number of the smallest coins, n2, next

smallest, and so on till nk). Note that after each exchange the array

(n1, . . . , nk) decreases with respect to the usual ordering: first com-

pare the kth (last) terms, then the (k − 1)th terms, and so on. The

ordered set Nk is well founded, and therefore the process should stop.

Problem 105. A finite sequence of zeros and ones is given. Consider

the following operation: a substring “01” can be replaced by the

substring “100 . . . 00” (any number of zeros is allowed). Prove that

such an operation can be carried out only finitely many times.

Problem 106. Consider the set of all finite strings of English letters

with lexicographical order (see page 44). Is this ordered set well

founded?

Problem 107. Consider the set A of all nonincreasing “almost-zero”

sequences of nonnegative integers (“almost-zero” means that all but

a finite number of terms are zero). Introduce the following ordering:
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first compare the first terms; if they are equal, compare the second

terms, etc. Prove that this set is well founded.

Problem 108. Consider the set of all polynomials in one variable

x whose coefficients are nonnegative integers. Order it as follows: a

polynomial P is greater than a polynomial Q if P (x) > Q(x) for all

sufficiently large x. Prove that this condition defines a linear ordering,

and that the ordering obtained is well founded.

4. Well-ordered sets

A well-founded linearly ordered set is called a well-ordered set. For

linear orderings the notions of minimal and least elements coincide,

so in a well-ordered set every nonempty subset has the least element.

Note that if in a poset any nonempty subset has the least element,

this poset is linearly ordered. Indeed, any two-element subset has the

least element, and therefore any two elements are comparable.

Examples of well-ordered sets: N, N + k (here k means a finite

linearly ordered set of k elements), N+N, N×N (with linear ordering

as defined above).

Our goal is to understand the structure of well-ordered sets. Let

us start with several simple remarks:

• A well-ordered set has the least element. (Follows immedi-

ately from the definition.)

• For any element x of a well-ordered set (except the greatest

one) there is a successor y (this means that y > x but there is

no z such that y > z > x). Indeed, if the set of all elements

that are greater than x is nonempty, then this set has the

least element y, and this is the one we need. It is natural to

denote the successor of x by x+1, the next element by x+2,

etc.

• It is possible that an element of a well-ordered set has no

predecessor, i.e., it is not a successor of any element. For

example, in the set N + N there are two elements without

predecessors—the least element and the least element of the
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second copy of the set N. Elements that have no predecessor

are called limit elements.

• Any element of a well-ordered set has the form x+n, where x

is a limit element, and n is a nonnegative integer (the meaning

of the notation x+ n is explained above). Indeed, if x is not

a limit element, then take its predecessor. If it is not a limit

element either, we take its predecessor, etc., until we reach a

limit element (the process cannot continue infinitely because

the set is well ordered). It is clear that such a representation

is unique (because an element cannot have more than one

predecessor).

• Any subset of a well-ordered set bounded from above has the

least upper bound. (As usual, the subset X of a partially

ordered set A is called bounded from above if it has an upper

bound, that is, an element a ∈ A such that x ≤ a for all

x ∈ X. The least upper bound is the least element, if it

exists, in the set of all upper bounds.)

Indeed, the set of all upper bounds is nonempty and

therefore has the least element.

Note that the symmetric question about the greatest

lower bound (the greatest element in the set of all lower

bounds) is trivial for a well-ordered set, because every subset

has the least element.

Let A be a well-ordered set. Denote its least element by 0, the

next element, 1, the next, 2, etc. If the set is finite, the process will

terminate. If the set is infinite, then look whether we counted all the

elements of the set A. If not, take the minimal element among the

rest and denote it by ω. Denote the next element (if it exists) by

ω + 1, then ω + 2, etc. If the process is not finished even now, then

take the least element among the rest, call it ω · 2 and repeat the

whole procedure. Then we will arrive at ω · 3, ω · 4, and so on. If

there are still unnamed elements, the minimal unnamed element will

be denoted ω2. Then one obtains ω2 + 1, ω2 + 2, . . . , ω2 + ω, . . . ,

ω2 + ω · 2, . . . , ω2 · 2, . . . , ω2 · 3, . . . , ω3, . . . (do not worry about

the notation: it will be explained later).
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What can one learn from these arguments? Let us try to for-

mulate some statements. The following definition will be useful here:

if a linearly ordered set A is split into two disjoint parts B and C

such that any element of B is less than any element of C, then B is

called an initial segment of the set A. In other words, a subset B of a

linearly ordered set A is called an initial segment of A if any element

of B is less than any element of A \ B. Yet another reformulation:

B ⊂ A is an initial segment if a, b ∈ A, b ∈ B and a ≤ b imply a ∈ B.

Note that an initial segment may be empty or may coincide with the

entire set A.

Here are some simple properties of initial segments:

• An initial segment of a well-ordered set (like any other subset,

though) is a well-ordered set.

• An initial segment of an initial segment is an initial segment

of the original set.

• A union of any family of initial segments (of some ordered

set) is an initial segment (of the same set).

• If x is an arbitrary element of a well-ordered set A, then the

sets [0, x) (all the elements of A that are less than x) and

[0, x] (all the elements of A that are less than or equal to x)

are both initial segments of A.

• Any initial segment I of a well-ordered set A is either equal

to the entire set A or has the form [0, x) for some x ∈ A.

(Indeed, if I �= A, then take the least element x of the set

A \ I. Then all smaller elements belong to I, element x does

not belong to I, and no element greater than x belongs to I,

or else we would come to a contradiction with the definition

of an initial segment.)

• Any two initial segments of a well-ordered set A are compara-

ble with respect to inclusion, that is, one of them is a subset

of the other. (Follows from the previous property.)

• Initial segments of a well-ordered set A, ordered by inclu-

sion, form a well-ordered set. This set contains the greatest

element (A); the remaining elements form an ordered set iso-

morphic to A. (Indeed, initial segments not equal to A all
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have the form [0, x), and the correspondence [0, x) ↔ x is an

isomorphism.)

Recall our discussion above. Its first part shows that if a well-

ordered set A is infinite, then it has an initial segment isomorphic

to ω. (We use notation ω instead of N to stress that we regard the

set of natural numbers as an ordered set.)

The second part of the argument proves the following: A is either

isomorphic to an initial segment of the set ω2 or has an initial segment

isomorphic to ω2. (Here ω2 means the well-ordered set of pairs of

nonnegative integers: second terms of pairs are compared first; if

they are equal, first terms are used.)

More generally, the following statement is true: for any two well-

ordered sets one is isomorphic to an initial segment of the other. The

proof more or less repeats the arguments above; to do it correctly,

though, we need some preparation.

5. Transfinite induction

The terms “induction” and “recursion” are often used interchange-

ably. For example, the factorial n! = 1 · 2 · 3 · · ·n can be defined as a

function f(n) such that f(n) = n · f(n− 1) for n > 0, and f(0) = 1;

this definition is often called both “recursive” and “inductive”. We

will try to distinguish between these words in the following way: if

one proves something first for n = 0 and then for n = 1, 2, . . . so

that every statement uses the previous one, then this is induction.

If something is defined first for n = 0 and then for n = 1, 2, . . . so

that definition for every n uses the values defined earlier, then this is

recursion.

We want to consider inductive proofs and recursive definitions

not only for natural numbers but also for other well-ordered sets.

We have already discussed inductive proofs when we spoke about

well-founded sets (see Section 3 of Chapter 2); let us now give just

one more example:

Theorem 17. Let A be a well-ordered set, and f : A → A an in-

creasing mapping (that is, f(x) < f(y) if x < y). Then f(x) ≥ x for

all x ∈ A.



60 2. Ordered Sets

Proof. By the induction principle (Theorem 15, page 53) it is enough

to prove inequality f(x) ≥ x assuming that f(y) ≥ y for all y <

x. Suppose this is not true, and f(x) < x. Since f is increasing,

f(f(x)) < f(x). On the other hand, the element y = f(x) is less

than x, and therefore by the induction hypothesis f(y) ≥ y, that is,

f(f(x)) ≥ f(x).

One can use the existence of the least element directly and re-

formulate the above arguments as follows. Suppose the statement is

not true. Take the least x such that f(x) < x. Then f(f(x)) < f(x)

because f is increasing, and therefore x is not the least, contrary to

the assumption.

One more way to reformulate this proof is like this: if x > f(x)

then

x > f(x) > f(f(x)) > f(f(f(x))) > · · ·
because f is increasing, but there are no infinite strictly decreasing

sequences in a well-founded set.

Now we come to recursion. In the definition of the factorial the

value f(n) was expressed in terms of f(n − 1). In a more general

situation the definition of f(n) may refer to values of the function for

several smaller values of the argument. One can, for example, define

the function f : N → N by saying that f(n) is one plus the sum of all

previous values, that is

f(n) = f(0) + f(1) + · · ·+ f(n− 1) + 1.

This is a legal recursive definition (one should only clarify that an

empty sum is taken to be zero, so that f(0) = 1).

Problem 109. What function f is given by this definition?

How is it possible to extend this scheme to arbitrary well-ordered

sets? Let A be a well-ordered set. We want to give a recursive

definition of some function f : A → B (here B is some set). Such a

definition should relate the value f(x) of the function f on an element

x ∈ A to its values f(y) for all y < x. In other words, a recursive

definition defines f(x) under the assumption that the restriction of

the function f to the initial segment [0, x) is known. Here is an exact

statement:



5. Transfinite induction 61

Theorem 18. Let A be a well-ordered set, and B an arbitrary set.

Let a recursive rule be given, that is, a mapping F whose arguments

are an element x ∈ A and a function g : [0, x) → B, and whose value

is an element of B. Then there exists exactly one function f : A → B

such that

f(x) = F (x, f |[0,x))

for all x ∈ A. (Here f |[0,x) means the restriction of the function f to

the initial segment [0, x) — we forget the values of the function f for

all the arguments greater than or equal to x.)

Proof. Informally one can argue as follows: the value of the function

f on the least element is defined uniquely (restriction f |[0,0) is empty).

Then the value of the function f on the next element is also defined

uniquely because values of f on the preceding elements (more exactly,

the only one preceding element) are already known, etc.

However, one has to express all this formally. It is done as follows:

prove by induction the following statement about an arbitrary element

a ∈ A:

There exists exactly one mapping f of the segment [0, a] to the

set B such that the recursive definition given above is true for

every x ∈ [0, a].

We call a mapping f : [0, a] → B sound if it possesses the above

property, i.e., if f(x) = F (x, f |[0,x)) for each x ≤ a. Thus we are

to prove that for any a ∈ A there is a unique sound mapping of the

segment [0, a] to B.

We are reasoning by induction, and therefore we can assume that

this statement is true for all c < a, that is, there exists a unique sound

mapping fc : [0, c] → B (soundness of fc means that for all d ≤ c the

value fc(d) is the one prescribed by the recursive rule).

Consider the mappings fc1 and fc2 for two different c1 and c2.

Suppose, for example, that c1 < c2, that is, the mapping fc2 is de-

fined on a larger segment [0, c2]. The restriction of fc2 to the smaller

segment [0, c1] coincides with fc1 because the restriction of a sound

mapping to a smaller segment is evidently sound, and we have as-

sumed uniqueness for the segment [0, c2].
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Thus, all the mappings fc are compatible, that is, any two of

them take equal values on any element on which both are defined.

Combining all the mappings fc we obtain some mapping h defined

in [0, a). Applying the recursive rule to a and h, we get some value

b ∈ B. Let h(a) = b. Then a mapping h : [0, a] → B is defined; it is

easy to see that it is sound.

To finish the induction step, it is necessary to check that the

sound mapping defined on [0, a] is unique. Indeed, its restrictions to

segments [0, c] with c < a must coincide with fc, so that one needs

only to check uniqueness at the point a. This is guaranteed by the

recursive rule (expressing the value at the point a in terms of the

preceding values). Thus an inductive proof is complete.

Note that the sound mappings of the segments [0, a] for different a

are compatible (restriction of a sound mapping to a smaller segment

is sound, and we use the uniqueness), and therefore, they define a

function f : A → B satisfying the recursive definition.

The existence is proved; uniqueness is clear, because restriction

of the function to any segment [0, a] is sound, and therefore defined

uniquely.

We will use this theorem to prove that for any two well-ordered

sets one is always an initial segment of the other. Before doing that,

we will have to improve the statement somehow. We must take into

account the situation when the recursive rule is not everywhere de-

fined. For example, define the sequence of real numbers by the rela-

tion xn = tanxn−1 with the initial value x0 = a. For some values of

a the sequence may be finite because the tangent is not defined for

the corresponding value of the argument.

