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Preface 

It is rarely taught in an undergraduate, or even graduate, curriculum 
that the only conformal maps in Euclidean space of dimension greater 
than 2 are those generated by similarities and inversions (reflections) 
in spheres. This contrasts with the abundance of conformal maps in 
the plane, a fact which is taught in most complex analysis courses. 
The principal aim of this text is to give a treatment of this paucity of 
conformal maps in higher dimensions. The result was proved in 1850 
in dimension 3 by J. Liouville [22]. In Chapter 5 of the present text 
we give a proof in general dimension due to R. Nevanlinna [26] and 
in Chapter 6 give a differential geometric proof in dimension 3 which 
is often regarded as the classical proof, though it is not Liouville's 
proof. For completeness, in Chapter 4 we develop enough complex 
analysis to prove the abundance of conformal maps in the plane. 

In addition this book develops inversion theory as a subject along 
with the auxiliary theme of "circle preserving maps". 

The text as presented here is at the advanced undergraduate level 
and is suitable for a "capstone course", topics course, senior seminar, 
independent study, etc. The author has successfully used this mate-
rial for capstone courses at Michigan State University. One particular 
feature is the inclusion of the paper on circle preserving transforma-
tions by C. Carathéodory [6] . This paper divides itself up nicely into 
small sections, and students were asked to present the paper to the 

ix 
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class. This turned out to be an enjoyable and profitable experience 
for the students. When there were more than enough students in the 
class for this exercise, some of the students presented Section 2.8. 

The author expresses his appreciation to Dr. Edward Dunne and 
the production staff of the American Mathematical Society for their 
kind assistance in producing this book. 



Chapter 1 

Classical Inversion 
Theory in the Plane 

1.1. Definition and basic properties 

Let C be a circle centered at a point 0 with radius r. If P is any 
point other than 0, the inverse of P with respect to C is the point 
P' on the ray OP such that the product of the distances of P and P' 
from 0 is equal to r 2 . Inversion in a circle is sometimes referred to 
as "reflection" in a circle; some reasons for this will become apparent 
as we progress. 

Clearly if P' is the inverse of P, then P is the inverse of P'. Note 
also that if P is in the interior of C, P' is exterior to C, and vice-
versa. So the interior of C except for 0 is mapped to the exterior and 
the exterior to the interior. C itself is left pointwise fixed. 0 has no 
image, and no point of the plane is mapped to O. However, points 
close to 0 are mapped to points far from 0 and points far from 0 
map to points close to O. Thus adjoining one "ideal point", or "point 
at infinity", to the Euclidean plane, we can include 0 in the domain 
and range of inversion. We will treat this point at infinity in detail 
in Section 2.2. 

1 
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We denote by PQ the length of the line segment PQ. The simi-
larity and congruence of triangles will be denoted by , and '-' respec-
tively. 

Given C, note the ease with which we can construct the inverse 
of a point P. If P is interior to C, construct the perpendicular to OP 
at P meeting the circle at T; the tangent to C at T then meets OP 
at the inverse point P' (Figure 1.1). To see this, simply observe that 
AOPT ,s,  AOT 13' and hence 

OP = OT 

OT OP' .  

Therefore OP.  OP' =  0T2  = r2 . If P is exterior to C, construct a 
tangent to C from P meeting C at T; the perpendicular from T to 
DP meets OP at the inverse point by virtue of the same argument. 

Figure 1.1 

A common alternate construction of the inverse point is the fol-
lowing. Construct the diameter of C perpendicular to OP at 0 meet-
ing C at points N and S. Draw NP meeting C at Q and draw SC) 
meeting OP at P' (Figure 1.2). Then ANOP ,-,-, ANQS ,--, AP'OS 
and hence OP/ON = OS /OP',  giving OP - OP' = ON • OS = r2 . 
Therefore P' is the inverse of P. Here P may be interior or exterior 
to C. 
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Figure 1.2 

Yet another construction of the inverse of a point is given by the 
following exercise; though more complicated, we will make use of this 
construction in Chapter 2. 

EXERCISE 

Construct a radius of C perpendicular to OP at 0 meeting the circle at 

N, and construct the circle D with diameter ON. Draw NP meeting 
D at Q. Draw the parallel to ON through Q meeting D at Q`. Show 

that the ray AT----'Q' meets  ÔP  at the inverse point  p'.  

The first basic property of inversion that we will prove is that 

lines and circles as a class are mapped to lines and circles. 

Theorem 1.1. a) The inverse of a line through the center of inver-

sion is the line itself. 

b) The inverse of a line not passing through the center of inver-

sion is a circle passing through the center of inversion. 

c) The inverse of a circle through the center of inversion is a line 

not passing through the center of inversion. 

d) The inverse of a circle not passing through the center of inver-

sion is a circle not passing through the center of inversion. 
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Proof. Let C be the circle of inversion with center 0 and radius r. 
Since 0 is collinear with any pair of inverse points, a) is clear. For 
b), drop the perpendicular from 0 to the line meeting at P and let 
P' be the inverse of P (Figure 1.3). 

Figure 1.3 

Let Q be any other point on the line and Q' its inverse. Then 
OP.  OP' = OQ • OQ' = r2  or OPIOQ = OQ' 10P', and hence 
AOPQ rs,  AOQ'P'. Therefore LOQ'P' is a right angle, and hence 
Q' is on the circle A of diameter OP'. Thus the image of the line 
lies in the point set of A; now reverse the argument to show that any 
point Q' 0 on A is the image of some point on the line. 

To prove c), let P be the point on the given circle diametrically 
opposite to 0 and extend, if necessary, this diameter to the inverse 
point P' of P (in Figure 1.3 reverse the roles of P and P' and Q and 
Q'). Let Q be any other point on the circle and Q' its inverse. Again 
AOPQ ,,, AOQ'P'. Therefore ZOP'Q' is a right angle and hence Q' 
is on the perpendicular to OP at P'; the result then follows as before. 

Finally to prove d), let A be the given circle with center A. If 
0 = A the result is immediate, so assume 0 A. Draw the line 
through 0 and A cutting A at P and Q, and let P' and Q' be the 
inverse points of P and Q respectively. Let R be any other point on 
A, and R' its inverse (Figure 1.4). Then OP.  OP' = OR. OR' = r2  
and hence LOPR ri AOR'P'. Similarly AOQR rs ,  AOR'Q'. Thus 
LOPR-r --) LOR'P' and LOQR-r- --1  LOR'Q', but ZPRQ is a right angle 
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and therefore LP'R'Q' is a right angle. Thus as the point R moves 
on A, R' moves on the circle A' with diameter P'Q' and any point 
on A' is the image of a point of A. 	 111 

Figure 1.4 

The second basic property of inversion is that a circle orthogonal 
to the circle of inversion inverts to itself. 

Theorem 1.2. Any circle through a pair of inverse points is orthog-
onal to the circle of inversion; and, conversely, any circle cutting the 
circle of inversion orthogonally and passing through a point P, passes 
through its inverse P'. 

This theorem is an immediate consequence of the well known 
theorem in Euclidean geometry that a tangent to a circle from an 
external point is the mean proportional between the segments of any 
secant from the point. To see this, consider the segment PT of a 
tangent to a circle from an external point P making contact at T. 
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Let R and S be the intersection points of a secant from P (Figure 
1.5). Then APRT ,-- APTS, and hence  PR/PT = PT/PS. 

Figure 1.5 

Corollary 1.1. A circle orthogonal to the circle of inversion inverts 

to itself. 

Corollary 1.2. Through two points P and Q in the interior of a 

circle C and not on the same diameter, there exists one and only one 

circle orthogonal to C. 

Remark. This last corollary is important for the Poincaré model 
of the hyperbolic plane. Consider a geometry whose points are the 
interior points of a circle C and whose lines are the diameters of C and 
arcs of circles orthogonal to C. The corollary assures the existence and 
uniqueness of a line through two given points. It is also easy to see 
that the parallel postulate of Euclidean geometry does not hold in 
this geometry. With some effort one can show that the other axioms 
of Euclidean geometry do hold in this geometry (see e.g. Greenberg 
[16]) and hence that the parallel postulate is independent of the other 
axioms of Euclidean geometry. 

The third basic property of inversion that we consider is its con-
formality. Let C 1  and C2 be two differentiable curves meeting at a 
point P with tangent lines at P. (Recall that if a plane curve is given 
parametrically by x = x(t), y = y(t) with not both x / (to ) and y' (to ) 
equal to zero, then the curve has a tangent vector or velocity vector at 
(x (t o ), y(t0 )), namely x'(to)i+ yi (to)j in classical vector notation.) By 
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-4,  

the angle between two curves we mean the undirected angle between 
their tangent vectors at P. A transformation T mapping a subset of 
the plane into the plane is said to be conformal at P if it preserves 
the angle between any two curves at P. T is said to be conformal if it 
is conformal at each point of its domain. Some authors require that 

the sense of angle be preserved as well as the magnitude, but here we 
define conformality in the wider sense; in fact, inversion reverses the 
sense of angles. 

Our proof of conformality will use a formula found in many calcu-
lus texts, but since it is often omitted in first year courses, we briefly 
derive it here. Let (p, 0) be polar coordinates in the plane, and con-
sider a differentiable curve p =  f(9).  Let a be the angle of inclination 
of the tangent lines and 1,b = a – 0 (Figure 1.6); then 

1 dp 	f (0)  
c o t 1,I) = — or 

p d0 	f (0) • 

Figure 1.6 

In cartesian coordinates the curve is given as x = p cos 0, y = p sin 0. 

Then 

tan a = 
dy 

= 
dy I de 	(dpId0) sin 0 ± p cos 0 

— 
dx 	dx1d0 	(dpId0) cos 0 – p sin 0 .  • 

Substituting this into 

tan a – tan 0 
tan V) = 

	

	  
1 ± tan a tan 0 

and simplifying gives the desired formula. 

Theorem 1.3. Inversion in a circle is a conformal map. 
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Proof. Let (p,0) be polar coordinates in the plane with the origin 

at the center of inversion and let r be the radius of the circle of 
inversion. Suppose that p = i = 1, 2, are two differentiable 
curves meeting at a point P. Let p = gi (0), i = 1, 2, be the images 

2 

of the two curves under inversion; then gi (0) = firm  . Let Oi  and Oi  
denote the undirected angle between the ray corresponding to 9 and 
tangent to p = fi (0) and p = gi (0) respectively. Let 0 = Ip2  - oi  and 

01  -= 02 — 01 at P; we shall show that 0 = 0' to within sign. Since 
gi (0) = r2  I fi (0), we get 

gii (0) = 	
r2 f

"

(0) 

 , 

and hence 
' 

cot Oi 
 = g.(0) = 
	

(0) 	
— cot 

gi (0) 	fi (0) 

Therefore 

Cot 02 Cot 01 + 1 
Cot )3 '  = 	  = — Cot j3  = Cot(—)(3). 

Cot 01 — Cot 02 

0 

EXERCISES 

1. Let 0 be a point on a circle with center C and suppose the inverse 

of this circle with respect to 0 as center of inversion intersects Od 
at the point A'. If C' is the inverse of C, show that OA' = A'C'. 

2. Find the equation of the circle that is the inverse of the line 
ax by = c, c 0, under inversion in the circle x2  + y2  = 1. 

3. Let P, P' and Q, Q' be two pairs of points, inverse with respect 
to a circle C. Show that a circle passing through three of these points 
passes through the fourth. 

4. Let  C, and C2 be two circles intersecting in two points P and Q. 
If C1  and C2 are both orthogonal to a third circle C3 with center 0, 
show that 0, P and Q are collinear. 

5. Given three collinear points 0, P, P' with 0 not between P and 
P',  construct a circle centered at 0 with respect to which P and P' 
are inverse points. 
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6. Let P and Q be inverse points with respect to a circle A. Prove 
that inversion in a circle with center 0 P,Q nor on A maps P and 
Q to points P' and Q' which are inverse with respect to the image 
circle A'. In particular, inversion is an inversive invariant. Hint: 
Consider two circles B and D passing through both P and Q but 
neither passing through O. 

7. Discuss the meaning of Exercise 6 when 0 is on A and when 0 is 
the point P or Q. 

8. Show that the inverse of the center of a circle A orthogonal to 
circle of inversion C is the midpoint of the common chord. More 
generally, show that the inverse of the center A of a circle A not 
through the center of inversion 0 is the inverse of 0 in the circle 
which is the inverse of A. (If 0 is exterior to A this is fairly easy 
using a tangent from 0 to A and its inverse. For a clever proof, use 
Exercise 7. Another proof can be given using the ideas of the next 
section.) 

9. Let C be the circle x2  + y2  = 1 in the xy-plane; find the equation 
of the circle through (-, 0), (0, 12--) orthogonal to C. 

10. Given circle C with center 0, point P 	0 interior to C, and 
line 1 through P but not through 0, construct the circle through P, 
tangent to 1 and orthogonal to C. 

11. Compass Construction of the Inverse: Given a circle C with 
center 0 and point P exterior to C, draw the circle centered at P and 
passing through 0 meeting C at R and  S.  Draw circles centered at R 
and S and passing through 0; let P' be the other point of intersection 
of these circles. Prove that P' is the inverse of P in the circle C. 

1.2. Cross ratio 

Let A13 denote the directed distance from A to B along a line 1; that is, 

we designate a positive direction or orientation on 1, and A.713 = AB if 
the ray with initial point A containing B has the positive direction of 
the orientation and A-4/3 = — AB if the ray has the opposite direction. 
Clearly A-4/3 = —YA. 
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Lemma 1.1. If A, B and C are collinear, then AB +  BC  +CA = 0. 

Proof. The proof is by cases. If C is between A and B, then A-4.8 = 
+ C7B or 	— A-4C — 	= O. Therefore A7B 	± 	= O. 

The proofs of the other cases are similar. 	 LI  

Lemma 1.2. Let AB be a segment of a line 1 and 0 any point of 1. 
Then A.:6 = 07B — OA. 

Proof. Al + BO +  OA = 0 by Lemma 1.1, and hence AB  = OB 

Let AB be a segment of a line 1 and P E 1. P is said to divide AB 
in the ratio A7P/PB. This ratio has several basic properties, which 
we now present. 

(1) The ratio is independent of the orientation of 1. 

(2) The ratio is positive if P is between A and B, and negative 
if P is exterior to AB. 

(3) If A7P/PB = AP/11'7B, then P = P'. 
Proof. We have 

LP  +P 	A -4P' + P7B 

PB 	P7B 

so by Lemma 1.1 

A.13 	A-4,8 

PB P7B • 

Therefore P•B = P7B or B-4P = BP', and hence P = P'. 111 

(4) If r —1, there exists a point P such that A7P/PB = r. 
Proof. Consider the equation 

Ai 4P 
r = 	; 

AB—AP 

solving gives A-4P = r  Ab. Then, given r —1, we can find 
the point P. 

. AP  
um 	= —1. P-°°  PB 

(5)  
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Proof. Indeed, 

AP 	1 
r=  , 	=  _. 	—> –1. 

AB–AP All –1 
Ai-' 

El 

Suppose now that A, B, C and D are four distinct points on an 
oriented line 1; we define their cross ratio  (AB, CD)  by 

(AB,CD)= 
AC/C-B
„  . 

ADIDB 

Note that the cross ratio is positive if both C and D are between A 
and B or if neither C nor D is between A and B, whereas the cross 
ratio is negative if the pairs {A, B} and {C, D} separate each other. 

Given three distinct points A, B and C on 1 and a real number 

p, 	0, 1 '  – 	' 
419 let D be the unique point dividing the segment AB 
CB 

in the ratio 
1 AG' 
ii, C7B ;  

thus there exists a unique fourth point D such that (AB, CD)  =  

We say that four points on a line, A, B, C and D form a harmonic 
set (Figure 1.7) if 

(AB,CD) = –1. 

We denote a harmonic set of points by H(AB,CD) and we say that 
C and D are harmonic conjugates with respect to A and B. 

A 
	

C 	B 	 D 

Figure 1.7 

In Exercise 3 below one sees that (AB,DC)= 	and hence (AB ic D) 
that the notion of harmonic conjugate is well defined: If D is the 
harmonic conjugate of C with respect to AB, C is the harmonic 
conjugate of D with respect to AB. 

If H(AB,CD), then the lengths of segments AC, AB, AD in 
this order form a harmonic progression. For if (AB,CD)= –1, then 



Proof. A-C  — 
CB — 

AD 
DB 
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cf?• but CB =  AB  — AC and BD = AD — AB, and hence 
AC AD' 

A-PB — A-PC AD— AB  

AB • A-b AD • A78 * 

Thus 
1 	1 + - 

	  AC  Ab.  

A13 	2 

that is 	is the arithemetic mean of AC  and 	. 
AB 	 AD 

Theorem 1.4. Let C be a circle with center 0, and C and D a pair 
of points inverse with respect to C. Let A and B be the endpoints of 
the diameter through C and D. Then (AB, CD)  = —1. Conversely, 
if A and B are the endpoints of a diameter and  (AB, CD)  = —1, then 
C and D are inverse points. 

is equivalent to 

0-PC — 0-PA 	or)  - 624. 

GB —OC — ; 

	

but OA = 	so that 

(0-b OB) ( — 0-PD) = — ( 0-b + 0-PB) (OB — 0-b) 

-P 	- or 0C. ob = 6 2  )3 . 
The following lemma is used here and in later applications. 

Lemma 1.3. Let C be a circle of inversion with center 0 and radius 
r. If P, P' and Q, Q' are pairs of inverse points, then 

pv 	 =7,2  PQ  
OP•OQ 

Proof. We give the proof here in the case when 0, P and Q are 
collinear; the non-collinear case is left to the reader in Exercise 1 
below. OP • OP' = 19-'Q • OQ' but 0-*P = 0-Q + Q-*P and 0-e2' = 
OP' + P'TQ' , giving Q-P OP' = Pr'Q' • 0-Q. Therefore 

	 QP • OP' • OP 	PQ  PIQ1 	 =r 2 
OP•OQ 	OP•OQ 
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Theorem 1.5. Let A, B, C and D be four points collinear with the 
center of inversion O. Let k, B',  C' and D' be their respective 
inverse points. Then (AB, CD)  = (A' B 1 ,C'D'). 

Proof. First note that inversion preserves the separation or non- 
separation of the pairs A, B and C, D, and hence it suffices to show 
that 1(A'R,CI D1)1  =1(AB,CD)1. But this follows from Lemma 1.3: 

2  AC 	DB  
C A'C' • D'B' = r — A • DB 

	

oc OD.OB  	 

C'B' • AID' 4  CB  4  AD  

OC.OB 0A.OD 
CB • AD 

EXERCISES 

1. Prove Lemma 1.3 in the case when 0, P and Q are not collinear. 

2. Let A, B, C and D be four concircular points and define their 
cyclic cross ratio  (AB, CD)  by 

(AB,CD) = ±
AC DB  

choosing the sign according as the pair C, D does not or does separate 
the pair A, B. Let A, B, C and D be four points on a line not through 
the center of inversion. Show that their cross ratio is equal to the 
cyclic cross ratio of their inverse points. Similarly, if A, B, C and D 
lie on a circle not through the center of inversion, show that inversion 
preserves the cyclic cross ratio. 

3. Let A, B, C and D be four collinear points with (AB, CD)  = A. 
Show that the cross ratios of these points in the 24 different orders are 
equal by fours to the six numbers A, 1, 1 — y. Note 
trivially that (AB, CD)  = (BA, DC) = (CD, AB) = (DC, BA). 

4. Let P and P' be two fixed points. Consider the locus of points 
Q such that the ratio QPIQP' is a constant A. Clearly when A = 1, 
Q lies on the perpendicular bisector of PP'. When A 1, show that 
Q lies on a circle with respect to which P and P' are inverse points. 
Draw the figure for A = 1, 1, 2, 3. 

CB•AD' 
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1.3. Applications 

We conclude our discussion of planar inversion with some of the clas-
sical applications of inversion theory. For more on such applications 
see e.g. [11]. The idea is that a theorem or configuration which 
is somewhat awkward may invert to a more manageable one. For 
example, consider the following theorem of Pappus. 

Theorem 1.6. Let C be a semicircle with diameter AB,  and C' and 
Co semicircles on the same side of AB with diameters AC and  GB  
respectively (Figure 1.8). Let C1, C2,... be a sequence of circles tangent 

to C and C' and such that Cn  is tangent to Cn _ 1 . Let rn  be the radius of 

Cn  and dn  the distance of the center of Cri  from AB. Then dn, = 2nr„. 

Figure 1.8 

Proof. Let a, be the length of the tangent to C, from A, and invert 
the figure in the circle A n, with center A and radius a,. Then C„ 
inverts to itself. On the other hand, C and C' pass through A and 
are orthogonal to AB; thus they invert to a pair of parallel lines 
perpendicular to AB. Since C, inverts to itself and is tangent to C 
and C', C, is tangent to these parallel lines. Finally, Co, ...,Cn_i will 
also invert to circles tangent to the parallel lines, and dn  = 2nr„ 
follows immediately. El 

Consider a circle of inversion C with center O,  and let P and 
P' be a pair of inverse points. Lines through P' invert to a family 
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of circles through 0 and P including one line corresponding to the 
line OP. Circles concentric at P' are orthogonal to the radial lines 
from P' and hence, by the conformality, invert to a family of circles 
orthogonal to the first family including one line 1 corresponding to the 
circle centered at P' and passing through 0 (Figure 1.9). Note that 
1 is the perpendicular bisector of the line segment OP (cf. Exercise 
1 at the end of Section 1.1). If R is --any point on 1, R is the center 
of a circle belonging to the first family. Thus tangents from R to the 
circles of the second family are equal, and 1 is called the radical axis 
of the second family. 

Figure 1.9 

Given two non-concentric, non-intersecting circles, we can find 
their radical axis and hence the rest of the family. Let A and B be 
the circles with centers A and B, and let C be a circle meeting A and 
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B at points A', A" and B', B" respectively. If the lines A' A" and 
B 1  B" are not parallel, they meet at a point on the radical axis. Thus 
the radical axis is the perpendicular through this point to the line of 
centers AB. 

Theorem 1.7. Two non-concentric, non-intersecting circles can be 
inverted into two concentric circles. 

Proof. Let A and B be the circles as above and 1 their radical axis. 
Choosing R on 1, draw the circle with center R and radius equal to 
the tangent length from R to A and B. This circle cuts AB in points 
0 and P. Using 0 or P as center of inversion, A and B invert to 
concentric circles. 

The following theorem of Steiner is an immediate corollary of this 
result. 

Theorem 1.8. Let A be a circle lying in the interior of a circle B. 
Suppose there exists a sequence of n circles C 1 ,...,C„, in the region 
between A and B, tangent to both A and B with Ci  tangent to Ci—i 
and with Cri  tangent to C1 . Then there exist infinitely many such 

sequences, and any circle between A and B and tangent to A and B 
belongs to such a sequence. 

Another simple application of inversion theory is the following 
theorem of Ptolemy. 

Theorem 1.9. Let ABC D be a convex quadrilateral inscribed in a 
circle. Then the product of the diagonals is equal to the sum of the 

products of the two pairs of opposite sides. 

Proof. Invert the configuration in the circle with center A and ra-
dius r and let  B', C' and D' be the inverse points of B, C and D 
respectively. Then B', C' and D' are collinear, and since ABCD is 
convex, C' is between B' and D'; and therefore B'C' ±C'D' = B'D'. 
Using Lemma 1.3, we get 

BC 	C D 	BD 

	

r2 	+r2     = r2 	
AB • AC 	AC • AD 	AB • AD' 

and so BC • AD ± AB • CD = BD • AC. 



1.4. Miquel's Theorem 	 17 

EXERCISES 

1. Prove the following generalization of Ptolemy's theorem. In a 
convex quadrilateral ABCD we have 

BC AD AB • CD > BD • AC, 

with equality holding if and only if the quadrilateral can be inscribed 
in a circle. 

2. Given two circles Ci and C2 intersecting at two points A and B, 
let C1  and C2 be the other points of intersection of Ci  and C2 with 
the diameters of C2 and C1  through B respectively. Show that A and 
B are collinear with the center of the circle through B,  C1  and C2 

3. Let Ci and C2 be two circles intersecting at A and B, and let s 
and t be lines tangent to Ci and C2 at Si, S2 and T1 , T2 respectively. 
Show that the circles through S1 S2 and A and  T1 , T2 and A are 
tangent. 

4. Let L be an interior point of a circle C other than the center O. 
Prove that the tangents to C at the endpoints of chords through L 
intersect on a line /. 

1.4. Miquel's Theorem 

Our next application is a theorem of A. Miguel [25]. This theorem 
is deserving of its own section; not only is it a wonderful application 
of inversion, but from the axiomatic or foundational point of view 
of inversive geometry, it plays an important role and is taken as an 
axiom. As the axiomatic point of view is not an integral part of our 
discussion, we will only present the axioms and a couple of exercises 
at the end of this section. For more detail the interested reader is 
referred to Ewald's book [12]. We begin with another theorem of 
Miguel [24], referring to it as Miquel's "Little" Theorem, and then 
turn to Miquel's "Big" Theorem [25]. 