Problem 110. Prove that the set of such “exceptional” values of a

(where the sequence is finite) is countable.

A similar situation may occur in the general case:

Theorem 19. Let the mapping F mentioned in Theorem 18 be par-

tial (that is, F may be undefined for some x and some functions

g : [0, x) → B). Then there exists a function f such that
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• either f is defined on the entire set A and satisfies the recur-

sive definition,

• or f is defined on some initial segment [0, a), satisfies the

recursive definition on it, and the recursive rule is not appli-

cable (i.e., the mapping F is not defined) for the point a and

the function f .

Proof. This theorem is a generalization and, at the same time, a

corollary of Theorem 18. Indeed, add a special element ⊥ (“unde-

fined”) to B and modify the recursive rule: the new rule gives ⊥
every time the old rule was undefined. (If ⊥ was among the values

of the function for smaller values of the argument, then the new rule

gives ⊥ too.)

Use Theorem 18 for the modified rule to obtain some function f ′.

If this function never assumes the value ⊥, then the first possibility

takes place (with f = f ′). If the function f ′ equals ⊥ at some point,

then it is equal to ⊥ at all greater points. Construct a new function

f equal to f ′ if f ′ is not equal to ⊥, and undefined otherwise. The

domain of f is some initial segment [0, a), and the second possibility

takes place.

Problem 111. Prove the uniqueness for the function defined by a

partial recursive rule. (You must formulate the exact statement first.)

Now we are ready to prove the theorem on comparison of well-

ordered sets.

Theorem 20. Let A and B be two well-ordered sets. Then either A

is isomorphic to an initial segment of B, or B is isomorphic to an

initial segment of A.

Proof. Note first that an initial segment may coincide with the entire

set, so the case when the sets A and B are isomorphic is also covered

by the theorem.

Define the mapping f from A to B by the following recursive rule:

For a ∈ A, f(a) is the least element of B not encountered among

f(a′) for a′ < a.
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This rule is not defined in case the values f(a′) for a′ < a consti-

tute the entire set B. Using Theorem 19, one obtains the function f

defined by this rule. Consider now two cases:

• The function f is defined on the entire set A. The recursive

definition ensures monotonicity of f because f(a) is defined as

the least yet unused element; the larger a is, the fewer unused

elements remain, and the least such element can only grow

(the definition implies also that no equal values are possible).

It remains to prove that the image of the function f is an

initial segment of the set B. Indeed, let b < f(a) for some

a ∈ A; let us check that b is also a value of the function

f . Indeed, by the recursive definition, f(a) is the least yet

unused value, so b is used, that is, equal to f(a′) for some

a′ < a.

• The function f is defined on some initial segment [0, a) only.

In this case this segment is isomorphic to B, and f is the

required isomorphism. Indeed, since f(a) is not defined, all

the elements of B are values of the function f . On the other

hand, f preserves the ordering (as we have seen).

Thus, the theorem is proved in both cases.

Is it possible that A is isomorphic to an initial segment of B, and

B is isomorphic to an initial segment of A? The answer is no, except

for the trivial case when these initial segments are the sets A and B

themselves. This is a consequence of the following statement:

Theorem 21. No well-ordered set is isomorphic to its own initial

segment (other than the entire set).

Proof. Suppose a well-ordered set A is isomorphic to its own segment

other than the entire set. As we have proved (see page 58), this

segment has the form [0, a) for some element a ∈ A. Let f : A → [0, a)

be an isomorphism. The mapping f is strictly increasing, and by

Theorem 17 the inequality f(a) ≥ a holds. This contradicts the fact

that the set of values of the function f is [0, a).
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If a set A is isomorphic to an initial segment of a set B, and

the set B is isomorphic to an initial segment of the set A, then the

composition of these isomorphisms gives an isomorphism between the

set A and its initial segment (an initial segment of an initial segment

is an initial segment). This initial segment must coincide with the

entire set A, so that the sets A and B are isomorphic.

All this allows us to compare well-ordered sets. If A is isomorphic

to an initial segment of B other than the entire B, then we say that

the order type of A is less than the order type of B. If the sets A

and B are isomorphic, we say that they have the same order type. If

B is isomorphic to an initial segment of A (other than the entire A),

then it we say that the order type of A is greater than the order type

of B. Thus, we have just proved the following statement:

Theorem 22. For any two well-ordered sets A and B exactly one of

the three cases described above takes place.

Forgetting for a moment about foundational problems of set the-

ory, we can define the order type of a well-ordered set A as the class

of well-ordered sets isomorphic to A. So, we have just defined a linear

ordering on the class of order types of well-ordered sets. These order

types are called ordinal numbers, or ordinals . This ordering is in fact

a well-ordering. We reformulate this statement in a safe way, without

using classes of sets:

Theorem 23. Each nonempty family of well-ordered sets has the

“least element”, that is, a set isomorphic to initial segments of all

other sets in the family.

Proof. Take any set X in the family. If X is the least one, the

theorem is proved. If not, consider all the sets of the family that are

less than X, that is, are isomorphic to initial segments of the set X

of the type [0, x). Take the least element among all such x. The

corresponding set will be the least one.

It follows from the above theorems that the cardinalities of any

two well-ordered sets are comparable (one set has the same cardinality

as some subset of the other one). We will see now that any set can be
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well ordered (this important statement is called Zermelo’s Theorem),

and therefore cardinalities of any two sets are comparable.

6. Zermelo’s Theorem

Theorem 24. Any set can be well ordered.

Proof. Proof of this theorem relies heavily on the axiom of choice;

this proof attracted much criticism for the lack of constructivity. For

countable sets it is easy to find a well-ordering (copy it from N). But

even for the set R of real numbers one cannot point out any specific

well-ordering. We prove (using the axiom of choice) its existence but

we cannot give a specific example of a well-ordering on R.

Let us explain what form of the axiom of choice we are using.

Let A be a given set. We admit that there exists a function ϕ defined

on all subsets of the set A except A itself, such that for any subset it

singles out an element of A outside this subset:

X � A ⇒ ϕ(X) ∈ A \X.

Having fixed this function, one can construct a well-ordering on

A without any additional ambiguity. This is done as follows.

We define the element a0 = ϕ(∅) to be the least element of the

set A. The next element is a1 = ϕ({a0}); it is different from a0
by construction. The next element is a2 = ϕ({a0, a1}). If the set

A is infinite, then this process can be continued to yield a sequence

{a0, a1, . . . } of elements of the set A. If some elements are still left,

consider an element aω = ϕ({a0, a1, . . . }). Continue so until the set

A is exhausted. When it is exhausted, the order in which its elements

were chosen defines a well-ordering on A.

Surely, the last phrase should be made more precise—what does

it mean “continue until exhausted”? We may wish to use transfinite

recursion (the situation is quite similar: the next element is defined

recursively if all the previous elements are known). This is indeed

possible if some other well-ordered set B is given—then we would

define a function ϕ : B → A by transfinite recursion and obtain a one-

to-one correspondence either between A and a part of B or between

B and a part of A. Everything is fine in the first case, but to make
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sure that this case occurs we need a well-ordered set B of cardinality

not less than that of A—a dead end.

We can break it through like this: consider all the pieces of the

future ordering and ensure they can be glued together.

Let (S,≤S) be a subset of the set A with an ordering on it. We

say that (S,≤S) is a sound fragment if it is well ordered and

s = ϕ([0, s))

for each s ∈ S. Here [0, s) is an initial fragment of the set S with

respect to the ordering ≤S .

Thus, the set {ϕ(∅)} is a sound fragment (we do not need to

specify an ordering because there is only one element). The set

{ϕ(∅), ϕ({ϕ(∅)})} (the first element is less than the second) is also

a sound fragment. We may continue with this construction but we

have to take an infinite (and having a very large cardinality) number

of steps.

The plan is as follows: prove that any two sound fragments are

compatible, and then consider the union of all sound fragments. It

will be a sound fragment that coincides with the entire set A (or else

one would expand it to obtain a sound fragment not taken into the

union).

Lemma 1. Let (S,≤S) and (T,≤T ) be two sound fragments.

Then one of them is an initial segment of the other, and the orderings

are compatible (≤S and ≤T coincide when both are defined).

Note that by Theorem 20 one of the fragments is isomorphic to

an initial segment of the other one. Let S be isomorphic to an initial

segment of T , and let h : S → T be an isomorphism between S and

some initial segment of T . Lemma 1 claims that the isomorphism h

is in fact the identity mapping, that is, h(x) = x for all x ∈ S. Let us

prove this by induction on x ∈ S (it is legal because S is well-ordered

by the definition of the sound fragment). Induction hypothesis states

that h(y) = y for all y < x. We must prove that h(x) = x. Consider

initial segments [0, x)S and [0, h(x))T (in (S,≤S) and (T,≤T ), respec-

tively). They are mapped to one another by the isomorphism h and

therefore, by the induction hypothesis, coincide as sets. By the def-
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inition of the sound fragment x = ϕ([0, x)) and h(x) = ϕ([0, h(x))),

so that x = h(x). Lemma 1 is proved.

Consider now the union of all sound fragments (i.e., the corre-

sponding sets). On this union, a linear order is naturally defined: for

any two elements there is a fragment containing them both (for each

element there is its own fragment; take the bigger one), so it is possi-

ble to compare them. By Lemma 1 the ordering does not depend on

the choice of a fragment.

Lemma 2. This union is a sound fragment.

To prove Lemma 2 we note that the union carries a linear order.

In fact, this is a well-ordering. For a change, let us prove this using

decreasing sequences. Let x0 ≥ x1 ≥ · · · ; take a sound fragment F

containing x0. Lemma 1 implies that all the xi also belong to the

fragment (because F is an initial segment in any larger fragment).

F is well-ordered by definition, and therefore the sequence stabilizes.

Lemma 2 is proved.

Lemma 2 can be reformulated as follows: there exists the largest

sound fragment. One has to prove that this fragment (denote it by

S) coincides with the entire set A. If S �= A, then take the element

a = ϕ(S), which does not belong to S, and add it to S assuming

it to be greater than all the elements of S. We obtain the ordered

set S′ (the sum of S and the one-element set); it is well ordered.

The soundness condition is also satisfied (for a, by definition, and for

all the other elements, because it is satisfied in S). Thus, we have

obtained a larger sound fragment, which contradicts the maximality

of S. This finishes the proof of Zermelo’s Theorem.

As we have already mentioned, Zermelo’s Theorem and Theo-

rem 20 on the comparison of well-ordered sets imply the following

statement:

Theorem 25. For any two sets, one can be put into one-to-one cor-

respondence with a subset of the other one.

The notion of a well-ordered set was introduced by Cantor in his paper
written in 1883. His other paper written in 1895–1897 contains a proof that
any two well-ordered sets are comparable (one is isomorphic to an initial
segment of the other one).
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Several works by Cantor contain claims that it is possible to introduce
a well-ordering on any set and compare cardinalities of any two sets (The-
orems 24 and 25), but he never gave a clear proof of both claims. The first
proof was given only in 1904 by the German mathematician E. Zermelo.

7. Transfinite induction and Hamel basis

The notion of a well-ordered set allows us to extend inductive argu-

ments and recursive definitions applying them to sets of an arbitrary

cardinality. The following linear algebra example shows how this can

be done.

Any linearly independent set of vectors in a finite-dimensional

linear space can be extended to a basis. Why? Let S be a finite set

of linearly independent vectors. If S is not a basis, then there exists

some x0 that is not a linear combination of S-elements. Then we can

add x0 to S to get a bigger linearly independent set S′ = S ∪{x0}. If
S′ is not a basis, then there exists x1 that is not a linear combination

of S′-elements and can be added to S′, etc. Finally we either get a

basis or an infinite sequence of linearly independent vectors, and the

latter case is impossible if the linear space has finite dimension.

Now we want to extend this argument to any linear space (not

necessarily finite-dimensional) using transfinite induction.

Let V be an arbitrary linear space. A subset S ⊂ V is called

linearly independent if any nontrivial linear combination of its ele-

ments is nonzero. (Note that by linear combination we mean a finite

linear combination: the sum of an infinite sequence is not defined un-

less some topology is fixed.) A linearly independent set S is called a

Hamel basis of V if any element of V is a (finite) linear combination

of elements of S.

If a linearly independent set S is maximal (i.e., it becomes de-

pendent after we add any element), then S is a Hamel basis. (This

can be proved in the same way as for finite-dimensional spaces.)