Theorem 1.10. In LABC let D, E, F be points on the sides op-
posite A, B, C respectively. Then the circles AEF, BDF and CDE 
pass through a common point M. 
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Proof. Suppose BDF and CDE intersect again at M. We will give 
the proof when M lies within the triangle (Figure 1.10) and invite 
the reader to supply the proof when M is outside the triangle. The 
theorem is also true for the case M = D on the triangle, the circles 
BDF and CDE being tangent at D; again we invite the reader to 
supply the proof. Denote the supplement of an angle by s(L . . . ). Join 
M to D, E and F and recall that a quadrilateral can be inscribed 
in a circle if and only if its opposite angles are supplementary. The 
proof then is 

LMFA= s(LMFB)= ZMDB = s(LMDC) 

= ZMEC = s(LMEA), 

and we conclude that the vertices of the quadrilateral AFME lie on 
a circle. 	 D 

Figure 1.10 

We now prove Miquel's "Big" Theorem (Figure 1.11). 

Theorem 1.11. Let C1 ,  C2, C3,  C4 be four circles, no three with a 
point in common. Suppose C1  and C2 intersect at P and  P';  C2 and 
C3 intersect at Q and  Q',  C3 and C4 intersect at R and  R';  C4 and 
C1  intersect at S and  S'. Then P, Q, R and S are concircular or 
collinear if and only if the same is true of  P', Q',  R' and  S'.  

Proof. Suppose P, Q, R and S lie on circle or line A, and invert the 
configuration with S as center of inversion. Then C1 , C4 and A invert 
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to lines forming APRS', where we use the same letters to denote the 
points, etc., after the inversion; C2 and C3 invert to circles. Miquel's 
"Little" Theorem now applies to APRS', and inverting back gives 
the result. 0 

Figure 1.11 

We remark that the theorem also holds if one pair of the given 
circles are tangent, e.g. P and P' coincide and the other pairs are 
distinct. Miquel's Theorem also contains the following slight general-
ization. 

Theorem 1.12. Let C1,  C2 , C3, C4 be four lines and circles, no three 

with a point in common. Suppose succesive pairs meet in points P 
and  P',  etc. as before, where for two succesive lines the intersection 
points are the Euclidean point of intersection and the ideal point at 
infinity (which lies on all lines, see Chapter 2). Then the conclusion 
of Miquel's Theorem holds. 
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Proof. Invert the configuration with respect to some point not on 
the configuration, giving the original Miquelean configuration. 	0 

The incidence axioms of an inversive plane are as follows, point 
and circle being undefined terms. 

A.1: Three distinct points lie on one and only one circle. 

A.2: If P is a point on circle A and Q a point not on A, there 
exists a unique circle through P and Q having only P in 
common with A (tangent to A). 

A.3: On each circle there exist at least three points. 

A.4: There exist a point and a circle that are not incident. 

An inversive plane is said to be odd (see [12]) if it satisfies 

A.5: There exist four circles each two of which are tangent and 
such that the six points of tangency are distinct; no other 
circle through one of these points is tangent to three of the 
circles. 

The final axiom is: 

A.6: Miguel's "Big" Theorem. 

With this axiom the inversive plane is said to be Miquelian. Miguel's 
"Big" Theorem is a closure theorem for inversive geometry and plays 
the role in the axiomatic foundation similar to the role played by 
Pappus' Theorem in the axiomatic foundation of projective geometry. 

EXERCISES 

1. Prove the "Bundle Theorem": Let P, P' ,Q,Q' , R,  R',  S, S' be dis-
tinct points not lying on a common circle. If 

{P,P',Q,Q1 }, {Q,Q /  , R, Ri b {R,R i  , S, SI 

{P, Pi  , R, Ri b {Q,Q' , S, Si } 

are concircular quadruples of points, then so is {P,  P',  S, Sq. Hint: 
Invert with one of the eight points as center of inversion. We remark 
that Miquel's Theorem is stronger than the Bundle Theorem; for 
an example of a non-Miquelian inversive plane in which the Bundle 
Theorem holds, see [12]. 
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2. Consider a geometry whose "points" are the points (x, y) E R2  
together with an ideal point oo belonging to all lines and whose 
"circles" are the lines in R2  and the family of curves of the form 
(x  _ hr 4_ (y .._ k)4 ._ di. Show that this is a non-Miquelian inversive 
plane, i.e. axioms A.1-4 hold but Miquel's theorem is false. One might 
approach this problem more generally. Consider a smooth closed con-
vex curve C whose tangent lines have only one point in common with 
C. Define a geometry whose "circles" are either lines or images of 
C under translations or homotheties of positive ratio, and show that 
axioms A.1-4 hold. (This is not a routine exercise, and could be used 
as a student project.) 

3. If a point A is removed from an inversive plane (axioms A.1-4), 
prove that the circles through A (with A removed) satisfy the axioms 
of an affine plane: 1. Two distinct points lie on one and only one line. 
2. Every line has at least two points. 3. There exist three noncollinear 
points. 4. Given a line and a point not on it, there exists a unique 
line through the point parallel the given line. 

1.5. Feuerbach's Theorem 

One of the most famous applications of classical inversion theory is 
the theorem of Feuerbach which states that the nine-point circle of 
a triangle is tangent to the incircle and each of the excircles of the 
triangle. We begin by describing the nine-point circle of a triangle by 
means of the following theorem. Recall that the altitudes of a triangle 
are concurrent at a point called the orthocenter of the triangle. 

Theorem 1.13. In a triangle, the midpoints of the sides, the feet of 
the altitudes and the midpoints of the segments from the orthocenter 
to the vertices are concircular. 

Proof. Let AABC be the triangle; A' ,B',C' the midpoints of the 
sides opposite the respective vertices; D,E,F the feet of the altitudes 
from A,B,C; H the orthocenter; and  U, V,  W the midpoints of the 
segments AH,BH,CH respectively (Figure 1.12). Consider the circle 
C through A' ,B', C'; we shall show that D,E,F and  U,  V, W lie on 
C. 
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Figure 1.12 

First note that in the right triangle LABD, C' is the midpoint 
of the hypotenuse and hence C'D-r -' C'B. Also, the quadrilateral 
C'B'A/B is a parallelogram since in any triangle a line joining the 
midpoints of two sides is parallel to the third side. Thus C'B'A'D is 
an isosceles trapezoid; but a trapezoid can be inscribed in a circle if 
and only if it is isosceles. Therefore the circle C through A' ,B' and 
C' passes through D. In like manner, E and F lie on C. 

To show that U, and similarly V and W, lie on C, we first observe 
that CU is parallel to BE and therefore perpendicular to A'C'. Simi-
larly B'U is perpendicular to A' B' . Thus, since ZUC' A' and ZU B' Al 
are right angles, B' and C' lie on the circle with diameter A'U, which 
is therefore C. 111 

The circle of Theorem 1.13 is called the nine-point circle of the 
triangle. 

As is well known, the angle bisectors of a triangle are concurrent 
at a point which is equidistant from the sides and hence is the center 
of a circle tangent to the sides called the incircle. Also the bisector 
of one angle and the bisectors of the exterior angles at the other two 
vertices are concurrent at points equidistant from the sides, giving 
rise to three excircles of the triangle (Figure 1.13). 
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Figure 1.13 

In AABC let X, Y and Z be the point of contact of the incir-

cle with the sides opposite A, B and C respectively, and let X', Y' 
and Z' be the points of contact of the excircle opposite A with the 

same respective sides. We now prove, as a lemma, the fact that the 
midpoint of a side is also the midpoint of the segment determined by 

these contact points on that side. 

Lemma 1.4. XA' = A' X' . 

Proof. Since BX' = BZ' and CX' = CY', the perimeter of the 

triangle is AZ' + AY' = 2AY'. Now BX = BZ = AB — AZ = 
AB — AY and BX = BC — CX = BC — CY, and hence 2BX = 
AB+ BC — AC = perimeter — 2AC. We also have CX' = AY' — AC 
or 2CX' = perimeter — 2AC. Therefore BX = CX', which gives the 

result. Ell 

We can now state and prove Feuerbach's Theorem. 
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Theorem 1.14. The nine-point circle of a triangle is tangent to the 
incircle and to each of the three excircles. 

Proof. Let AABC be the triangle with the special points involved 
denoted as above. Let / be the center of the incircle I and E the 
center of the excircle e opposite A. I and C have common tangents 
AB,AC,CB and a fourth one RS meeting BC at G, R being on AC 
and S on AB (Figure 1.14). Note also that A,1,G,E are collinear. 

Figure 1.14 

Now AAY/ --, AAY'E and AGXI --, AGX/E. Therefore 

AI IY  IX  IC  = 	= 	 
AE EY' EX' EG' 
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and so 

	

_.• 	• 
IG EG 

Thus, since AD, IX and EX' are parallel, we have 

	

DX 	Di(' 

	

X-b 	X7G' 
i.e. the cross ratio (DG, XX') = —1. Therefore (XX' , DG) = —1. 

Now invert in the circle with center A' and radius XA', which is 
equal to A'X' by the lemma. I and E are orthogonal to the circle 
of inversion, and hence invert to themselves. The nine-point circle 
passes through A' and D and hence inverts to a line 1 through G, 
the inverse of D since (XX', DG) = —1. We shall show that 1 is 
the line of RS and hence tangent to I and E, proving the theorem. 
To do this it suffices to show that RS is parallel to the tangent to 
the nine-point circle at A' (the inverse of a circle through the center 
of inversion A' is a line perpendicular to the diameter of the circle 
through A', see Section 1). Now the angle between this tangent and 
A'B' is congruent to ZB'C'A', since both these angles have measure 
equal to half the measure of the arc  A I .  Now ZB'C' A' is congruent 
to LA'CB', since B'C'A'C is a parallelogram. Finally, by reflection 
across the line of IE we see that LA'CB' is congruent to ZRSA. 
Thus, since AS is parallel to A l /3', it follows that RS is parallel to 
the tangent at A' and hence must be 1. El 

EXERCISES 

1. Let 0 be the center of the circumcircle of a triangle and H its 
orthocenter. Show that the center N of the nine-point circle is the 
midpoint of OH. 

2. Find the center of the nine-point circle of AA'B'C'. 





Chapter 2 

Linear Fractional 
Transformations 

2.1. Complex numbers 

We denote by C the set of all complex numbers, 

C = {x + iy I x, y real; i 2  = —1 } . 

Indentifying complex numbers with ordered pairs of real numbers, 
(x, y), we also refer to C as the complex plane. The numbers x and y 
separately are called the real and imaginary parts of z = x + iy, also 
denoted nz and çaz. Recall the addition, multiplication and division 
of complex numbers: 

(a + ib) + (c + id) = (a + c) + i(b + d), 

(a + ib)(c + id) = (ac — bd) + i(ad + bc), 

a + ib ac + bd .bc — ad 	, 	 
c + id c2  + d2  + ï  c2  + d2  . 

The complex number x—iy is called the complex conjugate of z = 
x +iy and is denoted by .. The non-negative number Izi = N/x 2  + y2  
is called the modulus of z = x + iy. Note that zf = lz1 2  and 1  = z z 	izp. 
Geometrically lz1 is the distance of z from the origin and Iz i  — z2 I is 
the distance between two points z1  and z2. 

27 



28 	 2. Linear Fractional Transformations 

An angle 0 from the positive real axis to the ray from the origin 
to a complex number z is called an argument of z, and we write 
0 = arg z. This is determined only up to multiples of 27r, so when 
necessary to avoid ambiguity one chooses a principal determination 
of the argument by requiring that —7 < 0 < 7 and writes 0 = Arg z. 
If z = x + iy and r = 1z1 , then x = r cos  O,  y = r sin 0 and 

z = r (cos 0 + i sin 0), 	= r (cos 0 - i sin 0). 

The complex exponential ez is defined by ez = ex (cos y + i sin y) ; in 
particular eiY = cos y + i sin y. Thus a given complex number z may 

be written rei° , explicitly showing its modulus and argument. 

For two complex numbers z1  and z2  their product is given by 

z1  z2  = rir2( (cos 0 1  cos 02 — sin 01 sin 02 ) + i (cos 0 1  sin 02 +sin 0 1  cos 02)) 

= r i r2(cos(01 + 02) + i sin(0 i  ± 02)). 

Therefore arg  z1  z2  = arg z1  + arg z2  up to the ambiguity mod 27r. 
Clearly Iz i z2 1 = r i r2 , so in Figure 2.1, A(0, 1, z i ) --, A(0, z 2 , zi z2 ). 

Figure 2.1 

Consider now 
1 	.Z.- 	1 
- = 	= - (cos 0 - i sin 0); 
z 	lz1 2 	r  

thenI l l = —lzl z 	1  and arg 1  = - arg z. Note also that 1 and z are z 	 z 
collinear with the origin and that the product of their distances from 
the origin is equal to 1. Thus the map z —> 1 is inversion in the unit 
circle. In Figure 2.2 A(0, 1, z) (.- A (0, 1. , 1), and therefore 	can be 
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obtained from z by two geometric transformations, namely, inversion 
in the unit circle and reflection in the real axis: 

1 	1 
z -->. — -4 - 

\''/ Z 
inversion 	reflection 

or 
1 

Z ----). Z —4 — 
'"v- ' Z 

reflection inversion 

Figure 2.2 

2.2. The extended complex plane and 
stereographic projection 

As with inversion, the transformation w = 1 maps the complex plane 
onto itself with two exceptions: z = 0 has no image and w = 0 has 
no preimage. To remove this difficulty we form the extended complex 

plane C, sometimes called the inversive plane, by adjoining to C an 
ideal point, often called the point at infinity or the complex number 
infinity and denoted by  oc. Let a E C; the rules governing  oc are: 

Ici = 0; a = oo, a 0; oo±a =  oc;  oo•a = oo, a 0;  00.00  =  oc. The 
following are left undefined:  oc  + oo,, g, oo • O. For any R>  0, the 
set {zlizI > R} is thought of as a neighborhood of oc;  it is mapped 
onto a neighborhood of the origin iwi < -11.7 by w = 

To visualize e we use a sphere rather than a plane. Consider the 
sphere x2  + y2  + u2  = u tangent to C at the origin and of radius --. 
The line joining any point P in the plane to N = (0, 0,1) intersects 
the sphere at a point Q, and, conversely, the line joining N to any 
point Q on the sphere meets the plane in a point P (Figure 2.3). 
Thus the points of the extended complex plane may be identified 
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with the points of a sphere, the ideal point oc  being identified with 
the point N. This mapping of C to the sphere is called stereographic 
projection, and generally the inverse mapping of the sphere onto C is 
also referred to as stereographic projection. The extended complex 
plane C is sometimes referred to as the complex sphere or as the 
Riemann sphere. 

Figure 2.3 

Note that the image of the unit circle about the origin 0 is 
mapped to the horizontal equator on the sphere. Now in the ex-
ercise on page 3 rotate the circle D about OP so that the plane of D 
is perpendicular to the plane of C. Thus we see that inversion in the 
unit circle is just reflection in the horizontal equator of the complex 
sphere. 

We now obtain a coordinate expression for stereographic projec-
tion. Let z E C represent P and let (e, 71,0 be coordinates of the 
point Q and r =1,z1. Now AOPN , AQON, and hence 

e2 + 772 + (2 r2 
	 = (- 1 + r2 	1 
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Projecting to the xu- and yu-planes, we have 

x 	1 	y 	1  
1 - C ' 	77 	1 - C • 

Therefore 

e 	y = 1 —17
( ' r

2 = C  x =  
1 - 1 	 1 - C 

and 
x 	 y 	r2  e = 	c> ) 77 = 1 + r ‘, 	1 + 7.2 , ( = 1 ± r2 * 

Theorem 2.1. Stereographic projection maps lines and circles in the 
plane to circles on the sphere, and, conversely, circles on the sphere 
map stereographically to lines and circles in the plane. 

Proof. A circle on the sphere is the intersection of the sphere with 
a plane, say Ax + By + Cu = D; if (e, 7), () is on this circle we have 

x 	Y 	r2 
A 	+ B 	+ C 	=D 

1+ r 2 	1 + r2 	1 + r 2  
or 

(2.1) 	 (C — D)(x 2  + y2 ) + Ax + By = D, 

which is a line or a circle in the plane according to whether or not 

C = D. Conversely, a line or circle in the plane is given by an equation 

of the form (2.1). Substitution for x and y in terms of e, 77,  C  gives 

e 	7/  (2.2) 	(C — D) _  ( 	 = D 
i 

or 

Ae + Br) + C1( = D, 

so (e, 7), C) lies on a plane determining a circle on the sphere. 	El 

We shall now prove the conformality of stereographic projection; 
that is, if two differentiable plane curves meet at a point P, the angle 
between the image curves is equal to the angle between the curves. 

Lemma 2.1. The angle between two lines is equal to the angle be-
tween their image circles under stereographic projection. 
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Proof. Let Aix + Biy = Di  and A2x + B2y = D2 be two lines in 
the plane intersecting at P. The angle between them is determined 
by their slopes — it and — t. By equation (2.2) the images of the 
lines lie in the planes Ai x + Bo = D1(1 — u) and A2 X + B2Y = 
D2 (1 —  u).  Therefore the tangents to the corresponding circles at N 
are the intersections of these planes with the plane u = 1, and hence 
their equations are Ai x + Bo = 0, A2x + B2y = 0, u = 1, which 
intersect at the same angle determined by the ratios --Bil l and — t. 
Let Q be the image of point P, and consider reflection in the plane 
which is the perpendicular bisector of chord QN. Then we have that 
the angle at Q is equal to the angle at N, giving the result. CI 

Let (eol 77o) (o) be a point on the circle Ax + By + Cu = D, 

x 2  + y2  ±u2  — u = 0, and let i,j,k be unit vectors in the directions of 
the positive x-, y- and u-axes. Recall that the vector Ai + Bj + Ck 
is normal to the plane and that eo i +  rio  j + ((o  — --)k is normal to 
the sphere (radial vector from the center (0, 0, 1-)). Consequently the 
vector 

(Ai + Bj ±Ck) x (eo i ± rid + ((o — -12-)k) 

is tangent to the circle at (6,770 , (o ) giving the following lemma. 

Lemma 2.2. The tangent line to the circle Ax ± By + Cu = D, 
x2 + y2 + u2 — u = 0 at (6,770 , (o ) is 

x — eo 	 Y — 77o 
B((o — ) — C77o  

Theorem 2.2. Stereographic projection is a conformal map. 

Proof. In view of Lemma 1.1 it remains only to prove that the image 
of the tangent line to a differentiable curve is tangent to the image 
of the curve. Let x = x(t), y = y(t) be a differentiable curve in the 
plane and P the point corresponding to t = to , and let xo  = x(t o ) 
and yo  = y(to ). Then 

_ u — <-0  

-1) AN — Beo . 

x (t )  

x = 0) = 1+  x( t) 2  + Y (t ) 2  ' 

y(t)  y = 77(t) = 1  + x(t)2 + y(t) 2  ' 

, 	 x (0 2  + Y(t) 2  
u = ((t) = 1+ x(t) 2  + y(t) 2  
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is the image of the curve on the sphere. Let 6 = (to), 770 = i7(to) 
and (0 = ((to). The tangent line to the image curve at the image 
point Q is 

(2.3) 	
'(to ) — 77/ (to) 	C(to) • 

x —6)  _ Y — 7/0 _ u — g-o  

By differentiation we have 

l 	
xl(to )(1 — 4, + mi) — 2xoY0Y1 (to)  

(1+  4)  +  Yo)  

71 / (to)  = yi(to)(1 + x6 — yei) — 2xoYox'(to)  
(1+  xg + yD2 
	

5 

2xoxi(to) + 2y0V(to) 
('(to) = 	

(1 + 4 +W)2 	' 

and (2.3) becomes 

xqt0)(1 — 4 + ye,) — 2xoYoYi (to) 

V(to)( 1  + xô — yel) — 2xoYox i (to) 

2(x0e(to) + YoY i (to)) • 

Now the tangent line to the original curve at P is 

(2.5) 	V(to)x — x 1 (to)Y = Y i (to)xo — x i (to)Yo. 

Setting A = yi(t o ), B = —x' (to) and C = D = yi  (to)xo — xl (to)Yo, we 
see by Lemma 2.2 that the tangent to the image of (2.5) is the same 
line as equation (2.4), for if we multiply the equation of Lemma 2.2 
by 2(1 2ii r2) , the first denominator becomes 

2(1 + r 2 )(B(6 — D — C7/0) 

= — xl (to)(41 + A — 1) — 2(y'(to)xo — xl(to)Y0)Y0 

= x/(to )(1 — 4)  + yg) — 2x0YoV(to), 

(2.4) 

which is the first denominator of (2.4). Proceed similarly for the other 
denominators. 	 Ill 
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EXERCISES 

1 — Oa 
if at least one of a and 0 has modulus 1. Show that if lai  < 1 and 

1/31 < 1, then a /(3  <1.  
1 — )3a 

2. Let a, 0 be complex numbers and A 1 a positive constant. Show 
Z  — a 

that 

	

	 = A is a circle. What is the locus for A = 1? Compare 
z — 0 

this with Exercise 4 in Section 1.2. 

3. Let z1, z2 E C, and let Z1, Z2 be their images under stereographic 
projection. Let d(Zi, Z2) be the length of the chord joining Z1  and 

Z2.  Show that 

1 Zi - Z2  1  
d ( Zi  , Z2 ) = 	 V1 + izi  1 2  V1 + i z2 i 2  

4. Consider the antipodal map of x2 + y2 + U2 = u. What is the 
corresponding map of C under stereographic projection? 

2.3. Linear fractional transformations 

We now study in some detail a special class of transformations of the 
extended complex plane. By a linear fractional transformation (some-

times called a  homograph y,  also sometimes called a Möbius transfor-

mation) we mean a transformation of the form 

az + b 
w = 	ad — bc 0, 

cz + d ' 

where a, b, c, d E C. If ad — bc = 0 and c 0, then w = 	reduces 

to w = 'lc , as will become apparent below. Let us begin with some 

simple special cases. 

• a = d = 1, c = 0, i.e. w = z + b: This is just the addition of 
a fixed vector b to the vector z. Thus each point of the plane 
undergoes a translation by b, and any figure is mapped to a 
congruent figure. 

• b = c = 0, d = 1, i.e. w = az: This is first a rotation through 
arg a and then a magnification by lai. If kid = 1, then a is of 

1. Let a, 0 be complex numbers. Show that = 1 if and only 
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the form e 0  --= cos 0 ± i sin 0 and w = az is simply a rotation 
through the angle 0, which is a congruence. If a is real, this 
is a homothety. Thus the rotation-stretching w = az maps 
plane figures to similar ones and so, in particular, is angle 
preserving. 

The special case a = d = 0, b = c = 1, viz. w = has already been 
discussed, so we turn to the general case. If c = 0, then w = iz + -,1 , 
which is a combination of the two special cases above. If c 0, then 

ad — bc 1 	a 

	

w=   	+ — 
c 	cz + dc

, 

and hence the mapping is a rotation-stretching followed by a transla-
tion, a reflection in the real axis, an inversion, a rotation-stretching 
and a translation. Note also that the point — 4, is mapped to  oc and 
oc  is mapped to I,. Thus we have the following theorem. 

Theorem 2.3. Linear fractional transformations map the extended 
plane C onto itself, map lines and circles to lines and circles, and are 
angle preserving. 

Now let T1  and T2 be two linear fractional transformations given 
by 

az + b 	aw + 13 
w= 	 and ( = 	 

cz ± d 	 -yw + 6 ' 
respectively. Then their composition T2 T1  is also a linear fractional 
transformation, for 

( = ' cz±c1 I 

_L 

 I-,  = (aa + 0c) z + (ab + /3d)
7 ac:IFF  + 6 	(-ya + 5c) z + (-yb + 6 d) . 

Note that the coefficients can be obtained by multiplying the matrices 
of the respective transformations: 

( a 0 ) ( a b ) = ( aa + (3c ab + f3d 
-y 6 ) 	c c l ) 	-ya + Sc ryb + Sd ) - 

Taking determinants, we see that 

(aa + f3c)(7b + Sd) — (ab + Od)('-ya + 8c) O. 

Note that if each of a ,b, c, d is multiplied by a non-zero complex num-
ber, then the matrix is multiplied by this number, but the transfor-
mation remains the same. 
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If T1 , T2, T3 are three linear fractional transformations, then 

T3 ( T2  T1)  =  (T3 T2) T1 ,  

since the corresponding multiplication of matrices is associative. The 
linear fractional transformation To  given by w = z is the identity 
transformation, and for any linear fractional transformation T we 

have TT°  = ToT = T. Finally, if T is given by w = aczz ±-F db  , then 

the transformation T-1  given by z = 	 is the inverse of  T,  cw-a 
i.e. TT-1  = T -1 T = To. Thus we see that the linear fractional 
transformations form a group. 

We now discuss fixed points of a linear fractional transformation. 
az±b  Let w = Then oo is a fixed point if and only if c = 0. In 
cz-Fel• 

particular, if c = 0 and i 	1, then oo and ,-/±7, are the only fixed 

points. If c = 0 and 5 = 1, then the transformation is a translation 

and oo is the only fixed point. In general, setting z =  we have 

cz 2  - (a - d)z - b = 0; if c 0 both fixed points (which may coincide) 

are finite. Thus we have the following theorem. 