Theorem 26. Any linearly independent set S ⊂ V in any linear

space V can be extended to a Hamel basis S′ ⊃ S.

Proof. Let S be a linearly independent subset of a linear space

V . Consider a well-ordered set I whose cardinality is large enough
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(is greater than the cardinality of V ). We define a (partial) func-

tion f : I → V by transfinite recursion:

f(i) = an element of V that is not a linear combination of the

elements of S and of the values f(j) for j < i.

This rule does not define f(i) if such an element does not exist. (Note

that we use the axiom of choice. Using it, we construct a function

Φ that maps any subset X ⊂ V to some element v ∈ V that is not

a linear combination of elements of X, assuming that such v exists.

Then Φ is used in the recursive definition for f . However, the axiom

of choice is needed anyway for Zermelo’s Theorem.)

This definition guarantees that f is injective. Moreover, the union

of S and the range of mapping f is a linearly independent set. Indeed,

suppose a (finite) linear combination of elements of S and values of

f equals zero. Without loss of generality we assume that all coeffi-

cients are nonzero. This combination involves f(i) for some values of

i. Consider the maximal value i0 encountered. By definition, f(i0)

is not a linear combination of S and earlier f(i), so we come to a

contradiction.

By assumption the set I has greater cardinality than V . There-

fore the function f is defined on some proper initial segment [0, i) of

I, and the value f(i) is undefined (see Theorem 19). According to

the definition of f this means that all the elements of V are linear

combinations of S-elements and values f(x) for x ∈ [0, i). As we have

seen, these elements are linearly independent, hence we get a basis

for E.

We could also have avoided the use of an auxiliary set I of large

cardinality by introducing a well-ordering on V . At each step we

consider some element v ∈ V ; if it is not a linear combination of

current basis elements, then we add v to the basis; otherwise the

basis remains unchanged.

Problem 112. Provide missing details in this proof.

Hamel bases can be used to construct some “pathological” exam-

ples.
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Theorem 27. There exists a (total) function f : R → R such that

f(x+ y) = f(x) + f(y) for all x, y but f is not linear (i.e., f differs

from the function x 	→ cx for each c ∈ R).

Proof. We regard R as a linear space over Q and consider its Hamel

basis. (This basis has continuum cardinality, but this does not mat-

ter.) Let α be an element of the basis. Consider a function f that

maps each real number x (i.e., each element of the linear space R

over Q) to its α-coordinate (so that x = f(x)α + · · · ). This func-

tion is linear as a mapping of the Q-linear space S to Q; therefore

f(x + y) = f(x) + f(y) for any x, y ∈ R. The function f is nonzero

(f(α) = 1) and its values are rational numbers; therefore f differs

from cx for any c.

Problem 113. Prove that any function f that satisfies the hypothe-

ses of Theorem 27 is not bounded (even if restricted to an interval)

and, moreover, its graph is dense in R2.

Theorem 28. The additive groups R and R⊕ R are isomorphic.

Proof. Again we regard R as a vector space over Q and find a Hamel

basis in it. Evidently, this basis is infinite (otherwise R would have

been countable). Now consider a basis in R ⊕ R made (in a natural

way) of two copies of the basis in R. As we will see later (Section 9),

for any infinite set B the set B + B (made of two disjoint copies

of B) has the same cardinality as B. It remains to note that two

linear spaces over the same field that have the same dimension (i.e.,

Hamel bases of the same cardinality) are isomorphic. Therefore, the

underlying additive groups are isomorphic, too.

Problem 114. Prove that any basis in R (regarded as a linear space

over Q) has continuum cardinality. (Hint : Cf. section 9 of this chap-

ter.)

As we have seen, transfinite induction allows us to prove the

existence of a basis in any linear space (over any field). Later we will

prove also that any two bases in a given linear space have the same

cardinality, and therefore the notion of dimension is well defined for

infinite-dimensional vector spaces (Theorem 36, page 82).
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The existence of a Hamel basis can be used not only for con-

structing “pathological” examples. For instance, one can apply it to

solve the well-known Hilbert’s Third Problem,, that is, to prove that

there exist two polyhedra of the same volume that are not equide-

composable (cannot be decomposed into congruent polyhedra). (In

dimension two things are different: any two polygons of the same area

can be dissected into congruent polygons.)

Theorem 29. A cube and a regular tetrahedron of the same volume

are not equidecomposable.

The same is (obviously) true for a cube and a regular tetrahedron

having different volumes.

Proof. Suppose that for any polyhedron we define a quantity, named

pseudo-volume, having the following properties:

• Like volume, the pseudo-volume is additive: if a polyhedron

is composed of several others, its pseudo-volume is the sum

of their pseudo-volumes.

• Congruent polyhedra have equal pseudo-volumes.

• The pseudo-volume of a cube is zero, while a regular tetra-

hedron has a nonzero pseudo-volume.

Existence of such a pseudo-volume will imply the statement we

are to prove.

Assume that the pseudo-volume of a polyhedron is defined as the

sum
∑

liϕ(αi) taken over all edges, where li is the length of the ith

edge, αi is the dihedral angle at the ith edge, and ϕ is some function

to be specified later. Congruent polyhedra have the same pseudo-

volume by definition. What properties of ϕ are necessary to ensure

that pseudo-volume is additive?

Imagine that a polyhedron with an edge e is cut into two poly-

hedra by a plane P containing e. Then the dihedral angle α is cut

by P into two angles β and γ such that β + γ = α. The formula for

the pseudo-volume of the entire polyhedron includes the term lϕ(α)

(where l is the length of the edge e), while the sum of the pseudo-

volumes of the two parts includes lϕ(β) + lϕ(γ). Therefore, it is

desirable that ϕ(α) = ϕ(β) + ϕ(γ).
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On the other hand, the plane P can create new edges that are

intersections of P and faces of a polyhedron. Let l′ be the length of

a new edge. Then the sum of the pseudo-volumes of two parts will

include terms l′ϕ(α) + l′ϕ(π − α) (corresponding to supplementary

angles), and we want these terms to cancel out.

Now it is clear what properties of ϕ are desired. We want that

ϕ(β+ γ) = ϕ(β) +ϕ(γ) and that ϕ(π) = 0. Then the pseudo-volume

will be an additive function of a polyhedron. The rigorous proof of

this additivity property requires a rigorous definition of a polyhedron,

which is not so simple, so we omit this proof. But the statements look

plausible, especially if we note that all dissections could be done by

planes (this restriction may increase the number of parts, but this

does not matter).

Therefore, the only thing necessary to finish the proof, is a func-

tion ϕ : R → R such that

• ϕ(β + γ) = ϕ(β) + ϕ(γ) for any β, γ ∈ R;

• ϕ(π) = 0;

• ϕ(π/2) = 0 (therefore the pseudo-volume of a cube is zero);

• ϕ(θ) �= 0, where θ is the dihedral angle of a regular tetrahe-

dron.

(In fact the third property is an easy consequence of the first

two.)

To construct such a function, let us note first that θ/π is an

irrational number. Indeed, assume that the sides of our regular tetra-

hedron have length 2. Consider the heights of two faces of this tetra-

hedron that are perpendicular to the common edge of the faces. This

two heights, together with the corresponding edge of the tetrahedron,

form the isosceles triangle with sides
√
3,

√
3, 2. We need to prove

that the angles of this triangle are irrational multiples of π. Let the

angles be θ, β, β. The angle β is an acute angle in the right triangle

with sides 1,
√
2 and

√
3; therefore (cosβ + i sinβ) = (1+

√
−2)/

√
3.

If β/π ∈ Q, then the complex number (1 +
√
−2)/

√
3 is a root of

unity. But this is not the case, since the ring Z[
√
−2] has unique

factorization property. Therefore β (and θ) are not rational multiples

of π.
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Now we regard π and θ as elements of the linear space R over Q.

They are linearly independent, so we can construct a basis that con-

tains θ and π and consider a Q-linear mapping ϕ : R → Q that maps

each real number x into its (rational) θ-coordinate. This function ϕ

satisfies all our requirements.

Problem 115. Prove that one can avoid using Hamel basis in these

arguments by the following trick: note that it is enough to define ϕ

only on the reals that are linear combinations of the angles of the

polyhedra used in the decomposition, and that there are only finitely

many of them.

8. Zorn’s Lemma and its application

Modern textbooks usually replace transfinite induction by the so-

called Zorn’s Lemma. We show how this is done using the existence

of a Hamel basis as an example.

Theorem 30 (Zorn’s Lemma). Let Z be a partially ordered set with

the following property: any chain has an upper bound. Then Z has a

maximal element; moreover, for any a ∈ Z there exists b ≥ a that is

maximal in Z. (Chain is a linearly ordered subset: a ≤ b or b ≤ a for

any two elements of a chain. An upper bound is an element that is

greater than or equal to any element of the chain.)

Proof. Note that the ordering on Z is a partial ordering, so we must

distinguish between the greatest element (only one element can be the

greatest element of Z) and maximal elements (many elements can be

maximal).

The proof follows the scheme used to prove the existence of a

basis, but in a more general situation where we consider elements of

the ordered set Z instead of linearly independent families.

Let a be an element of Z. Assume that there is no maximal

element b such that b ≥ a. This means, by definition, that for any

b ≥ a there exists an element c > b. Then c > a, and therefore there

exists d > c, etc. If this process continues long enough, we come to a

contradiction.
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Let us see how this can be done. (In particular, we need to use

the condition that each chain has an upper bound.) Let I be a well-

ordered set of sufficiently large cardinality (larger than the cardinality

of Z). Consider a strictly increasing function f : I → Z defined as

follows. The value of f on the least element of a well-ordered set I

equals a.

Now assume that the values f(j) are defined for all j < i. We

want to define f(i). Monotonicity implies that the values f(j) for

all j < i form a chain. Therefore, this chain has an upper bound s.

Evidently, a ≤ s (since a is an element of the chain). Consider an

element t > s (it exists since we have assumed that no element s ≥ a

is maximal) and let f(i) = t. Note that f extended in this way is

still monotone (and therefore injective). Therefore I has the same

cardinality as some subset of Z, which contradicts our assumption.

This argument, however, is not formally correct: we simultane-

ously define some function and prove that it is monotone. The def-

inition of f(i) assumes that f is monotone on [0, i). The formally

correct argument goes as follows. We apply Theorem 19, assuming

that f(i) is undefined if f is not monotone on [0, i). The function f

constructed in this way is defined on some initial segment of I, either

on I itself or on some proper initial segment [0, i0). But the latter

case is impossible, because f is monotone and therefore f(i0) should

be defined.

As before (see Problem 112) we can avoid using an auxiliary set

I of large cardinality. Applying Zermelo’s Theorem, consider a well-

ordering on Z. This well-ordering may have nothing in common with

the given partial order on Z, so we denote it by ≺. Now we define a

function f : Z → Z such that (1) f(z) ≥ a for each z ∈ Z; (2) f is

monotone in the following sense: x ≺ y implies f(x) ≤ f(y); and

(3) f(z) is never smaller than z (with respect to the original partial

order ≤).

Namely, for a ≺-minimal element z0 ∈ Z, let f(z0) be either z0
(if z0 > a) or a. For any other z the value f(z) is defined either as

(some) upper bound α of values {f(z′) | z′ ≺ z} (note that this set is

a chain since f is monotone) or as z itself (if z > α).
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The function f is defined on Z; its range is a chain (since f is

monotone); therefore there is some β ∈ Z that is an upper bound

for the range of f . Evidently, β ≥ f(z0) = a. It remains to prove

that β is a maximal element in Z. Indeed, if β < z for some z,

then f(z) ≤ β < z, which is impossible by (3).

Problem 116. Provide missing details in these arguments.

Now we show how the existence of a Hamel basis can be proved

using Zorn’s Lemma. Let V be a linear space. Consider a partially

ordered set Z whose elements are linearly independent subsets of V

and S ≤ S′ means S ⊂ S′.

Let us check that any chain in Z has an upper bound. A chain is

a family of linearly independent sets; for any two chain elements, one

is a subset of the other. Consider the union of all the elements of the

chain. We need to show that this union is linearly independent (and

therefore belongs to Z and is an upper bound of our chain).

Any nontrivial linear combination involves a finite number of vec-

tors. Each vector belongs to some element of the chain. These ele-

ments form a linearly ordered finite subset of the chain; therefore

there is the greatest element among them. It contains all the vectors

from the linear combination, so this combination is not equal to zero

(any element of the chain is a linearly independent set).

Applying Zorn’s Lemma, we conclude that for any linearly inde-

pendent set S there exists a maximal linearly independent set S ′ ⊃ S.