Theorem 2.4. A linear fractional transformation which is not the 

identity has at most two fixed points. In particular, if a linear frac-

tional transformation leaves three points fixed, it is the identity. 

Theorem 2.5. Three given distinct points z 1 , z 2 , z3  can be mapped 

respectively onto three given distinct points w 1 ,w 2 ,w 3  by one and only 

one linear fractional transformation. 

Proof. Let T1  and T2 be linear fractional transformations given by 

Z — Zi Z2 — Z3 	 Z — W1 W2 — 1°3  
Ti (Z) =   and T2 (Z) =  	 . 

Z — Z3 Z2 — Z1 	 Z — W3 W2 — tV1 

Now T1  maps z1 , z2 , z3  onto 0,1, oo respectively if z1 , z2 , z3  oo, and 

similarly T2 maps wi , w2 , w3  onto 0,1, co. If z1  = co, let Ti(z) = 
Zz-z2-Z3 .) if z2  = oo, let Ti (z) = z-z i  ; and if z3  = œ,  let Ti  (z) = 

3 	 z-z3  
	, and similarly for T2. Then T = 771 T1  maps z1 , z2 , z3  to 
Z2 - Z1 

w 1 , w2 , w3  respectively. Suppose S is any linear fractional transfor-
mation mapping z1 , z2 , z3  to w1 , w2 , w3 . Then 5-1 T has three fixed 

points, viz. zi , z2 , z3 , and therefore S -1T is the identity. Conse-
quently S =- T. El 
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EXERCISES 

1. Find the linear fractional transformations that map 

a) 0, 1, i onto , , respectively, 

b) oo, i, 1 onto —1, 0, i respectively, 

c) —1, oo, i onto oo, i, 1 respectively. 

2. Let C and C' be circles or lines. Is there a linear fractional trans-
formation which maps C onto C', and if so, is it unique? Find the 
following. 

a) Find a linear fractional transformation that maps the real 
axis onto the unit circle. 

b) Find a linear fractional transformation that maps the unit 
circle Izl = 1 onto the circle lz — il = 1. 

c) Is there a linear fractional transformation that maps the unit 
circle lz1 = 1 onto the circle lz — il = 1 leaving the points of 
intersection of these two circles fixed? 

3. Find the fixed points of w = :+1.  What is the image of the disk 

Izi  <1?  

2.4. Cross ratio 

Let zi , z2 , z3 , z4  be four points in C. Their cross ratio (zi, z2, z3,z4) 
is defined by 

( Zi , Z2 , Z3, Z4) = 
(z 1  - z) ( z2  - z4)  

(z i  — z4 )(z2  — z3 ) ' 

where if oo is one of the points, the two factors containing it should 
be canceled (cf. the proof of Theorem 2.5). Note that if z1 , z2 , z3  and 
z4  are all on the real axis this is the same as the cross ratio of four 
collinear points defined in the last chapter. 

Theorem 2.6. The cross ratio of four points is invariant under a 

linear fractional transformation. 
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Proof. Let w = "±b  be the transformation and wi  the image of 
i = 15  . 5 4. Then 

azi  + b azi  + b 	(ad — bc)(z i  — z i ) 
cz i  + d czi  + d 	(cz i  + d)(czi  + d) 5  

from which we readily obtain 

(wi, W2, W3) W4) 	(Z15 Z2 Z35 Z4) • 

1E1 

Notice, however, the effect of inversion. 

Theorem 2.7. Let  z, be the inverse of points zi ,i =1, 
inversion in a circle C. Then 

, 4, under 

(Z /1 5  Z/2 5  Z31  5 ,4) = (Zi 5  Z2 5  Z35 z4) • 

 

Proof. Let zo  be the center of C and r its radius. Then inversion in 

C is given by 

	

Z/  = Zo + _ 	_ . 
Z — Zo 

Therefore 

r 2 	r 2 
Zi  — = 	 = 	 

— ZO 	ZO 	 Z0)(Zj ZO) 

from which the result follows. 

The basic geometric property of the cross ratio is the following 

theorem. 

Theorem 2.8. Four distinct points are concircular or collinear if 

and only if their cross ratio is real. 

Proof. Let z1 , z2 , z3 , z4  be the points and T the linear fractional 
transformation mapping z1 , z2 , z3  to oo, 0,1 respectively, i.e. 

T(z ) = 
(zi  — z3 )(z2  — z) 

(z i  — z)(z 2  — z 3 ) •  

Then (z 1 , z2 , z3 , z4 ) = T(z 4 ) = (oo, 0,1, T(z4 )). But T maps lines and 
circles to lines and circles and oo, 0,1 are collinear, so the real axis is 
the image of the line or circle through z1 , z2 , z3 . Therefore z4  is on 
this line or circle if and only if T(z4) is real. 

7,2 
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One final basic property is that, given three points z1, z2, z3 and 
a number A E C,  A 0, 1, :211:33  , there exists a unique point Z4 such 
that (zi  z2 , z3 , z4 ) = A. For if 

(zi  — z3)(z2  —  Z4) 
-= A, 

(zi  — z4 )(z2  — Z3) 

(zi-z3)  then we may solve for z4. Setting ti, = 	N , we get 

p,z2 — Azi 
Z4  = 	 

— 

EXERCISES 

1. We remarked that if z1 , z2, Z3, Z4 are on the real axis, the cross 
ratio agrees with that of Chapter 1. Show that if z1 , z2 , z3 , z4  lie on 
a circle, the cross ratio agress with the cyclic cross ratio of Exercise 
2 of Section 1.2. 

2. Show that the linear fractional transformation mapping z1 , z2 , z3  
onto w 1 , w2 , w3  is determined by 

(Zi Z2 5  Z3 >  Z) = (W15 11125 W3) W)• 

3. Find the equation of the circle through z1 , z2 , z3  in the form z 
equal to a complex valued function of a real parameter. 

4. Let C1  and C2 be two circles which intersect at zo and zo*, and let 
z1  and z2  be points on the shorter arcs 	of C 1  and C2 respectively. 
Show that the angle between the arcs is equal to arg(z2 , z1, zo> Z0*). 

5. Give a cross ratio theoretic proof of Miquel's "Big" Theorem. 
(This could be used as a small project.) 

2.5. Some special linear fractional 
transformations 

Let us now consider some special linear fractional transformations. 
First we will find the most general linear fractional transformation 
mapping the upper half plane  {zIz > 0} onto the unit disk < 
11. Since linear fractional transformations map lines to lines or circles, 
the image of the real axis must be a circle. Moreover, since the real 
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axis is the boundary of the upper half plane and linear fractional 
transformations are continuous, the image of the real axis must be the 
unit circle 1w1 = 1. In particular, if T(z) = 	 aczz+±db is the transformation, 
then IT(0)1 = 1T(oo)1 = 1. Therefore we must have 1bl = 1d1 and 

lai  = 1c1. From the second condition we may write le  = eie for some 
angle  O,  and T becomes 

/1  
T(Z)

= ego Z + a  . 

z+ d '  
C  

but since we also have 1bl = Idl, we get I •1-,, ' = I -4-  I. If now x is any other 
point on the real axis, then 1T(x)1 = 1, and hence lx + /4i1 = ix + 4,1. 
Therefore 

(
x+ 

 b ) ( x  + b 
a 	a ) = (x + dc ) (x  + dc  

or

)  

( b +  b ) x  
a a 

= 
( 

+ x. 
c E 

d 
cl) 

 

Now a a  + = 2R(.1-2-) and similarly for 4,, thus, . -.ct  and 4- have the same t 	a 	 c 

real part and the same modulus. Therefore either iL  = 4, or l ', = 4, . 
The first alternative gives T(z) = e i°  = const., and consequently, 
setting zo = - 12-, 

• 	Zo 
T(z) =  e0 	

— Z 
 
Z  - 20 

This is the desired linear fractional transformation provided that zo  
is in the upper half plane; if zo is in the lower half plane, the upper 
half plane is mapped to the exterior of the unit circle. 

Using the above, we can find the most general linear fractional 
transformation mapping the unit disk onto itself. First note that 
T-1  above maps the unit disk onto the upper half plane. Taking 
{ zlizi < 1} as the unit disk and 10( > 01 as the upper half plane, 
we obtain 

4z  - eie z°  

Consider now a fixed such transformation, for example 

( = S(z) = i
z - 1

. 
z + 1 
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Then U(z) = T(() = TS(z) maps the unit disk onto the unit disk. 
Since T = US -1-  is the general linear fractional transformation map-
ping the upper half plane onto the unit disk, U is the general linear 
fractional transformation mapping the unit disk onto itself. Comput-
ing U explicitly, we have 

z-1 _ 
io  -(zo  i)z - (zo  -  i)  

U(z) -= eie 	z+1 	44) 	e •  -z 	- -(4 i)z - (4 - i) z+1 zo 

 (z o  i)(-1) 	z 
= e 	

'4)+1  
(1+ 	( 	.z -1) .  z o -i 

Note that z0 
o+-ii  < 1, since zo  is in the upper half plane. Thus, setting 

z1  = zz°0 -±ii  and using Exercise 1 of Section 2.2, we have 

U(z) = 	Z — Zi 

ZiZ — 1 '  

where 0 is real and z1  is in the open unit disk, as the most general 
linear fractional transformation mapping the unit disk onto itself.' 

The question of mapping the upper half plane onto itself is also 
easily treated. If oc  is a fixed point, then w = az -I- b with a>  0 and 
b real maps the upper half plane onto itself. More generally, since the 
real axis must be mapped to the real axis, let 0, 1,  oc  be the images 
of the real numbers xl , x2 , x3  respectively. Now, equating the cross 
ratios (w, 1, 0,  oc)  = (z, x 2 , xi , x3 ), we have 

Z — X1 X2 — X3 
21) = 	 

Z — X3 X2 — Xi 

'The reader with some experience in complex variable theory can easily see that 
U(z) is in fact the most general one-to-one holomorphic mapping of the unit disk onto 
itself. First recall the Schwarz Lemma (see e.g. [1] or [13]): Suppose that f is a 
holomorphic function on the open unit disk with f (0)  = 0 and If (z)I < 1. Then either 
I f (z)I < lz I for all z with 0 < I zi < 1. or f (z) = e iê  z. where c/, is a real constant. 

Theorem 2.9. If f is a holomorphic function mapping the unit disk one-to-one onto 
itself, then f (z) if of the form U(z). 

z — z i  
Proof. Let zi be the point in the disk mapped to 0 by f and let T(z) = _ 	. Then 

ziz — 1 
by the Schwarz Lemma we have I( f o T -1 )(01 < 1(1 and l(T o f -1 )(w)i 	iwi, giving 
1(f o T -1 )(01 = 1(1 and hence f o T -1 (() = e i ck'(; that is, f (z) = 	= U(z). 
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Since the mapping must take the upper half plane onto itself, the 
imaginary part of the image of i must be positive, giving 

x2  — x1 4 + 1 

Thus, writing the mapping in the form w = cazz±±db , the determinant 
ad — bc of the mapping is positive. In particular we can write the 
mapping in the form w = aczz++ db  with ad — bc > 0 and a, b, c, d real. 

Now clearly the linear fractional transformation 

X2 — X3 Xi — X3 
>0.  

abtz + bp 
w= 

 csuz ± dp' 
i 0,  kt E C 

is geometrically the same as w = aczz±±db . Writing A = Reiû  , its two 

square roots +.\/r,c are  +\/Re/ 2 . In particular, taking su = 	 -Vadl—bc' 
we may normalize any linear fractional transformation so that ad — 
bc = 1. Thus, if a linear fractional transformation T(z) has been 
normalized so that ad — bc = 1, then T maps the upper half plane 
onto itself if and only if a, b, c, d are real. 

EXERCISES 

1. If w = z .; 1 , what is the image of the positive real axis? 

2. Let U(z) be the general linear fractional transformation mapping 
the unit disk onto itself. Show that U(z) may be written in the 
following forms: 

i°
•

R  U(z) = eig5 eZ  — 	0 < R  <1,  19, 0 real, 
Reie z — 1' 

-b

a

z

Z

+

+

Et

b 
U(Z) =

' 	lal2 — ibi2 
>0.  

3. The transformation 

U (z) = 	
z — z1 

eig5 	 
ziz — 1 

maps the unit disk onto the unit disk. Find z1  and 0 such that U 
maps the segment 0 < x < a, a < 1, onto a segment of the form 
—b < x < b,b  <1.  



2.6. Extended Möbius transformations 	 43 

2.6. Extended Möbius transformations 

We have already seen that inversion in the unit circle is given by 
w = 1/2 or in a circle of radius r and center zo  by 

r2 	Zo 2 + (r 2  — Izoi 2 )  w = Zo + _ 	_ = 	 ; 
Z — ZO 	2  - 20 

thus inversion is not a linear fractional transformation, but is of a 
type we now discuss. Consider a mapping of C onto itself given by 

a:t ± b 
w= 	 

c2 + d' 
again with a, b, c, d E C and ad — bc 	O. Such a transformation 
is sometimes called an  anti-homograph y.  As with linear fractional 
transformations, if c = 0, then w = p-  + /2d-, which is a reflection in 
the real axis followed by a similarity. If c 0, then 

ad — bc 1 	a 
w = 	 

c c2 + d 
± —

c
, 

which is again a composition of similarities, reflection in the real axis 
and an inversion. Thus we have the following theorem. 

Theorem 2.10. Anti-homographies map lines and circles to lines 
and circles, and are conformal. 

Moreover, the cross ratio of the images of four points under an 
anti-homography is the conjugate of the cross ratio of the points. In 
particular, the cross ratio of four collinear or concircular points is 
preserved. 

Now considering compositions of anti-homographies with homo-
graphies (linear fractional transformations) or anti-homographies, we 
see that the set of all homographies and anti-homographies forms a 
group. We call this group the group of extended Möbius transforma-
tions. 

Since extended Möbius transformations map lines and circles to 
lines and circles, one might ask if this property characterizes such 
transformations. It is a beautiful result of Carathéodory [6] that 
even locally this is true. That is, not only is a 1-1 circle-preserving 
map of C onto itself an extended Möbius transformation, but a 1-1 
map of a plane region R onto a set R" such that the image of every 
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circle lying in R is a line or circle in R" is such a transformation. Not 
even the continuity of the transformation is assumed. The reader is 
encouraged to work through Carathéodory's proof, drawing an appro-
priate diagram for each step of the proof; we reprint the paper below 
(published in 1937 in the Bulletin of the American Mathematical So-
ciety). For definitions of some concepts from analysis and topology, 
such as open set, region, etc., see the beginning of the next chapter. 

EXERCISES 

1. Show that an extended Möbius transformation which leaves four 
non-collinear, non-concircular points fixed is the identity. 

2. Prove that if a transformation of the plane onto itself preserves 
cross ratios, then it is a linear fractional transformation. 

3. Let B be a circle and A a circle in the interior of B. Show that 
there is a linear fractional transformation mapping A and B onto 
concentric circles. Use the results of Chapter 1, or prove this directly 
using ideas from this chapter. 

4. One may have a transformation mapping lines to lines but not 
circles to circles. Show that x' = x + y, y' = y maps lines to lines but 
not circles to circles, and that it is not angle preserving. 

5. Show that a 1-1 mapping of the plane onto itself which maps lines 
to lines and circles to circles is a similarity. You may want to use the 
Carathéodory result. 
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THE MOST GENERAL TRANSFORMATIONS OF 
PLANE REGIONS WHICH TRANSFORM 

CIRCLES INTO CIRCLES 

BY CONSTANTIN CARATHÉODORY 

1. Introduction. If we consider two plane regions R and R' 
which are mapped conformally the one upon the other, there 
corresponds to every circle c contained in R an analytic closed 
curve c' contained in  R'.  If an arc a lying on the circle c has a 
circular image the curve c' must be itself a circle. 

Suppose that the interior of the circle c belongs to the region 
R. Then both circular discs bounded by c and c' respectively are 
represented conformally the one upon the other. It is a well 
known fact that in this case the transformation of these circles 
into one another is given by a transformation of M bius by 
which, furthermore, every circle of R is transformed into a 
circle of  R'.  

If we drop now the condition that the one to one correspond-
ence of our regions must be conformal, the assumption that 
one single circle of R has a circular image is no longer sufficient 
to characterize the transformations of Möbius. On the other 
hand, if we make the stronger assumption that every closed 
circle contained in  R is transformed into a circle, we shall see 
in the course of this paper that a theorem analogous to the one 
stated above holds under surprisingly general conditions. To 
prove that the transformation which we consider is a trans-
formation of Möbius it is no longer necessary to assume from 
the outset (as is the case for the analogous theorem concerning 
collinear transformations) that this transformation is continu-
ous, or that it is measurable in the sense of Lebesgue, or even 
that the point set R' is itself a region. 

The condition that circles lying in a region R have circular 
images characterizes the group of Möbius transformations among 
all the one to one arbitrary correspondences between the points of 
R and the points of a quite arbitrary point set of the plane. 

2. Statement of a Preliminary Theorem. We consider a circular 
open disc which we shall call C and suppose that there is a one 
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to one correspondence between the points P of this disc and the 
points P' of a bounded point set C'. We do not suppose this cor-
respondence to be continuous or even to be measurable in the 
sense of Lebesgue. But we assume that every closed circular 
line c which is contained in the domain C is transformed by 
the above correspondence into a line c' of the same kind whose 
points lie on C'. We shall prove that every transformation 
which possesses these properties is a Möbius transformation 
and therefore analytic. 

It is very important to make the following rather obvious 
remark: if two circles ci and e2' contained in C' are the images 
of two circles of C, say of el  and c2 , then the number of points 
common to the pair of circles ci and c2' is the same as the num-
ber of points common to c 1  and c2 . In particular, if el  and e2  are 
tangent to one another the same is the case for ci and e2' and 
conversely. 

3. Reduction of the Transformation to a Normal Type. In using 
transformations of M bius we plot the domain C and a circle D' 
which contains in its interior the bounded point set C' on the 
unit circles of two planes with coordinates x, y and  x',  y' respec-
tively. In doing this we can always assume that the origins of 
both planes correspond to points of C and of C' which are images 
of one another by the given transformation. 

Finally we make two inversions respectively on the unit 
circles of both these planes. 

4. Preservation of Parallelism. To the original transformation 
of the domain C into the point set C' corresponds now a one to 
one transformation of the exterior E of the unit circle in the 
plane with coordinates x, y into some point set E' lying outside 
of the unit circle of the second plane. To every closed circular 
line lying in E corresponds a closed circle of  E'.  Finally every 
straight line contained entirely in E is transformed into a 
straight line lying in  E'.  

Likewise every pair of parallel straight lines of E is trans-
formed into a pair of parallel straight lines of E'. 

5. Preservation of Orthogonality. Take now two such pairs of 
parallel straight lines lying in E and cutting at right angles. 
Suppose furthermore that there is a circle contained entirely 
in E and circumscribed to the rectangle formed by these lines. 
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The whole figure is transformed into a circle of E' in which a 
parallelogram is inscribed; this parallelogram must therefore 
be a rectangle. 

We infer herefrom without difficulty that two straight lines 
of E orthogonal to one another are always transformed into lines 
of E' having the same property. 

6. The Image of C is a Domain. We take two circles of E 
which are concentric to the unit circle and consider two or more 
rectangles inscribed in the one of these circles and having two 
opposite sides tangent to the other. As the corresponding 
figure lying on E', shows exactly the same disposition, the circles 
contained in these figures and which are images of the two 
circles considered above must also be concentric to one an-
other. 

Furthermore let c be an arbitrary circle of E concentric to 
the unit circle. To every point P' lying on the image c' of c 
corresponds a point P of c. To the tangent to the circle c passing 
through the point P corresponds the tangent to c' passing 
through P'.  Consequently every point of the plane with co-
ordinates x',  y' exterior to c' must belong to the point set E'. 
We conclude from this that E' is an open set consisting of all 
the points which are exterior to a certain circle. The point set C' 
which we have considered above must therefore be a circular 
disc and we could have taken the circle D' coinciding with the 
boundary of C'. 

If we do this the point set E' coincides with the exterior of the 
unit circle of our plane with coordinates x',  y', and the circles 
of E concentric to the unit circle are transformed into circles 
of E' having the same property. 

7. Preservation of the Centers of Circles. Take now a circle -y 
lying in E whose center is at a distance from the origin greater 
than 21 /2 . Under these conditions there are at least two diam-
eters of -y orthogonal to one another which belong to straight 
lines lying in E. There are also at least two tangents to the same 
circle cutting at right angles and parallel to the diameters which 
We have been considering and entirely contained in E. 

This figure transforms into a figure contained in E' from 
whose inspection we conclude that if we call y' the image of -y, 
the center of -y' is the image of the center of -y. 
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8. Preservation of Angles at the Origin. We take now the posi-
tive number 

(1) r > 21 / 2 , 

and consider the circle 

(2) X2 	y2  = r2  

and the circle 

(3) X' 2 	y' 2  = r' 2  

into which the circle (2) is transformed. We will show that every 
regular polygon inscribed in (2) and whose sides have a length 
less than (r 1) is transformed into a regular polygon inscribed 
in (3) and having the same number of vertices. 

Two adjoining sides of the former polygon must in fact, by 
the result of the last paragraph, be transformed into contiguous 
segments of equal length inscribed in (3). The second polygon is 
therefore either a regular polygon similar to the first or it is 
starshaped. But in this latter case at least two sides of it would 
cross at a point interior to the circle (3) and such a point must 
necessarily be the image of a point exterior to the circle (2). But 
this is readily shown to be impossible by using a reasoning like 
that of §6. Thus it is proved that the two polygons are similar 
to one another. 

We apply this to all such polygons inscribed in (2) which have 
a common vertex at the point x = r, y = O. 

Any point of the circle (2) which satisfies the condition 

(4) X 	iy = r•e2riPiq  

where p and q are arbitrary integers and q 0, can be considered 
as a vertex of one at least of these polygons. And we can always 
choose the coordinates x' and y' in such a way that the images 
of all the  points (4) must be calculated by the formulas 

X ' 	X 	 yt 	y 

9. Families of Circles which Are Transformed by a Similarity. 
Take now all the tangents to the circle (2) whose points of con-
tact coincide with the point set (4) and call A the set of points 
of intersection of each two of these tangents. Each point of the 

(5 ) 
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set A will then be transformed into a certain point contained in 
the exterior of the circle (3) whose coordinates must be calcu-
lated by (5). 

Call A* the family of circles, each of which is contained in E 
and passes through three points at least of the set A. The image 
of every one of these circles is necessarily connected with the 
circle itself by the transformation (5). 

We remark finally that the point set A is everywhere dense 
in the exterior of the circle (2) and that therefore every circle 
lying in E and possessing points outside of (2) can be indefinitely 
approximated by circles belonging to the family A*. 

10. Proof of the Continuity of the Transformation. Our next 
step is to show that our transformation is necessarily continu-
ous along the circle (2). If this were not the case there would 
exist on this circle at least one point Po whose image on the circle 
(3) we obtain by a rotation around the origin through an angle 
0 lying between zero and 27r. We could then construct a point set 
B analogous to our former point set A and a set of circles .13* 
analogous to A* and possessing the following property: To ob-
tain the image of a circle belonging to B* we must combine the 
amplification of §9 according to the cases either with a rotation 
around the origin through the angle 0 or with a reflection on 
some diameter of the circle (3). 

In both these cases it is always possible to find two circles, 
say el  and c2 , both lying in the region 

(6) 
	 x2 + y2 >  r2,  

cutting one another, and such that if we transform ci  by the 
amplification of §9 and c2 by one of the transformations which 
have just been described, we obtain as result of these trans-
formations circles which have no point in common. 

We now approximate e l  by a circle cr belonging to A* and 
e2  by a circle a belonging to B*. If these approximations are 
close enough the circles ci' and 4' will cut one another and will 
be transformed by the transformation we study into circles hav-
ing no common point. But this is in contradiction with the gen-
eral principle laid down at the end of §2. 

We must therefore assume that all the points of the circle 
(2) are transformed into the points of (3) by the transformation 
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(5) and the same is then the case for all the points of the region 
(6). 

11. The Theorem for the Circle. Take now a point P of E lying 
between the unit circle and the circle (2). Consider two circles 
of E passing through P and possessing points inside of the 
region (6). By hypothesis these circles are transformed into 
circles and besides they contain arcs whose images we know. 

The result is that the formulas (5) must hold for every point 
of the region E. As this region must by assumption be trans-
formed into E' we find that we must have 

(7) r' = r. 

In short we have proved the following theorem : 

THEOREM 1. Every arbitrary one to one correspondence between 
the points of a circular disc C and a bounded point set C' by which 
circles lying completely in C are transformed into circles lying in 
C' must always be either a direct or an inverse transformation of 
Mdbius. 

12. The General Theorem. We now consider a general region R 
and suppose that there exists a one to one correspondence be-
tween the points of R and some point set  R'.  We assume further-
more that by this correspondence circles of R are transformed 
into circles lying on  R'.  We call c and c' two such corresponding 
circles and suppose that every point interior to c belongs to R. 
Through every pair of points P and Q lying in the interior of c 
there passes at least one circle c1  having no points in common 
with c. To this circle corresponds a circle e l' which has no point 
in common with c'. Therefore both points P' and Q' which cor-
respond to P and Q must lie on the same side of c'. It follows 
that the interior of c must correspond to a point set which lies 
on one side of  c'.  This point set is either itself bounded, or it 
can be transformed by an inversion on the circle c' into a 
bounded set. In both cases we can apply the previous theorem. 
As the circle c can be taken at random we have finally the fol-
lowing theorem. 