It cannot be enlarged further and therefore S′ is a basis in V .

Similar arguments can be used to prove the existence of an or-

thogonal basis in any Hilbert space. (Note that the definition of a

basis in a Hilbert space is different: we consider countable linear

combinations that are interpreted as sums of infinite series.)

One can also apply Zorn’s Lemma to prove the existence of a

transcendence basis in a field extension (i.e., a maximal algebraically

independent set).

We mention one more application of Zorn’s Lemma to partially

ordered sets.



8. Zorn’s Lemma and its application 77

Theorem 31. Any partial order can be extended to a linear (total)

order.

Proof. Let (X,≤) be a partially ordered set. We must prove that

there exists a linear order relation ≤′ on X that is an extension of the

given partial order (i.e., x ≤ y ⇒ x ≤′ y). Note that not every partial

order can be extended to a well-ordering (for example, this cannot be

done if we start with a linear order that is not a well-ordering).

To apply Zorn’s Lemma we need to consider some partially or-

dered set Z whose elements are partial orders on X (i.e., subsets of

X ×X that are reflexive, transitive, and antisymmetric). The order-

ing on Z is an inclusion relation: ≤1 is smaller than (or equal to) ≤2,

if x ≤1 y implies x ≤2 y for any x, y ∈ X.

It is easy to check that any chain in Z has an upper bound.

Indeed, the union of a chain of partial orders is a partial order. (Let

us check, for example, that this union is transitive. Assume that

x ≤1 y according to some ordering ≤1 that belongs to the chain, and

y ≤2 z according to another ordering in the chain. Then one of the

orderings ≤1 and ≤2 is an extension of the other. For example, let

≤1 be an extension of ≤2. Then x ≤1 y ≤1 z, and therefore x ≤ z if

≤ is the union of the chain.)

Applying Zorn’s Lemma, for any given partial order we get a

maximal partial order on X that extends the initial one. We denote

this maximal order by ≤ (this does not cause a confusion since we do

not need the initial partial order anymore). We have to show that ≤
is a total (linear) order. If it is not the case, there exist two elements

x, y ∈ X such that x �≤ y and y �≤ x. Consider a new ordering relation

≤′ defined as follows: a ≤′ b if either (1) a ≤ b or (2) a ≤ x and y ≤ b.

It is easy to see that x ≤′ y and that ≤′ is a partial order. Evidently,

≤′ is reflexive. To prove that ≤′ is transitive, consider any a, b, c such

that a ≤′ b and b ≤′ c. According to the definition of ≤′ there are

four possible cases (the two cases of a ≤ b are combined with the two

cases for b ≤ c):

(1, 1) a ≤ b ≤ c (trivial);

(1, 2) a ≤ b ≤ x and y ≤ c implies a ≤′ c according to (2);

(2, 1) a ≤ x and y ≤ b ≤ c implies a ≤′ c according to (2);
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(2, 2) a ≤ x, y ≤ b, b ≤ x, y ≤ c; this is impossible since in this

case y ≤ x contrary to our assumption.

A similar argument shows that ≤′ is antisymmetric.

Therefore, ≤′ is a partial order that extends ≤ and is different

from ≤, so ≤ is not a maximal element in Z—a contradiction.

Problem 117. Prove that any binary relation R on any set X that

has no cycles (cycle appears if xRx, or xRyRx, or xRyRzRx, etc.)

can be extended to a linear order. (A computer scientist would say

that “any acyclic directed graph can be topologically sorted”.)

Problem 118. A set X on the plane is called convex if for any two

points u, v ∈ X the line segment uv belongs to X. Prove that for any

two disjoint convex sets A and B there is a line l that separates them

(i.e., A and B lie on the different sides of l; note that l is allowed to

intersect A and B). (Hint : Using Zorn’s Lemma, extend the given

sets A and B to complementary disjoint convex sets A′ and B′. Then

prove that the boundary between A′ and B′ is a line.)

9. Operations on cardinals revisited

Now we can prove several theorems about operations on cardinals.

Theorem 32. If A is infinite, then A × N has the same cardinality

as A.

Proof. Zermelo’s Theorem says that A can be well ordered. After

that, as we know (see p. 57), each element of A has a unique represen-

tation as z+n, where z is a limit element (i.e., z has no predecessor)

and n is a natural number. Therefore we get a one-to-one correspon-

dence between A and B×N, where B is a set of limit elements. (Not

exactly. The set of all elements b+ n, where b is a maximal element

of B, can be finite (instead of countable) if A has a maximal element.

But we know already that adding a finite or a countable set does not

change the cardinality of an infinite set.)

Therefore, A × N has the same cardinality as (B × N) × N, or

B× (N×N), or B×N (a product of two countable sets is countable),

i.e., the same cardinality as A.
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Recalling the Cantor–Bernstein Theorem, we conclude that all

sets between A and A × N have the same cardinality as A. (In par-

ticular, |A|+ |A| = |A| and n|A| = A for any positive integer n.)

Here is another useful corollary:

Theorem 33. The sum of two infinite cardinalities equals the greater

of them. (If |A| ≤ |B| and both A and B are infinite, then |A|+ |B| =
|B|.)

Proof. We recall that for any A and B, either |A| ≤ |B| or |B| ≤ |A|
(Theorem 25, page 68). Hence the notion of greater cardinality (for

two given sets) is well defined.

If |A| ≤ |B|, then |B| ≤ |A|+|B| ≤ |B|+|B| ≤ |B|×ℵ0 = |B| (the
last inequality is guaranteed by Theorem 32). It remains to apply the

Cantor–Bernstein Theorem to conclude that |B| = |A+B|.

Now we are ready to prove an even stronger claim.

Theorem 34. If A is infinite, then |A×A| = |A|.

Proof. Note that we have already proved this theorem for countable

sets. (By the way, we know that it is also true for sets of continuum

cardinality, but this does not matter now.) Therefore we can find

some countable B ⊂ A and a one-to-one correspondence between B

and B ×B.

Consider the family Z of all infinite sets B ⊂ A together with

one-to-one correspondences between B and B×B. (An element of Z

is a pair 〈B, f〉, where B is an infinite subset of A and f : B → B×B

is a one-to-one correspondence (bijection)). The set Z is partially

ordered by the following relation: 〈B1, f1〉 ≤ 〈B2, f2〉 if B1 ⊂ B2 and

the restriction of f2 to B1 coincides with f1 (i.e., f1(x) = f2(x) for

x ∈ B1); see Figure 6.

To apply Zorn’s Lemma, we need to check first that any chain in Z

has an upper bound. Assume that some sets (together with bijections)

form a chain. Consider the union B of these sets. Since the bijections

extend each other, we get a combined mapping f : B → B × B. The

mapping f is an injection. Indeed, if b′ and b′′ are different elements

of B and belong to different elements of the chain, then b′ and b′′
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B1

B2

B1

B2

Figure 6. A mapping f1 is a one-to-one correspondence be-
tween the smaller square and its side; f2 adds to f1 a one-to-
one correspondence between B2 \ B1 and the remaining part
of the larger square, i.e., (B2 ×B2) \ (B1 ×B1).

both belong to the greater of the two chain elements. Therefore,

f(b′) �= f(b′′).

Now let us prove that f is surjective. For any pair 〈b′, b′′〉 ∈ B×B

consider the greater of the two chain elements that contain b′ and b′′,

and recall that f induces a bijection between this set and its square.

The Zorn Lemma guarantees that Z has a maximal element

〈B, f〉. By definition, f is a one-to-one correspondence between B

and B ×B and |B| = |B| × |B|.
Now there are two possibilities.

(1) A and B have the same cardinality. Then all four sets A,

B, A × A and B × B have the same cardinality, and the theorem is

proved.

(2) The cardinality of B is smaller than that of A. (Note that

|B| ≤ |A| because B ⊂ A.) Let C be the remaining part of A, i.e.,

C = A \ B. Then |A| = |B| + |C| = max(|B|, |C|). Therefore, C

has the same cardinality as A and greater cardinality than B. Let

C ′ ⊂ C be a part of C that has the same cardinality as B. By B′ we

denote the (disjoint) union B′ = B + C ′ (Figure 7).

Both parts of B′ (i.e., B and C ′) have the same cardinality as

B. Therefore, B′ × B′ consists of four parts; each has the same

cardinality as B ×B and, therefore, as B (by our assumption, f is a

bijection between B and B × B). The bijection f can be extended

to a bijection f ′ : B′ → B′ × B′ by adding a bijection between C ′
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B C ′

A

B

C ′
A

Figure 7. Extending a one-to-one correspondence from B to
B′ = B + C′.

and (B′ × B′) \ (B × B) (this set consists of three parts that have

cardinality |B|, so both sets have cardinality |B|).
Therefore the pair 〈B′, f ′〉 is larger than 〈B, f〉, but 〈B, f〉 was

maximal according to Zorn’s Lemma. Therefore, case (2) is impossi-

ble.

Here are several corollaries of Theorem 34.

Theorem 35. (a) A×B = max(|A|, |B|).
(b) If A is infinite, then the set An whose elements are n-tuples

made of A-elements, has the same cardinality as A.

(c) If A is infinite, then the set A∗ whose elements are finite

sequences of A-elements has the same cardinality as A.

Proof. The first assertion: if |A| ≤ |B|, then |B| ≤ |A| × |B| ≤
|B|×|B| = |B|, and |A|×|B| = |B| by the Cantor–Bernstein theorem.

The second assertion can be proved by induction on n. Indeed,

if |An| = |A|, then |An+1| = |An| × |A| = |A| × |A| = |A|.
Finally, A∗ equals 1 +A+A2 +A3 + · · · (a finite sequence may

have length 0, 1, 2, . . . ); each part (except for the first, which is finite

and can be ignored) has the same cardinality as A; therefore A∗ has

the same cardinality as |A| × ℵ0 = |A|.

The statement (c) of Theorem 35 implies that the set of all finite

subsets of an infinite set A has the same cardinality as A. (Indeed,
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a function that maps each finite sequence into the set of its elements

is surjective; therefore the set of finite subsets of A is between A and

A∗.)

Problem 119. Let A be an infinite set. Prove that |AA| = |2A|.

Problem 120. Consider the cardinality α = ℵ0 + 2ℵ0 + 2(2
ℵ0 ) + · · ·

(a countable sum of an increasing sequence of cardinalities can be

defined in a natural way). Prove that α is a minimal cardinality that

is greater than the cardinality of all sets N, P (N), P (P (N)), . . . (here

P (X) stands for the power set of X, i.e., the set of all subsets of X).

Prove that αℵ0 = 2α > α.

Now we can prove that different Hamel bases have the same car-

dinality.

Theorem 36. Any two bases in an infinite-dimensional vector space

have the same cardinality.

Proof. Consider any two bases, calling them “the first basis” and

“the second basis”, respectively. For each element of the first basis

choose some representation of it as a linear combination of the vectors

of the second basis. We get a function that maps each vector of the

first basis into a finite subset of the second basis. As we have proved

(Theorem 35), the range of this function has cardinality that does not

exceed the cardinality of the second basis. On the other hand, the

preimage of each value of this function is a linearly independent set

of vectors that are linear combinations of a finite set; therefore this

preimage is finite.

We see that the first basis is split into groups, each group is

finite and the number of groups does not exceed the cardinality of

the second basis. Therefore the cardinality of the first basis does

not exceed the cardinality of the second multiplied by ℵ0 (and this

operation does not change the cardinailty).

Similar arguments apply in the other direction, and it remains to

use the Cantor–Bernstein Theorem.
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10. Ordinals

As we have already mentioned, an ordinal is an order type of a well-

ordered set, i.e., the class of all ordered sets that are order-isomorphic

to it.

One can naturally define a linear order on ordinals. To compare

two ordinals α and β, we consider their representatives A and B (so A

belongs to the order type α and B belongs to the order type β). Then

we apply Theorem 22 to see which of the three cases occurs. These

three cases are: (1) A is order-isomorphic to a proper initial segment

of B; (2) A and B are order-isomorphic; (3) B is order-isomorphic to

a proper initial segment of A. In case (1) we say that α < β; in case

(2) we say that α = β; and in case (3) we say that α > β (or β < α).

Again we ignore difficulties related to the foundations of set the-

ory (the class of isomorphic ordered sets is too big; see Section 6

of Chapter 1). Later we discuss possible workarounds. But first we

mention basic properties of ordinals.

• The linear order defined on ordinals is a well-ordering: each

nonempty family of ordinals has a minimal element (Theo-

rem 23; we did not use the word “ordinal” there but instead

spoke about ordered sets that represent ordinals).

• Let α be an ordinal. Consider the initial segment [0, α) that

consists of all ordinals that are smaller than α according to

our definition. This initial segment has order type α (i.e., it

is order-isomorphic to elements of the class α). Indeed, let

A be a well-ordered set having order type α. The ordinals

smaller than α correspond to proper initial segments of A,

i.e., segments [0, a) for all a ∈ A. Thus, we get a one-to-one

correspondence between the elements of A and the ordinals

that are smaller than α. It is easy to see that this correspon-

dence is an isomorphism of ordered sets.

One may say that “each ordinal is order-isomorphic to the

set of smaller ordinals”. If we use von Neumann’s approach,

the ordinal is the set of smaller ordinals (see below). This

approach allows us to avoid logical difficulties when defining

ordinals.
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• An ordinal α is called a nonlimit ordinal if it has a predecessor

(the greatest ordinal smaller than α). If the predecessor does

not exist, the ordinal is called a limit ordinal.

• Any bounded family of ordinals has the least upper bound.

Indeed, let F be a bounded family of ordinals and let β be

an upper bound of F (i.e., γ ≤ β for any γ ∈ F ). Let

B be a well-ordered set of order type β. All ordinals in F

are order-isomorphic to initial segments of B. If one of this

initial segments equals B, then β is the greatest element of F

(and, therefore, the least upper bound of F ). If none of these

initial segments equals B, then all the segments are [0, b) for

different elements b ∈ B. Consider the set S of all b’s that

correspond to ordinals in F . If S has no upper bound in B,

then β is the least upper bound of F . If S has an upper bound

in B, then it has the least upper bound s and the order type

of the initial segment [0, s) is the least upper bound of F .

One may say that ordinals form the “universal well-ordered class”;

any well-ordered set is order-isomorphic to an initial segment of that

class. But we must be careful. If we regarded “the set of all ordinals”

as a set, this set would be the greatest well-ordered set. And there is

no such thing: for any well-ordered set W there exists a greater one

(W + 1). This paradox (called the Burali–Forti paradox ) shows that

the class of all ordinals should not be treated as a set.

Problem 121. Prove that the least upper bound of a countable fam-

ily of countable ordinals (i.e., order types of coundable well-ordered

sets) is a countable ordinal.

There should be a way to speak about ordinals without the danger

of falling into a contradiction. One possibility is to eliminate ordinals

completely and speak about well-ordered sets that represent them.

(“Equal ordinals” become “isomorphic well-ordered sets” after this

translation.)

Another approach was suggested by von Neumann, and it is now

a standard approach in axiomatic set theory. In this approach, each

ordinal is the set of all smaller ordinals. For example, the minimal

ordinal 0 has no smaller ordinals, i.e., 0 is the empty set ∅. For the

successor of 0 (we denote it by 1) there exists exactly one smaller
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ordinal, 0, so

1 = {0} = {∅}.
Similarly,

2 = {0, 1} = {∅, {∅}},
3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}},

etc. (Recall that we interpreted, say, 3 as the order type of well-

ordered set with three elements, i.e., the class of all well-ordered sets

with three elements. Now this class is not needed because it is re-

placed by its “canonical representative”.)

The first infinite ordinal is ω, the order type of the set of natural

numbers. According to von Neumann, ω is the set of all smaller

ordinals, i.e.,

ω = {0, 1, 2, 3, . . . }.
The next ordinals are

ω + 1 = {0, 1, 2, 3, . . . , ω},
ω + 2 = {0, 1, 2, 3, . . . , ω, ω + 1},

etc. We will not go into details of this construction, since axiomatic

set theory is beyond the scope of this book. However, let us mention

that its most popular version is called the Zermelo–Fraenkel set the-

ory (ZF). It assumes that all objects are sets and includes the so-called

axiom of extensionality that says that two sets are the same if and

only if they have the same elements. This approach looks strange to,

say, an ecologist who may want to consider the population of birds

in a given area as a set (without considering each bird as a set of

something else). However, mathematicians are used to objects that

are constructed in a rather complicated way (i.e., a real number is

a set of equivalent fundamental sequences of rational numbers, while

a rational number is a set of equivalent pairs of integers, while an

integer is some yet another set, etc.).

Axiom of extensionality implies that there is only one set that

has no elements. Another axiom, called the axiom of foundation, or

the axiom of regularity, says that ∈-relation is well-founded: each set

X contains an element x ∈ X that is ∈-minimal in X, i.e., there is no

y ∈ X such that y ∈ x (x ∩X = ∅). An immediate corollary: no set
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x can be an element of itself (otherwise the foundation axiom would

fail for {x}).
Problem 122. Prove that the axiom of foundation implies that there

are no sets x, y, z such that x ∈ y ∈ z ∈ x.

A philosopher would explain the meaning of the axiom of founda-

tion as follows: sets are constructed from sets that were constructed

earlier, starting with the empty set. Therefore, while proving some

property α for all sets, we may prove it by induction: first for the

empty set, and then for any set whose elements satisfy α. This in-

duction principle is equivalent to the axiom of foundation.

Ordinals are defined in ZF as follows. We say that a set x is

transitive if each element of x is a subset of x, i.e., if z ∈ y ∈ x

implies z ∈ x. A set α is called an ordinal if α is transitive and all its

elements are transitive. This requirement implies that the ∈-relation
defines a partial order on α. Then induction is used (as described

above, applying the axiom of foundation) to prove that the ∈-order
is a linear (total) order. And using induction once more, we conclude

that the ∈-order is a well-ordering.

Problem 123. (a) Using the definition of an ordinal as a transi-

tive set with transitive elements, prove that each element of an ordi-

nal is an ordinal. (b) Let α be an ordinal (according to the defini-

tion above). Prove that the relation ∈ defines a partial order on α.

(c) Prove that for any two elements a, b ∈ α either a ∈ b, or a = b, or

b ∈ a (mutually excluding possibilities). (Hint : Use double induction

over the well-founded relation ∈ on α and the axiom of extension-

ality.) (d) Prove that an ordinal α is order-isomorphic to a proper

initial segment of ordinal β if and only if α ∈ β. Therefore the re-

lation < defined on ordinals (as well-ordered sets) coincides with the

∈-relation. Prove that each ordinal is the set of all smaller ordinals.

Note also that the least upper bound of a set of ordinals (in the

von Neumann sense) is the union of this set (since the ≤-relation on

ordinals coincides with the ⊂-relation.)

We will not develop this approach further and will contionue to

use the näıve definition of an ordinal as a class of order-isomorphic

well-ordered sets.
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In the next section we define arithmetic operations on ordinals.

But first we prove the following simple property of ordinals:

Theorem 37. Let A be a subset of a well-ordered set B. Then the

order type of A does not exceed the order type of B.

Note that equality is possible even if A is a proper subset of B

(i.e., A �= B). For example, the set of all even natural numbers has

the same order type (ω) as the set of all natural numbers.

Proof. Assume that A has a greater order type. Then B is isomor-

phic to some initial segment A′ of A (and A′ �= A). Let a0 be the

upper bound of A′ in A that does not belong to A′, and let f : B → A′

be an isomorphism. Then f (as a function B → B) is a strictly in-

creasing function, and therefore, f(b) ≥ b for all b ∈ B (Theorem 17).

In particular, f(a0) ≥ a0, but f(b) belongs to A′ and therefore is less

than a0 according to our assumption.

11. Ordinal arithmetic

We have defined the notions of sum and product of linearly ordered

sets in Section 1 of this chapter. (Recall that in A + B any element

of A is smaller than any element of B, and in A × B we start with

comparing second components and turn to the first components if the

second ones are equal.) As we have seen, the sum and the product

of two well-ordered sets are well-ordered sets and their orders are

determined up to isomorphism by the order types of the operands.

We now prove some basic properties of addition:

• Addition is associative: α+ (β + γ) = (α+ β) + γ.

• Addition is not commutative, e.g., 1+ω = ω, but ω+1 �= ω.

• Evidently, α+ 0 = 0 + α = α.

• The sum increases when the second operand increases: if

β1 < β2, then α + β1 < α + β2. Indeed, assume that β1 is

isomorphic to an initial segment of β2 (other than β2 itself).

Combine this isomorphism with the identity mapping on α to

get an isomorphism between α+β1 and some initial segment

of α+ β2 different from α+ β2.
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• The sum does not decrease when the first operand increases:

if α1 < α2, then α1 + β ≤ α2 + β. Indeed, α1 + β is order-

isomorphic to some subset of α2 + β. This subset is not an

initial segment. However, we can apply Theorem 37 and get

the desired inequality. (It is possible that α1 + β = α2 + β

even though α1 < α2.)

• The definition of addition can be treated as an extension of

the previously used notation α + 1 for the successor of α.

Here 1 is the order type of a one-element set. The successor

of α+ 1 is

(α+ 1) + 1 = α+ (1 + 1) = α+ 2,

etc.

• If β ≤ α, there exists a unique ordinal γ such that β+γ = α.

Indeed, β is order-isomorphic to some initial segment of α; the

remaining part of α is γ. (Such a γ is unique since addition is

strictly increasing as a function of the second operand.) The

ordinal γ is called the difference of ordinals α and β (one

should rather say “the left difference” since addition is not

commutative).

• What about a “right difference”? Unlike the left difference,

sometimes it does not exist. Let α be an ordinal. Then the

equation β + 1 = α (where β is regarded as an unknown

variable) has solutions if and only if α is a nonlimit ordinal

(i.e., when α has a maximal element).

The associativity law allows us to consider the sum of several

operands: α + β + γ can be defined as (α + β) + γ or α + (β + γ).

One can also define the sum of several ordinals directly (consider the

disjoint union of the given sets with an appropriate order).

One can also define a sum α1 + α2 + · · · of a countable sequence

of ordinals. In this sum any element of αi is less than any element

of αj for i < j; the order inside αi remains unchanged. To check

that we get a well-ordering, consider any subset X of the union of

αi. To find a minimal element, find the least i such that X ∩ αi �= ∅

and then consider the minimal element in X ∩ αi. (We apologize for
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mixing ordinals with disjoint well-ordered sets that represent them,

and hope that this will not lead to a confusion.)

In this construction the set N of natural numbers (used as sub-

scripts) can be replaced by any other well-ordered set I. If for any

element i of a well-ordered set I a well-ordered set Ai is given, we

can define the sum
∑

i∈I Ai as the order type of the set of pairs 〈a, i〉
where a ∈ Ai. To compare two pairs we first compare their sec-

ond components: if i > i′ then 〈a, i〉 > 〈a′, i′〉 (for any a ∈ Ai and

a′ ∈ Ai′). If the second components are equal, we compare the first

components: 〈a, i〉 > 〈a′, i〉 if a > a′ in Ai.

If all the Ai are order-isomorphic to some set A, the sum
∑

Ai

becomes the product A× I (defined earlier).

We now prove some properties of multiplication.

• Multiplication is associative: (αβ)γ = α(βγ). (Indeed, both

sides of the equality provide the same ordering on the set of

triples; they are compared from right to left until we find a

difference.)

• Multiplication is not commutative. For example, 2 · ω = ω

and ω · 2 �= ω.

• Evidently, α · 0 = 0 · α = 0 and α · 1 = 1 · α = α.

• Distributivity: α(β + γ) = αβ + αγ (just by definition), but

(β + γ)α can differ from βα+ γα. For example, (1 + 1) · ω =

ω �= ω + ω = ω · (1 + 1).

• The product is an increasing function of the second operand

if the first one is not 0. Let us (just for fun) derive this from

the properties above: If β2 > β1, then β2 = β1 + δ for some

δ �= 0. Then

αβ2 = α(β1 + δ) = αβ1 + αδ > αβ1.

• The product is a nondecreasing function of the first operand.

Indeed, if α1 < α2, then α1β is order-isomorphic to a subset

of α2β. This subset is not an initial segment, but we may

nevertheless apply Theorem 37.

• Any ordinal γ < αβ has a unique representation of the form

γ = αβ′ + α′, where β′ < β and α′ < α.



90 2. Ordered Sets

(Indeed, consider sets A and B having order types α and

β. Then A × B has order type αβ. Any ordinal γ < α × β

is order isomorphic to some proper initial segment [0, 〈a, b〉)
of the set A × B. This initial segment consists of all pairs

whose second element is smaller than b and all pairs where

the second element is b and the first element is smaller than

a. Therefore, γ is order-isomorphic to A × [0, b) + [0, a) =

α × β′ + α′ for β′ = [0, b) and α′ = [0, a). We now prove

that this representation is unique. Assume that αβ′ + α′ =

αβ′′ +α′′. If β′ = β′′, then α′ = α′′ (see above about the left

difference). Let us prove that β′ �= β′′ is impossible. Indeed,

if (say) β′ < β′′, then β′′ = β′+ δ and α′ = αδ+α′′, which is

impossible because the left-hand side is smaller than α and

the right-hand side is greater than or equal to α.)