THEOREM 2. Suppose that to every point P of a region R cor-
responds a point P' of some point set R' and that to two different 
points P and Q of R correspond two points P' and Q' of R' differ- 
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ent from one another. Suppose that to every circle c contained with 
its interior in the region R corresponds a point set of l?' which con-
sists of all the points of a closed circle c'. Then the point set R' is 
itself a region and the transformation of R into R' is analytic and 
either a direct or an inverse transformation of Mdbius. 

It is not difficult to generalize this result by restricting the 
class of circles c belonging to R which are supposed to be trans-
formed into circles. Take for instance a continuous positive 
function ch(P) defined everywhere in the region R. Then the 
theorem holds if we suppose that every circle of center P and 
whose radius is less than 4 (P) is transformed into a circle lying 
on  R'.  

The following generalization of Theorem 2 is nearly self evi-
dent if we note that three circles in space cutting one another at 
six different points must lie on the same sphere. 

THEOREM 3. Supposing that a plane region R is transformed by 
a one to one correspondence into an arbitrary point set R' lying in 

n-space (n ._3) under the saine assumptions as before, then R' must 
be a two dimensional sphere or a plane and the transformation 
is a transformation of 11Idbius. 

Other generalizations can also be imagined which, however, 
are outside the scope of this note. 

UNIVERSITY OF MUNICH 
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2.7. The Poincaré models of hyperbolic 
geometry 

We have touched very briefly on the Poincaré disk model of the hyper-
bolic plane in the Remark in Section 1.1. Here it seems appropriate 
to expand this discussion, though the reader interested in our main 
topics of inversion, circle preserving maps and conformal maps may 
skip this and the next section. 

The points of the Poincaré disk model of the hyperbolic plane H2  
are the points interior to the unit disk, and the lines are diameters 
and arcs of circles orthogonal to the boundary, Izi = 1. We begin 
by defining the distance between two points in this geometry. Given 
two points z1  and z2 , we constructed the hyperbolic or Poincaré line 
joining them in Section 1.1. Let 6 and (2 be the endpoints of the 
diameter or arc determining the Poincaré line (Figure 2.4). 

Figure 2.4 

The distance between z 1  and z2  is then defined by 

d(zi ,z2) = 1 log(zi, z2, 6, (2)1• 

Note that the cross ratio is real and positive so that the logarithm 
is defined; note also that the definition is independant of which end-
point is designated as (i . The distance function d enjoys the follow-
ing properties: d(z i , z2 ) > 0 with equality if and only if z1  = z2 ; 
d(zi, z2 ) = d(z2 , zi ); and if z 2  is between z 1  and z3  on the Poincaré 
line, then d(zi , z2) ± d(z2, z3) = d(z i , z3 ). To see this last property 

i 
i 
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we multiply the cross ratios: 

( (zi  - 	( z2 - (2)  ( (Z2 — (1) (Z3 — (2) 	(Zl 	(Z3 — (2)  

	

(2) (Z2 — (1) ) (Z2 — (2 ) (Z3 —  Ci) ) 	(Z1 — (2) (Z3 — (1) ) • 

Taking logarithms, we have 

log(zi Z2 Cl (2) 	log(z2, Z3 Cl (2) 	10g(Z1 )  Z3 (.11 (2 ) • 

Each of these logarithms has the same sign, and we have d(zi,  z2)  

d(Z2 1  Z3) -= d(Z1 1  Z3). 

With this notion of distance, one can say that two Poincaré seg-
ments are congruent if they have the same length. Angles in the 
Poincaré model are measured in the Euclidean way, i.e. the measure 

of the angle between two Poincaré lines is the Euclidean measure of 
the angle between their tangents. Now with these notions of con-
gruence and angle measure, one can verify that all the axioms of 
Euclidean geometry hold in the Poincaré model except for the axiom 

of parallels (see e.g. Greenberg [16]). Indeed, as we noted in Section 
1.1, through a point not on a given Poincaré line, there are many 
parallels. 

We have seen that the linear fractional transformations form a 

group. If now U and V are linear fractional transformations mapping 

the unit disk onto itself, then so is their composition; also U-1  is 
such a mapping. Therefore the set of all linear fractional transfor-
mations mapping the unit disk onto itself is a subgroup of the group 

of all linear fractional transformations. Also U composed with the 
map z maps the unit disk onto itself, and the general anti-

homography mapping the unit disk onto itself is of this form. We 

can therefore form the subgroup G of the group of extended Möbius 
transformations mapping the unit disk onto itself. 

Now let U E G and /p i, = U(zi ), i = 1, 2. Since the transforma-
tions map lines and circles to lines and circles and are conformal, U 
maps the Poincaré line through z1  and z2  to a line or circle through 

w 1  and w2  which, since Izi = 1 is mapped to itself, is orthogonal to 
z = 1. Therefore U maps the Poincaré line through z1  and z2  to the 

Poincaré line through w 1  and w2. 
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Since transformations in G preserve the cross ratio of four collin-
ear or concircular points, they preserve the hyperbolic distance be-
tween two points in the Poincaré disk. Thus elements of G are isome-
tries of the Poincaré disk model of the hyperbolic plane. We will see 
below that a hyperbolic circle in this model is also a Euclidean cir-
cle. Thus an isometry of the Poincaré disk is a circle-preserving map 
and hence an element of G. Therefore G is the isometry group of the 
Poincaré disk model of hyperbolic geometry. The most basic isometry 

is reflection in a line, which here is just inversion in the circle whose 
arc in the unit disk is the Poincaré line. We state without proof the 
fact that if z1 , z2  E H2 , the shortest curve in the Poincaré metric 2  
joining them is the Poincaré line. Also, given a Poincaré line and a 
point not on it, the distance from the point to the line is given by the 

unique perpendicular from the point to the line. 

The group G acts transitively on the open unit disk; i.e., given z i  
and z2  in the open unit disk, there exists U E G such that U(zi) = z2. 
To see this, note that I/1 (z) = e iç b  (z — z i )I( i z — 1) maps z 1  to O. Let 

U2 be a similar mapping taking z2 to O. Then U2-1- U1 maps z1  to z2. 
In fact we have shown that the subgroup of G consisting of the linear 

fractional transformations mapping the unit disk onto itself also acts 
transitively on the unit disk. 

Returning to the multitude of parallels to a given line through a 
given point, we observe that two of these are special. For a Poincaré 
line in H2  let (1 and (2  be the points on the boundary I zl = 1, and z 
a point in H 2  not on the line. Then the Poincaré lines through z and 

the boundary points (1  and C2 are parallel to the given Poincaré line, 
since  Ci,  C2 10 H2 ; the rays from z to Ci  and (2  are called "limiting" 
or "asymptotic" rays (Figure 2.5). The perpendicular from z to the 
line bisects the angle between these rays (Exercise 1, at the end of 
this section), and the angle a between one of these rays and the 

2 The length of a smooth curve between two points is found by integrating the 
element of arc length ds. For the Poincaré disk model of hyperbolic geometry the 
element of arc length is given by 

2 	4(dX 2  ± dy 2  ) 
ds = 	  (1 _ x2 _ y2)2 

(see e.g. [23], p. 242). 
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perpendicular is called the angle of parallelism at z with respect to 
the Poincaré line. 

Figure 2.5 

We now derive a formula for the angle of parallelism. Let d be 
the distance from z to the Poincaré line; then 

—d 	a 
e = tan -i . 

To see this, first, if necessary, map z to the origin and rotate about 
the origin so that the perpendicular is along the positive real axis 
(Figure 2.5). Let x be the foot of the perpendicular. Now d = 
I log(0, x, —111)1 = log 1±I  , and note that x = sec a — tan a. We 
then make the following computation: 

_d 1 — X cos a — 1 + sin a cos2  a + 2 cos a sin a + sin2  a — 1 
e = 	= 	 = 	  

1 + x cos a + 1 — sin a 	cos2  a + 2 cos a + 1 — sin2  a 

sin a 	2 cos i. sin -`21 
= tan —

a 
= 	= 	 

cos a + 1 	2 cos2  3- 	2 
From this formula we make the important observation that the dis-
tance from one asymptotic ray to another tends to zero. In the above 
formalism let the point z move along the asymptotic ray to the bound-
ary point Ci , as it does, the angle of parallelism tends to i and hence 
the distance d ----- O. 

On the other hand, for two parallels which are not limiting, the 
distance between points on one Poincaré line and points on the other 
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goes to infinity. Notice that, in fact, as a point z moves to the bound-
ary along one ray, the foot of the perpendicular from z to the other 
Poincaré line approaches a finite point, i.e. a point still in the interior 
of the disk. 

A second common model of the hyperbolic plane is the Poincaré 
upper half plane model. Here the points of the geometry are the 
points z in the upper half plane, i.e. (.az > 0, and the lines are 
either vertical rays from points on the real axis or semicircles with 
diameter on the real axis. Given two points z1 and z2 in the upper half 
plane, the Euclidean perpendicular bisector of the Euclidean segment 
joining them meets the real axis at the center of a semicircle through 
the two points. If we let (1  and (2  be the endpoints of the semi-
circle, we can define distance in this model as in the disk model, viz. 

d(zi, z2) = I log(zi, z2, CI (2)1. 

Since we have studied linear fractional transformations mapping 
the unit disk onto the upper half plane, we immediately have a one-
to-one mapping of one model onto the other which maps the lines of 
one model to the lines of the other, preserves distances, and maps 
the isometry group of one model to the isometry group of the other. 
Thus the two models are isometric, and some properties are easier to 
prove in one model than in the other. 

In our discussion of parallels we saw that the distance from one 
asymptotic ray to another went to zero, but for non-asymptotic par-
allels the distance between them goes to infinity. Thus in neither case 
are parallel lines equidistant sets. This raises the question of what 
a set of points equidistant from a line on one side of the line might 
be. Let ( i. and (2  be the boundary points of a Poincaré line in either 
model, and consider an arc of another Euclidean circle through ( 1  
and (2  (Figure 2.6). We will show that the Poincaré line and this 
arc are equidistant sets. First map the disk model to the upper half 
plane model, or apply an isometry of the upper half plane model, 
so that the image of the Poincaré line is a vertical line ((i —> 0, 

(2 ---> 00 ) (cf. Section 2.5 and the exercises below). Then the arc 
will be mapped to an oblique Euclidean ray from the origin (see Fig-
ure 2.6). Let ia be a point on the imaginary axis, and consider the 
semicircle centered at the origin of radius a. Let b + ic be the point 
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of intersection of the oblique Euclidean ray with the semicircle, and 
note that the semicircle is perpendicular to both Euclidean rays. The 
distance between ia and b ± ic is the logarithm of the cross ratio 
(ia, b + ic, —a, a) = a _cf b  . Now if we start with the point ip,a, its 
distance to the point ,ab  + ip,c on the other ray is the same, since 
(,u,ia, p,b + ip,c, — p,a, pa) = (ia,b + ic, —a, a). In particular we also 
note that the Euclidean homothety (stretching or shrinking) w = pz 
is an isometry of the upper half plane. 

Figure 2.6 

We just noted the role played by a Euclidean circle with an arc in 
the Poincaré disk. A circle lying in the disk except for a point of tan-
gency with the boundary is called a horocycle in hyperbolic geometry. 
In the upper half plane model a horocycle is either a circle tangent 
to the real axis or a Euclidean line parallel to the real axis. Any two 
horocycles are congruent, i.e. there is an isometry mapping one onto 
the other. To see this, first use a rotation of the unit disk to position 
the two horocycles so that they have the same boundary point. Now 
map the unit disk to the upper half plane with the common boundary 
point being mapped to  oc. The horocycles are then mapped to a pair 
of Euclidean lines parallel to the real axis. Let y = a and y = b be 
these lines. Then w = -b  -z maps y = a to y = b and is an isometry of 

a 

the upper half plane. Noting also that (x ± ia, x + ib,x,  oc) = ci , we 
see that two horocycles with the same boundary point are equidistant 
sets. 
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We have discussed arcs of Euclidean circles lying in the disk and 
Euclidean circles tangent to the boundary, so now consider a Eu-
clidean circle which lies entirely in the open unit disk. We have seen 
that two non-concentric circles can be inverted to concentric circles. 
Following this by a homothety and translation, as necessary, we have 
an isometry of the disk mapping the given circle to one concentric 
with the origin. Rotation about the origin is both a Euclidean and a 
hyperbolic isometry; thus a Euclidean circle within the disk centered 
at the origin is also a hyperbolic circle. Therefore, mapping this cir-
cle back to its original position by the inverse isometry, we see that a 
Euclidean circle lying in the disk is also a hyperbolic circle, but the 
Euclidean center is not the hyperbolic center except when the center 
is the origin (Figure 2.7). 