• The ordinals β′ and α′ may be called the “quotient” and

the “remainder” obtained when γ is “divided” by α. The

similar “division” can be performed for any ordinals: Assume

that α > 0. Then any ordinal γ can be divided by α, i.e.,

γ can be represented as γ = ατ + ρ, where ρ < α, and this

representation is unique.

(The existence follows from the previous property: one

should take β large enough so that αβ > γ, for example,

β = γ+1. The uniqueness proof works without any changes.)

• Iterating division by some α > 0, we may construct a posi-

tional number system with base α. Any ordinal γ < αk+1

(where k is a natural number) can be uniquely represented

as

γ = αkβk + αk−1βk−1 + · · ·+ αβ1 + β0,

where βk, . . . , β1, β0 are ordinals less than α.

(First we divide γ by α, then we divide the quotient by

α again, etc. Or we may divide γ by αk, then divide the

remainder by αk−1, etc.)

Problem 124. For which ordinals the equality 1 + α = α holds?

Problem 125. The same question for the equality 2 · α = α.
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Problem 126. Which ordinals can be represented as ω · α?

Problem 127. Prove that α+ β = β if and only if αω ≤ β (for any

ordinals α and β).

Problem 128. Prove that if α+ β = β + α for some ordinals α and

β, then there exists an ordinal γ and natural numbers m and n such

that α = γm and β = γn.

Problem 129. Consider the following operation called “base change”

from k > 1 to l > k. (The operation can be applied to natural

numbers; k and l are natural numbers.) To apply base change to a

natural number n we write n in the positional system with base k.

Then we read this string of digits in the positional system with base

l. For example, if we apply to number “five” the base change 2 → 10

(with k = 2 and l = 10), we get “one hundred and one”.

Note that the base change makes any number bigger, except for

the numbers less than or equal to k.

Now consider an arbitrary natural number n and apply the follow-

ing sequence of operations: (base change 2 → 3)—(subtraction of 1)—

(base change 3 → 4)—(subtraction of 1)—(base change 4 → 5)—

(subtraction of 1)—etc.

Prove that this process, started from any n, will always terminate

(i.e., we will come to zero and will not be able to subtract 1 from it).

(Hint : This problem does not involve ordinals in its statement.

However, they can be useful: replace all the bases by ω and get a de-

creasing sequence of ordinals. This argument works for any sequence

of bases.)

12. Recursive definitions and exponentiation

In the previous section we gave explicit definitions of the sum and

product for any two ordinals. However, the same operations could be

defined recursively.
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Theorem 38. Addition has the following properties (α and β are

arbitrary ordinals):

α+ 0 = α;

α+ (β + 1) = (α+ β) + 1;

α+ γ = sup{α+ β | β < γ} for any limit ordinal γ �= 0.

These properties define the addition operation uniquely.

Proof. The first two properties are evidently true. Let us prove the

third one. If β < γ, then α+ β < α+ γ; therefore α+ γ is an upper

bound of the set of all sums α+ β (for all β < γ). We have to prove

that α + γ is the least upper bound. Let τ < α + γ be an ordinal.

We check that τ < α + β for some β < γ. If τ < α, this is evidently

true. If τ ≥ α, then τ = α + σ for some σ, and α + σ < α + γ;

therefore σ < γ. Since γ is a limit ordinal, σ+ 1 is less than γ, so we

let β = σ + 1.

It remains to prove that these three properties define addition

uniquely (any operation that has all three of them coincides with ad-

dition). Indeed, these properties form a recursive definition over β; if

two versions of addition are different for some β, we take the minimal

β where they differ and come to a contradiction.

Multiplication can be defined recursively as follows:

Theorem 39. Multiplication has the following properties (α and β

are arbitrary ordinals):

α0 = 0;

α(β + 1) = αβ + α;

αγ = sup{αβ | β < γ} for any limit ordinal γ �= 0.

These properties uniquely determine the multiplication operation.

Proof. The proof is similar to the proof of the previous theorem. We

have to prove that if τ < αγ for a limit ordinal γ, then τ < αβ for

some β < γ. As we have seen (p. 89), τ = αγ′ + α′ for some γ′ < γ;

now we let β = γ′ + 1.
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After addition and multiplication are defined, the next step is

to define exponentiation. We have already defined αn for positive

integers n (as the product of n factors equal to α).

In more detail: if a well-ordered set A has order type α, then

αn is the order type of the set An whose elements are n-tuples of

A-elements and whose order is the reverse lexicographical order (the

comparison goes from right to left).

How should we define αω? One can consider the set AN of infi-

nite sequences of A-elements (where A has order type α) and define

some well-ordering on AN. But it is not clear which well-ordering can

be used. So let us drop this idea and try to define exponentiation

recursively as follows (where α and β are arbitrary ordinals):

α0 = 1;

αβ+1 = αβ · α;
αγ = sup{αβ | β < γ} for any limit ordinal γ �= 0.

Theorem 18 (on transfinite recursion) guarantees that these equations

uniquely define some operation on ordinals that is called exponentia-

tion.

Remark. Here we again approach the dangerous area where

set-theoretic paradoxes may appear. Theorem 18 gives us a function

defined on some well-ordered set. Here we try to define an operation

that can be applied to any ordinal; but ordinals do not form a set

(there are too many of them). Another problem is that Theorem 18

deals with functions taking values in a given set, but now we have no

such set.

Axiomatic set theory resolves this problem by using a special

axiom called axiom of replacement, but we will not go into details

here. Instead we give an explicit definition of exponentiation which

is free from these problems.

Let us look first at the ordinal αω (for some α). Let A be a well-

ordered set of order type α. By definition, αω if the least upper bound

of all αn for all natural n. The ordinal αn is the order type of the set

An with reverse lexicographical order. To find the least upper bound,

we regard Ak as an initial segment of Al for l > k. For example, A2
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consists of pairs 〈a1, a2〉 and is isomorphic to the initial segment of A3

that consists of triples 〈a1, a2, 0〉. (Here 0 stands for the least element

in A.) Now we see that all An can be viewed as initial segments of

the set A∞ that consists of infinite sequences a0, a1, . . . of A-elements

such that only finitely many of their terms differ from 0. (The last

requirement makes the reverse lexicographical order possible: for any

two given sequences we find the rightmost place where they differ and

compare both terms at that place.) The union of all An (viewed as

initial segments of A∞) is A∞. Therefore, A∞ has order type αω

according to our recursive definition.

This example motivates the following explicit definition of expo-

nentiation.

Let A and B be well-ordered sets of order types α and β. Consider

the set [B → A] whose elements are mappings from B to A having

finite support. We say that a mapping f : B → A has finite support

if it equals the least element of A everywhere except for a finite set.

The set [B → A] can be ordered as follows: for any two different

functions f1 and f2 we consider the greatest element b ∈ B such that

f1(b) �= f2(b) and compare f1(b) and f2(b).

Theorem 40. This rule defines a well-ordering on the set [B → A]

and its order type is αβ.

Proof. It is easy to see that our rule defines a linear order on [B → A].

Let us check that it is a well-ordering.

By the support of a mapping f ∈ [B → A] we mean the set of all

b ∈ B such that f(b) > 0 (where 0 stands for the least element of A).

By the rank of f we mean the greatest element in the support of f (by

the definition of [B → A] the support is finite). The rank is defined

for all functions except the zero function (which is the least element

of [B → A]). If two elements of [B → A] have different ranks, the

element with the greater rank is greater (according to the ordering in

[B → A] defined above).

If [B → A] is not a well-ordered set, there exists a decreasing

infinite sequence f0 > f1 > f2 > · · · of nonzero elements. Consider

the ranks of fi. They form a nonincreasing sequence of elements

of B. Since B is well-ordered, ranks stabilize (i.e., coincide for all
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fn, fn+1, fn+2, . . . for some n). We can ignore first n elements and

assume that the ranks of all fi are equal to some b ∈ B.

Consider the sequence f0(b), f1(b), . . . . The definition of order

in [B → A] implies that f0(b) ≥ f1(b) ≥ f2(b) ≥ · · · ; since A is well

ordered, the sequence f0(b) ≥ f1(b) ≥ f2(b) ≥ · · · stabilizes. Again

we can forget about finitely many terms and assume without loss of

generality that all fi(b) are the same. Under this assumption the

value fi(b) plays no role in comparisons, and can be replaced by 0.

Then we get a decreasing sequence in [B → A] where the ranks of all

elements are less than b. To complete the argument, we refer to the

induction principle over B.

Let us say it again with more details. Consider all strictly de-

creasing infinite sequences in [B → A]. (We assume that they exist

and come to a contradiction.) For each sequence consider the rank of

its first element. Let us choose a sequence with least possible rank.

(Here we use that B is well ordered.) Let b be this minimal rank.

Consider a strictly decreasing sequence that starts with an element

of rank b. All the elements of the sequence have rank b (if some of

them has smaller rank, we can remove an initial segment and get a

decreasing sequence that starts with a smaller rank).

Consider all decreasing sequences f0 > f1 > f2 > · · · whose

elements have rank b and choose one of them that has the least value

of f0(b). (Here we use that A is well ordered.) All terms of this

sequence have the same value at b (fi(b) = f0(b); otherwise we can

drop some elements to get a sequence with a smaller value of f0(b)).

Replace this value by 0 (let fi(b) = 0 for all i). We get an infinite

strictly decreasing sequence of elements whose ranks are less than b,

and this is impossible according to our assumptions.

It remains to prove that our explicit definition of exponentiation

satisfies the recursive definition. For finite n it is evident.

Now let γ be a nonlimit ordinal: γ = β+1. What is our (explicit)

definition of αγ in this case? Let B be a well-ordered set of type β.

To get a well-ordered set of type γ we add a new element m to B so

that it be greater than all the elements of B. Then we consider all

mappings of B ∪ {m} to A having finite support. Any mapping g of

this type can be regarded as a pair: its first element is a restriction of
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g to B, and the second is the value g(m) (which is an element of A).

(Finite support remains finite if m is added or removed.)

To compare two mapping g and g′, we first compare g(m) and

g′(m); if they are equal, we compare the restrictions of g and g′ to B.

Therefore, the set [B ∪ {m} → A] is isomorphic to [B → A] × A, so

the second requirement of the recursive definition is satisfied.

Now let γ be a nonzero limit ordinal, and let C be a well-ordered

set of order type γ. Let us look at the set [C → A]. The elements of

this set whose rank is less than some c ∈ C, form an initial segment in

[C → A], and this initial segment is order-isomorphic to [[0, c) → A].

The set [C → A] is the union of these initial segments (since any

element of [C → A] has finite support). Therefore, the order type

of [C → A] is the least upper bound of the order types of the sets

[[0, c) → A], exactly as required by the recursive definition.

Theorem 41. For any countable ordinals α and β, the ordinals α+β,

αβ and αβ are also countable.

Proof. The sum and product are countable since the sum and prod-

uct of any two countable sets is a countable set.

Exponentiation: If all elements of well-ordered sets A and B are

numbered by integers, then any element f of [B → A] is determined

by a finite list of integers (that includes all the elements of the support

of f and all corresponding values), and the set of all finite lists of

integers is countable.

Problem 130. Give two proofs that αβ+γ = αβ · αγ , first using

transfinite induction and then using the explicit definition of expo-

nentiation.

Problem 131. Prove that (αβ)γ = αβγ .

Problem 132. Prove that αβ ≥ αβ for α ≥ 2.

Problem 133. Prove that if ωγ = α+ β for some ordinals α, β and

γ, then either β = 0 or β = ωγ .

Problem 134. Which ordinals cannot be represented as sums of two

smaller ordinals?
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Problem 135. Use the inductive definition of exponentiation to

prove that αβ is countable for any countable α and β. (Hint : Recall

that an upper bound of a countable family of countable ordinals is

countable.)

Problem 136. Let α > 1 be an arbitrary ordinal. Find the least

ordinal β > 0 such that αβ = β. (Hint : What is the product of x

and the power series 1 + x+ x2 + x3 + · · · ?)

Let us note the following important difference between exponen-

tiation of ordinals and the previously defined operations (addition,

multiplication). Defining a sum (or product) we introduced some

well-ordering on the sum (or Cartesian product) of the corresponding

sets. For exponentiation, we consider the set [B → A] whose defini-

tion depends not only on the underlying sets of A and B, but also

on the orderings. This set differs from the set AB of all functions of

type B → A considered earlier. In particular, for countable A and

B the set [B → A] is countable, whereas the set AB has continuum

cardinality.

The explicit definition of exponentiation as the order type of

[B → A] allows us to understand the structure of ordinals that are

smaller than αβ , i.e., the initial segments of [B → A].

Let f be an element of [B → A]. Then f is a function with finite

support taking nonzero values at the points b1 > b2 > · · · > bk. Let

a1, a2, . . . , ak be its values (f(bi) = ai).

Let g be any function smaller than f . Then g(x) = 0 for any

x > b1. The value g(b1) could be either less than a1 or equal to a1.

These two possibilities split all functions g < f into two classes. Any

function of the first type (where g(b1) < a1) is less than any function

of the second type.

Functions of both types have zero values outside [0, b1]. First

type functions take some value at b1 that is less than a1 and may

have any values in [0, b1) (but only finitely many values are different

from 0). Therefore, the set of all first type functions is isomorphic (as

an ordered set) to [[0, b1) → A]× [0, a1).

Second type functions g (such that g(b1) = a1) could be further

divided into two subcategories: the first is formed by functions g such
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that g(b2) < a2; the second is formed by functions g such that g(b2) =

a2. The first subcategory is isomorphic to [[0, b2) → A] × [0, a2).

The second subcategory can again be divided into two parts (where

g(b3) < a3 and g(b3) = a3), etc. Therefore, [0, f) is an ordered set

isomorphic to

[[0, b1) → A]× [0, a1) + [[0, b2) → A]× [0, a2) + · · ·
+ [[0, bk) → A]× [0, ak).

Reformulating this statement in terms of ordinals, we get the following

Theorem 42. Any ordinal less than αβ can be represented as

αβ1α1 + αβ2α2 + · · ·+ αβkαk,

where β > β1 > β2 > · · · > βk and α1, α2, . . . , αk < α. This repre-

sentation is unique, and any sum of this kind represents an ordinal

less than αβ.

Proof. The existence of the representation is already proved. On the

other hand, any sum of this kind is isomorphic to an initial segment

in [B → A] (where A and B have order types α and β), and different

sums correspond to different initial segments.

This theorem is a generalization of the positional number system

with base α for ordinals less than αk (see page 90). It allows us to

use any ordinal β in place of k.

In fact, we could define [B → A] as the set of (formal) sums of

type

αβ1α1 + αβ2α2 + · · ·+ αβkαk

(where β > β1 > · · · > βk and α1, . . . , αk < α) ordered in a natural

way.

Now we can give an explicit description of the ordinals

ωω, ω(ωω), . . . .

The first, ωω, is formed by two-level expressions

ωb1a1 + ωb2a2 + · · ·+ ωbkak,

where ai and bi are natural numbers and b1 > · · · > bk. If we allow the

use of any two-level expression (described above) as b1, . . . , bk, then
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we obtain “three-level” expressions that are ordered as ω(ωω). Using

three-level expressions as b1, . . . , bk, we get four-level expressions, etc.

The union of all these sets consists of expressions of any finite height

and is a well-ordered set of order type

sup(ω, ωω, ω(ωω), . . . ).

This order type is denoted by ε0.

Problem 137. Prove that

ε0 = ω + ωω + ω(ωω) + · · · .

Problem 138. Consider the following operation called “total base

change” from k to l > k (here k and l are natural numbers). Operation

can be applied to any natural number n and is performed as follows.

We represent n in a positional number system with base k:

n = aik
i + ai−1k

i−1 + · · ·+ a0.

Then we represent all exponents i, i−1, . . . , 0 also in positional system

with base k, and so on. At the end all coefficients are less than k and

all bases are k. Then we replace the base k by the base l and compute

the value of this new expression.

(The difference between the “total base change” and the “base

change” considered in Problem 129 is that now we use a positional

number system with a changed base also for exponents.)

Now let us consider an arbitrary natural number n and apply

the following sequence of operations: (total base change 2 → 3)—

(subtraction of 1)—(total base change 3 → 4)—(subtraction of 1)—

(total base change 4 → 5)—(subtraction of 1)—etc.

Prove that this process, started from any n, will always terminate

(i.e., we will come to zero and will not be able to subtract 1).

(Hint : Replace all bases by ω and get a decreasing sequence of

ordinals less than ε0. Note that the statement of this problem does

not mention ordinals at all; however, they are used in the solution.)

13. Application of ordinals

In most cases ordinals and transfinite induction can be replaced by

Zorn’s Lemma. Usually this gives a less intuitive but formally simpler
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argument. However, in some cases Zorn’s Lemma does not help much

(or at least it is not easy to use it). In this section we give two

examples of this type.

The first example is about Borel sets. For simplicity we consider

only Borel sets of real numbers. Let us give the definition.

A family X of sets of real numbers is called a σ-algebra if it is

closed under complement, countable unions and intersections. (This

means that if A ⊂ R belongs to X, then R \ A belongs to X; if

A0, A1, . . . belong to X, then A0 ∪A1 ∪ · · · and A0 ∩A1 ∩ · · · belong

to X.)

Evidently, the family P (R) of all subsets of R is a σ-algebra.

Theorem 43. There exists the least (with respect to inclusion) σ-

algebra that contains all closed intervals [a, b].

Proof. The formal proof is easy: consider all σ-algebras that contain

all closed intervals. (As we have seen, there exists at least one such σ-

algebra.) The intersection of all these σ-algebras is a σ-algebra that

contains all closed intervals and (evidently) is the smallest algebra

with this property. (Note that the intersection of any family of σ-

algebras is a σ-algebra; this follows directly from the definition.)

The elements of the least σ-algebra that contains all intervals are

called Borel sets.

Problem 139. Prove that all open and all closed subsets of R are

Borel sets. (Hint : An open set is a union of all its subsets [p, q], where

p, q are rational numbers.)

Problem 140. Prove that the preimage of a Borel set under a con-

tinuous function of type R → R is a Borel set.

Problem 141. Let f0, f1, . . . be a sequence of continuous functions

of type R → R. Prove that the set of all points x such that the

sequence f0(x), f1(x), . . . has a limit, is a Borel set.

Borel sets play an important role in the descriptive set theory. But

our current goal is very limited: we want to show the use of transfinite

induction that cannot be easily replaced with Zorn’s Lemma, by the

example of the following theorem.
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Theorem 44. The family of all Borel sets has continuum cardinality.

Proof. The class of all Borel sets can be constructed step by step.

We start with closed intervals and their complements. In the next

step we consider countable unions and intersection of sets already

constructed.

Problem 142. Prove that all closed and all open subsets of R are

among them.

Then we consider countable unions and intersections of sets al-

ready constructed, and so on.

More formally, let B0 ⊂ P (R) be the family of all closed intervals

and their complements. Then we define Bi by induction: Bi+1 is

the family of sets that are countable intersections or unions of sets

from Bi.

All elements of Bi are Borel sets (since a countable union or in-

tersection of Borel sets is a Borel set). Is it true that any Borel set

belongs to Bi for some natural i? Not necessarily: consider the se-

quence of sets Xi ∈ Bi. The sets Xi are Borel sets; therefore the

intersection
⋂

i Xi is a Borel set. But it may happen that it does not

belong to any Bi for i = 0, 1, 2, . . . .

Thus, we need to continue our construction and consider the class

Bω defined as the union of all Bi for i = 0, 1, . . . ; then we consider

Bω+1, Bω+2, etc. The union of these classes is called Bω·2, and the

construction goes on.

Here is the formal definition of Bα for any ordinal α. It uses

transfinite recursion. For α = β+1 the elements of Bα are countable

unions and intersections of the elements of Bβ . If α is a limit ordinal

(and α �= 0), then Bα is the union of Bβ for all β < α. (The class B0

has already been defined.)

The definition easily implies that Bα ⊂ Bβ if α < β; therefore the

sequence Bα is increasing. All classes Bα are closed under complement

(it is true for B0 due to our construction; then use transfinite induc-

tion). All elements of all Bα are Borel sets, since we use only countable

unions and intersections, and the class of Borel sets is closed under

these operations. (Formally speaking, here we should use transfinite

induction again.)
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How long should we continue this construction? It turns out that

the first uncountable ordinal is large enough.

Let ℵ1 be the least uncountable ordinal. (This is a standard

notation.) In other terms, ℵ1 is the family of all countable ordinals

ordered by the <-relation on ordinals.

Lemma. The class Bℵ1
is closed under countable intersections

and unions (and therefore all Borel sets belong to Bℵ1
).

Proof of the lemma. Let B0, B1, . . . be a sequence of sets that

belong to Bℵ1
. The ordinal ℵ1 is a limit one, hence Bℵ1

is the union

of smaller classes. Therefore each Bi belongs to some Bαi
, where αi

is an ordinal less than ℵ1, i.e., a countable (or finite) ordinal. Let

β = supi αi. Then β is the least upper bound of a countable family

of countable ordinals and is countable. (Indeed, view all αi as initial

segments of some greater ordinal, e.g., ℵ1; then β is a countable union

of countable sets.)

Now the claim is evident: all Bi are elements of Bβ ; therefore their

union (or intersection) belongs to Bβ+1 and to Bℵ1
(since β + 1 is a

countable ordinal less than ℵ1).

Therefore the class Bℵ1
is a σ-algebra that contains all closed

intervals. The class of Borel sets is the smallest σ-algebra with that

property; therefore, all Borel sets are elements of Bℵ1
. The lemma is

proved.

On the other hand, all classes Bα contain Borel sets only, and

therefore the class Bℵ1
coincides with the class of all Borel sets (and

with all subsequent classes Bα for α > ℵ1).

What is the cardinality of Bα? The class B0 has continuum car-

dinality (closed segments are determined by their endpoints). If the

class Bα has continuum cardinality, then the next class Bα+1 also has

continuum cardinality. Indeed, any element of Bα+1 is determined by

a sequence of elements of Bα, and cℵ0 = c.

For a limit ordinal α the class Bα is the union of preceding classes,

and there are only countably many of them, since we consider only

ordinals smaller than ℵ1 (i.e., countable ordinals). Recalling that

cℵ0 = c, we see that Bα has continuum cardinality for any count-

able ordinal α. Finally, the class Bℵ1
is the union of uncountably
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many preceding classes (namely, ℵ1 classes), but ℵ1 ≤ c and therefore

cℵ1 = c.

Thus, we have proved that Bℵ1
, that is, the class of all Borel sets,

has continuum cardinality.

The traditional definition of Borel hierarchy is slightly different.

Usually two classes are considered at the lowest level: open and closed

sets. The next level contains two classes: Fσ is the class of countable

unions of closed sets, while Gδ is the class of countable intersections

of open sets. The next level contains the class of all countable in-

tersections of Fσ-sets and all countable unions of Gδ-sets, etc. This

approach is more natural from the topological viewpoint, since closed

segments in our definition are chosen somehow arbitrarily. But the

difference is not really important.

Problem 143. Prove that the intersection of two Fσ-sets is an Fσ-

set, and the union of two Gδ-sets is a Gδ-set. (More generally, the

classes Fσ and Gδ, as well as subsequent classes, are closed under

finite unions and intersections.)

Problem 144. Prove that all Fσ- and Gδ-sets are elements of the

class B2 (defined as above).

Problem 145. Prove that each set in B2 differs from some Fσ- or

Gδ-set by at most a countable set.

Problem 146. Prove that each set in B3 is either a countable in-

tersection of Fσ-sets or a countable union of Gδ-sets. Prove similar

statements for higher levels of the hierarchy.

Problem 147. Prove that there exists an open set U ⊂ R2 such

that every open set V ⊂ R is among the “vertical sections” Ux =

{y | 〈x, y〉 ∈ U} of U . Prove that there exists a Gδ-set U
′ ⊂ R2 such

that every Gδ-subset of R appears among its vertical sections. Prove

similar statements for next levels of the hierarchy. (This problem uses

the notion of Gδ-subset of R
2 defined in a natural way.)

Problem 148. Prove that there exists a Gδ-set that is not an Fσ-

set. Prove that there exists a countable union of Gδ-sets that is not

a countable intersection of Fσ-sets etc. (Hint : Use the preceding

problem.)
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Ordinals often appear when we classify the elements of a set by

their “ranks”. For example, we can define the rank of an element of

a well-founded set as follows:

Theorem 45. Let X be a well-founded set. There exists a unique

function rk, defined on X and having ordinals as values, such that

rk(x) = min{α | α > rk(y) for all y < x}

(for any x ∈ X).

This theorem implies that rk is the least strictly increasing func-

tion on X whose values are ordinals.

Proof. We define a subsetXα ⊂ X using transfinite recursion (on α):

Xα is the set of all x ∈ X such that all smaller elements (in X) belong

to Xβ for some β < α:

x ∈ Xα ⇔ (∀y < x) (∃β < α) (y ∈ Xβ).

Note that “<” has two different meanings: the ordering of ordinals

(β < α) and the ordering in X (y < x).

The definition implies that Xβ ⊂ Xγ for β < γ. We prove that

Xα = X for sufficiently large α. If this is not the case, then β < γ

implies Xβ � Xγ (a minimal element of the nonempty set X \Xβ

belongs to Xγ). Therefore the mapping α 	→ Xα is injective, which

is impossible (consider an ordinal that has cardinality greater than

P (X); there are too many smaller ordinals).

Now we define rk(x) as the least α such that x ∈ Xα. If rk(x) = α

and y < x, then rk(y) < α. (Indeed, x ∈ Xα implies that any y < x

belongs to Xβ for some β < α and rk(y) ≤ β < α.) On the other

hand, if for some ordinal γ we have rk(y) < γ for all y < x, then

rk(x) ≤ γ. (Indeed, then any y < x belongs to Xβ for β = rk(y) < γ

and therefore x ∈ Xγ and rk(x) ≤ γ.)

Therefore, the function rk has the required properties. It is ob-

viously unique: if two rank functions differ, consider a minimal point

where they differ and come to a contradiction.

In particular, countable ordinals could be used to classify trees

that have no infinite branches. We consider only rooted trees with
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finite or countable branching where each vertex has a finite or count-

able number of sons, and assume that such a tree has no infinite

branches (a branch is a sequence of vertices where each vertex is a

son of the preceding one).

Formally a tree of this type can be defined as a subset T of the

set N∗ (here N∗ is the set of all finite sequences of natural numbers)

such that any prefix of any element of T belongs to T . Elements of T

are called tree vertices . The vertex y is a son of a vertex x if x is y

without the last element. The vertex y is a descendant of x if x is a

prefix of y.

An infinite branch in a tree T is an infinite sequence of natural

numbers such that all its prefixes are vertices of T . If a tree has no

infinite branches, the partial ordering

y < x ⇔ y is a descendant of x

is well founded, and we can apply Theorem 45 to define ranks for all

tree vertices. The rank of the root vertex (i.e., the empty sequence)

is called the tree rank of T .

Theorem 46. (a) Tree rank of any tree (as described above) is a

countable ordinal.

(b) Any countable ordinal is the tree rank of some tree.

Proof. (a) If the rank of some tree (i.e., the rank of its root) is

uncountable, then one of the sons (say, x1) of the root vertex has an

uncountable rank, too. (Indeed, the least upper bound of a countable

family of countable ordinals is a countable ordinal: a countable union

of countable initial segments is countable.) Then one of the sons of x1

(say, x2) has an uncountable rank, etc. We get a sequence x1, x2, . . .

of vertices; therefore our tree has an infinite branch.

(b) Let us prove this statement by induction. Let α be the least

countable ordinal that is not the rank of any tree. For any smaller

ordinal consider the corresponding tree and combine all these trees

into one big tree (the roots of all trees become sons of the root of

the new tree). This is possible since the set of ordinals that are less

than α is countable. The root of the new tree has rank α.
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Problem 149. Consider a tree without infinite branches (as defined

above). Assume that each leaf (vertex without sons) is labeled by a

closed interval in R or by the complement of a closed interval in R,

and each nonleaf vertex is labeled either by ∩ or ∪ sign. Explain

how this tree can be regarded as a representation of a Borel set.

(Hint : Prove that there exists a unique labeling of vertices by sets

that is consistent with the given labeling.) Prove that any Borel set

corresponds to some tree.

Labeled trees (as defined in this problem) may be viewed as gen-

eralizations of formulas. Indeed, each tree is like an infinite formula

that contains closed intervals, their complements and the union/in-

tersection operations with a countable number of operands. (Finite

trees correspond to usual finite formulas.) Borel sets are sets that can

be represented by infinite formulas of this type.

Problem 150. Prove that the family of all Borel sets has continuum

cardinality, using the representation of Borel sets by infinite formulas.

(It is possible to eliminate ordinals and well-ordered sets in this proof

and use only trees with no infinite branches.)

We end our book with a funny (though may be not so important)

application of ordinals and transfinite recursion.

Theorem 47. There exists a set of points on the plane that has ex-

actly two common points with every line.

Note that the set of points of any two parallel lines almost satisfies

this requirement (for all lines that are not parallel to the given two

lines), but it is not so easy to construct a set that has two intersection

points with each line.

Proof. Let us reformulate the requirements for our set M as follows:

(a) no three points of M are on the same line; (b) each line intersects

M in at least two points.

We construct the set M using transfinite induction. Let α be the

least ordinal of continuum cardinality. (If the Continuum Hypothesis

is true, then α = ℵ1, but this is not important for us now.) Then the

set of all ordinals that are less than α has continuum cardinality and
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can be put into a one-to-one correspondence with the set of all lines.

Let lβ be the line that corresponds to an ordinal β < α.

For each β < α we construct a set Mβ that satisfies condition (a)

(no three points are on the same line) and has a two-point intersection

with the line lβ and with all lines lγ for γ < β. This construction

is monotone (bigger ordinals give bigger sets), and each point of Mβ

belongs to the line lγ for some γ ≤ β.

How to construct Mβ? First we consider the union of sets Mγ for

all γ < β and denote it by T . No three points of T are on the same

line (indeed, if these points are from setsMγ1
, Mγ2

, and Mγ3
, take the

greatest ordinal γ among γ1, γ2, γ3, and recall that the corresponding

set Mγ satisfies (a)).

Now count the points in lβ ∩ T . As we have proved, there are

at most two of them. If there are two, everything is fine and we let

Mβ = T . If not, we have to add new points to T using points of

lβ and trying not to violate condition (a). This means that we are

not allowed to use points that are intersections of lβ and “dangerous”

lines passing through two existing points of T .

How many dangerous lines are there? The induction hypothesis

guarantees that every point of T belongs to the line lγ for some γ < β.

Therefore, the cardinality of T is at most 2β = β (each line provides

two points in T ), and T × T also has cardinality at most β2 = β < c.

Therefore, the set of dangerous lines has cardinality less than that of

the continuum, and lβ has infinitely many points that could be added

safely. In fact, we need at most two new points, and we add them to

T getting Mβ that has a two-element intersection with all the lines

up to lβ and at most a two-element intersection with all other lines.

It remains to consider the union of all Mβ for all β < α to get a

desired set X.

Problem 151. Find an error in the following “proof” that ℵ1 �= c

(the negation of the Continuum Hypothesis):

Assume that ℵ1 = c. Then we can define an ordering on [0, 1] that

has order type ℵ1 (and has no relation to the usual order). Consider

then the characteristic function of this ordering, i.e., function f such

that f(x, y) = 1 for x < y, and f(x, y) = 0 for x ≥ y. (Here “<”
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and “≤” stand for the well-ordering, not the usual order.) Then

for each x the function y 	→ f(x, y) equals 1 everywhere except for

a countable number of points (since [0, x] is countable); therefore∫
f(x, y) dy is defined and equals 1 for any x. A similar argument

shows that
∫
f(x, y) dx is defined and equals 0 for all y. Therefore,∫ (∫

f(x, y) dy

)
dx �=

∫ (∫
f(x, y) dx

)
dy,

which contradicts the well-known Fubini Theorem.
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Felix BERNSTEIN, Feb. 24, 1878, Halle (Germany) –Dec. 3, 1956, Zurich
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(now Egypt), 29
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Russia) – Feb. 14, 1943, Göttingen (Germany), 72
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Germany) –Mar. 6, 1939, Munich (Germany), 25
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sia) – Feb. 24, 1856, Kazan (Russia), 29

Sir Isaac NEWTON, Jan. 4, 1643, Woolsthorpe, Lincolnshire (England) –
Mar. 31, 1727, London (England), 7

Giuseppe PEANO, Aug. 27, 1858, Cuneo, Piemonte (Italy) –Apr. 20,
1932, Turin (Italy), 16

Frank Plumpton RAMSEY, Feb. 22, 1903, Cambridge, Cambridgeshire
(England) – Jan. 19, 1930, London (England), 42

Bertrand Arthur William RUSSELL, May 18, 1872, Ravenscroft, Trelleck,
Monmouthshire (Wales, UK) –Feb. 2, 1970, Penrhyndeudraeth,
Merioneth (Wales, UK), 28

Friedrich Wilhelm Karl Ernst SCHRÖDER, Nov. 25, 1841, Mannhein
(Germany) – Jun. 16, 1902, Karlsruhe (Germany), 20

John von NEUMANN, Dec. 28, 1903, Budapest (Hungary) –Feb. 8, 1957,
Washington, D.C. (USA), 83, 84
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1964, Stockholm (Sweden), 35

Ernst Friedrich Ferdinand ZERMELO, Jul. 27, 1871, Berlin (Germany) –
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Fσ , 103
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[B → A], 94
DomF , 31
ValF , 31
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R, cardinality, 25
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Cantor’s Theorem, 24, 27
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characteristic function, 5
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Inclusion-Exclusion Principle, 4
induced order, 45
induction, 52

transfinite, 59
infinite formula, 106
infinite sets, 9, 13
infix notation, 30
initial segment, 58, 64
injection, 33
intersection, 1
inverse function, 33
isolated point, 26
isomorphic posets, 47
isomorphism, 47

Koenig’s Theorem, 40
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lower bound, 57
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induced, 45
lexicographical, 44
linear (total), 43, 77
partial, 77
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Kuratowski’s definition, 34
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von Neumann, 84
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set, 42

Ramsey Theorem, 42
range, 31
rational numbers, 11
real numbers, 11, 16, 25
reflexive relation, 8
reflexivity, 41
regularity, 85
relation, 30

ordering, 43
preorder, 45

remainder, 90
replacement, axiom of, 93
right inverse, 33
root, 105
rooted tree, 105

separation, axiom of, 30
set

cardinality of, 1
empty, 1
linearly independent, 69
linearly ordered, 43
partially ordered, 43
totally ordered, 43

set theory, 85
sets, 1

Borel, 100, 101
closed, 103
difference of, 2
equal, 1
intersection of, 1
open, 103
ordered, 41
symmetric difference of, 2
transitive, 86
union of, 2
well-founded, 104
well-ordered, 56, 68

singleton, 27, 34
son, 105
strict ordering, 45
subset, 1
successor, 56
sum, 87

of cardinalities, 79
of cardinals, 35
of posets, 45

superset, 1
support, 94
surjection, 33
symmetric

difference, 2
relation, 8

symmetry, 41

topologically sorted graph, 78
total function, 31
total order, 43, 77
transcendental numbers, 25
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theorem, 61
transitive

relation, 8
set, 86

transitivity, 41
tree, 104

rooted, 105
tree rank, 105

union, 2
axiom of, 30

unit square, cardinality of, 15
upper bound, 57, 74

value, 31
vertex, 105

well-founded
ordering, 52, 54
set, 104

well-ordered sets, 68
comparison of, 63

well-ordering, 56, 83

Zermelo’s Theorem, 66
ZF, Zermelo–Fraenkel axiomatic

set theory, 29, 85
ZFC, 29
Zorn’s Lemma, 74, 99
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The main notions of set theory (cardinals, ordinals, transfi-
nite induction) are fundamental to all mathematicians, not 
only to those who specialize in mathematical logic or set-
theoretic topology. Basic set theory is generally given a 
brief overview in courses on analysis, algebra, or topology, 
even though it is sufficiently important, interesting, and 
simple to merit its own leisurely treatment.

This book provides just that: a leisurely exposition for a 
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ematicians who want to finally find out what transfinite 
induction is and why it is always replaced by Zorn’s 
Lemma.

The text introduces all main subjects of “naive” (nonax- 
iomatic) set theory: functions, cardinalities, ordered and 
well-ordered sets, transfinite induction and its applications, 
ordinals, and operations on ordinals. Included are discus-
sions and proofs of the Cantor–Bernstein Theorem,  
Cantor’s diagonal method, Zorn’s Lemma, Zermelo’s 
Theorem, and Hamel bases. With over 150 problems, the 
book is a complete and accessible introduction to the 
subject.
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