Figure 2.7 

Finally, and perhaps most dramatically, we note that the sum 
of the angles of a triangle in hyperbolic geometry is less than 180 0 . 
We won't discuss this in detail, but refer to [16] for an extensive 
discussion of the angle-sum question. Suffice it to observe that one 
can construct triangles with angle sum as small as one likes, e.g. less 
than 1 0 . In the disk model, simply take a triangle whose vertices 
are near, in the Euclidean sense, to the boundary; then all three 
angles will be very small. There are other interesting phenomena in 
hyperbolic geometry, e.g. that AAA is a congruence! and hence there 
is no notion of similarity in hyperbolic geometry, but we leave these 
for a more thorough treatment as in [16]. 
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EXERCISES 

1. For a given Poincaré line and point z not on it, prove that the 
perpendicular from z to the line bisects the angle between the limiting 
rays from z to the Poincaré line. 

2. Show that the linear fractional transformations with ad — bc = 1 
and a, b, c, d real form a group H.  Here H is the group of orientation 
preserving isometries of the upper half plane model of the hyperbolic 
plane. Show that H acts transitively on the upper half plane. Show 
also that, given a boundary point C on the real axis, there is an 
element of H mapping ( ---4 oo. 

2.8. A distortion theorem 

Before considering our topic we give, by means of exercises, some 
further geometry of the circle. 

EXERCISES 

1. In Chapter 1 we saw that through two points in the interior of a 
circle and not collinear with the center, there exists a unique circle 
orthogonal to the given circle. Show that through two point in the in-
terior of a circle C there exist two circles tangent to C. Hint: Consider 
tangents to C from the point of intersection of the line through the 
two points and the line through the points where the circle orthogonal 
to C through the two points meets C. 

2. Let P be a point in the interior of a circle C. Find the locus of 
points equidistant from P and C. Using this, give another solution to 
Exercise 1. 

3. Let C be the unit circle, z1  and z2  two points in the interior of C, 
and C 1  and C2 the circles through z1  and z2  tangent to C found in the 
previous exercises. Let t 1  and t2  be the points of tangency of C1  and C2 
with C, respectively. Given a negative number p,, let a l  and a2 be the 
points on C1 and C2 respectively such that (zi , z2,  a, t)  = p,,i = 1, 2. 
Show that there exists a circle A tangent to C1 and C2 at al and a2 
(Figure 2.8). Hint: Invert with z1  as center of inversion. 
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Figure 2.8 

We have already seen that a linear fractional transformation maps 
lines and circles to lines and circles; here we consider a subcollection 
of these transformations and the set of pre-images of a fixed point 
on a segment. This problem is sometimes called "the distortion of a 
segment".  

Let z1  and z2  be two points in the open unit disk, and w 1  and 

w2 two points in the plane. Consider the set of all linear fractional 
transformations mapping zi  to wi ,  j  = 1, 2, and the unit disk to a disk 
or half plane (i.e. from all linear fractional transformations mapping 
zi  to wi  we exclude those mapping the unit disk to the exterior of 
some disk). Let w = (1 — ) )w1  Aw2  be the line through w1  and 

w2. Now for a fixed value of A, 0 <  À  < 1, we seek the set  Qt of all 
points a which are mapped to the point (1 — A)wi  Aw2  by some 
linear fractional transformation in our subset. 
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Theorem 2.11. In the notation of Exercise 3 above and Figure 2.8, 
set p, -= A A 1 . Then 2( consists of the circle A of Exercise 3 and its 
interior.3  

Proof. Since the transformations are mapping the unit disk onto a 
disk or half plane, the pre-image of oc must be a point ( with ICI > 1, 
and hence the pre-image of the segment  w1 W2,  which is a circular arc 
or segment, must lie in the spindle-shaped region between C1  and C2. 

Now the points a l  and a2  of Exercise 3 belong to 21 because the linear 
fractional transformation mapping z1 , z2 , a i  to w 1 , w2 , (1— A)w i  +Aw2 
is given by 

(zi, z2,ai, z) = 	(1 — A)wi + Aw2, w) 

and takes t i  to oc since 

(wi) w2, (1 — A)wi Aw2, co) = 
A —

A 
1 • 

 

Now for general a E 2t the linear fractional transformation (z1 , z2 , a, z) 
= (wi , w2 , (1 — A)w i  + Aw2 , w) must be such that the pre-image ( of 
oc satisfies ICI > 1 and 

 

z2 , a, () = 
A 

 

Solving for a, we have 

A — 1 .  

a  = — ( (1 — A)z i  + Az2) C + z1z2  
—( + Azi  + (1 — A)z2 

and 

[—((1 — A)z i  + Az2 )][Az 1  +  (1—  A)z2] + z1 z2  = A(A — 1)(z i  — z2 ) 2  O. 

Thus we have a linear fractional transformation for a in terms of C. 
It maps oc to (1 — A)zi + Az2, so that the image of {C ICI > 11 must 
be a closed disk lying in the spindle-shaped region between C 1  and 

C2. We have already noted that a l  and a2  are in the closed disk, so 
this disk must be the circle A and its interior.  LI 

3 An interesting, more general result is known in complex variable theory. Con-
sider the set of all holomorphic functions mapping zi to wi,  j  = 1, 2, and the unit disk 
in a one-to-one manner onto a convex set. Then again the set of points mapped to 
(1 — A)wi Aw2 by these functions is the circle A and its interior (Aumann [3]). 





Chapter 3 

Advanced Calculus and 
Conformal Maps 

3.1. Review of advanced calculus 

This section is intended primarily to provide a review of some results 
and notation from standard courses in advanced calculus and real 
analysis, and to set the stage for our later work. Consequently we 
will present results without proof, and the reader may consult any 
standard text for more details (e.g. [2], [4], [14]). 

We denote by IV the set of n-tuples (x 1 , ... , xn) of real num-
bers and for simplicity write x for (x 1 , ... , xn). Denote the distance, 

( Er: 1(xi) 2 ) 1/ 2 , of x from the origin by ixi. Then lx — yi is the 
distance between x and y. 

The open ball in Rn with center xo  = (4, . . . , x 7c2, ) and radius r, 
denoted Br (x0), is defined by 

Br (X0 ) — {xl ix — xo I <r }.  

A subset U c Rn is said to be open if for every point X E U, there 
exists a ball Br (x) c U. 

A set S c Rn is said to be arcwise connected if every pair of points 
in S may be joined by a continuous curve lying in S. An open arcwise 
connected set is called a region. A set S is bounded if there exists a 

63 
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ball Br (x) such that S c Br (x). A point xo  is an accumulation point 
or a limit point of a set S if every open ball  Br (X0) contains a point 
x 0 xo  belonging to S. The union of S and its accumulation points 
is called the closure of S. A set S is dense in a set T if the closure of 

S contains T; e.g. the rational numbers in [0,1] form a dense subset 
of [0,1]. 

Consider now a function f defined on an open set U C Rn  with 
values in  R. Such a function may be described by m real-valued 
functions f i-  )" . 7 frn defined on U. Let x = (x l ,...,xn) E U and 
f(x) =  (y',...  , yrn) E Rm; then f is given by y 1 

 = fl (x l ) . . . 

. . . ,ym = fm (xl , . . . , xn). The functions f 1  )" - 7 Pr' are called the 
component functions of  f.  

Example 3.1. A parametric curve x = x(t), y = y(t) in the plane is 

a function f : R -- R2  whose component functions are x = x(t) and 
y = y(t). 

Example 3.2. Inversion in the unit circle is a map f : R2  — {(0, 0) } 

 ----- R2  given by 

X 	y  
f ( x  , Y) 	( x2 + y2 ' x2 + y2 ) • 

Example 3.3. Rotation in the plane about the origin through an an-
gle 0 is a map f :R 2  ----> N 2  given by 

f (x , y) = (x cos 0 — y sin 0 , x sin° + y cos 0). 

Let  f:  S C Rn  ---- R7n  be a function defined on a set S in Rn  , 

xo  an accumulation point of S, and yo  E II:m. Then 

lim f (x) = yo  
x--,x0  

means that for every ball Bf (yo ) c Rm there exists a  B5  (X0) C Rn 
 such that f(x) E B(yo ) whenever x 0 xo  is in /35(x° ) n S. It is 

easy to show that lim,0  f(x) = yo  if and only if each component 

function f i  of f has limit y6. We say f is continuous at xo  if f(x0 ) 
is defined and limx,x0  f(x) = f (x0 ); and we say f is continuous on 
a set S if it is continuous at each point of S. 

Now let f be a real-valued function defined on an open set U C 
Rn . Let xo  . (4) , ... , 41 ) E U. By the partial derivative of f with 
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respect to x at xo  we mean 

f (x(1) , • • • , 4 1  , xt)  + h, xi0+1  , • • • , x.'j) —  f (x(I), • • • , 4) 
lim 
h--4) 	 h 

provided this limit exists, and we denote the partial derivative by 

3f  

Recall that in the calculus of one real variable, the existence of 
the derivative at a point implies the continuity of the function at 
the point. This is no longer true for functions of several variables, 
e.g. if f (x, y) = x + y if x = 0 or y = 0 and 1 otherwise, then 
2--f (0 )  0) = if.  (0 )  0) = 1 but f is not continuous at (0, 0). ax 	ay   

We shall use the following terminology. A function f is said to be 
of class C°  at a point or on a set if it is continuous there. A function 
f is of class Ck  if the partial derivatives of order k exist and are 
continuous, and a function f is of class C' if it has continuous partial 
derivatives of all orders. Finally, f is of class CI' or real analytic at 
a point if it is represented by its Taylor series on some neighborhood 
of the point. For example, f (x) = e -1  / x 2  , x 0, and  f(0) = 0 is Coe 

at x = 0 but not analytic there. Informally we will sometimes say a 
function f is smooth if f has sufficiently many continuous derivatives 
for the purpose at hand. 

Recall also the following theorem on the interchange of order of 
differentiation. 

Theorem 3.1. If f is of class C2  on a neighborhood of xo , then 

32f 	32 f  

	J  
axiaxi 

(x0) = 
axiaxa 

Let f be a real-valued function defined on an open set U c Rn 
and let xo  E U. We say f is differentiable at xo if there exists a linear 
map dfxo  : Rn ---- R such that 

I f (x) —  f (x 0 ) — df xo  (x — x 0 )1 = 

	

lim 	 0. 

	

x--xo 	 lx — xol 

The map dfxo  is called the differential of f at xo . If f is differentiable 
at every point of U, we say f is differentiable on U. Notationally, 
for a vector y E Rn we write dfxo (y) or just dfxo  v. The following 
theorems are proved in standard advanced calculus courses. 
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Theorem 3.2. If f has a differential at xo , then the partial deriva-

tives of f exist at x0 and 

a f  
dfx 0 (v) = 

n 

axi (x
0 )v i  . 

i.1 

Theorem 3.3. If f is of class Cl  at xo , then f has a differential at 
xo. If f has a differential at xo , then f is continuous at xo . 

As a corollary, note that if f is of class Ck , then f is also of all 
lower classes. 

Theorem 3.4. If dfx  = 0 holds throughout a region, then f is con-

stant on the region. 

More generally if  f: U C Rn  —> Rni and xo E U, we define the 
differential of f at xo to be the map dfxo  : Rn  --> Rm, if it exists, 
such that dfxo  is linear and 

I 	f (x) - f (x0) - dfx o  (x — xo) 1  lim 	 =0  
Ix — xol 

Again the above theorems hold, and, in particular, if f 1 , ... , frn are 
the component functions of  f,  then 

	

n afl 	 n al'  
dfxo (y) = (E -7 (X0 )V i  7  . . . 	(X 

	

aX'l 
	O )vi ) 

i=1 	 i=1 

In particular, the matrix of the linear map dfxo  with respect to the 
standard  bases  of Rn  and RI' is 

X-> X0 

( 

af i 	, 
ax , (xo ) 

) 

In the case that f: U C Rn ----+ Rn , the determinant of the above 
matrix is called the Jacobian of f at xo  and denoted Jf (x0 ). Clearly 
dfxo  is non-singular if and only if t I f (X0) 0. The most important 
property of the Jacobian is the inverse function theorem: 

Theorem 3.5. Let f be a  C',  Rn -valued function defined on an open 
set U C Rn, and let xo E  U.  Suppose J f (x 0 ) 0. Then there exist an 
open set V containing x0  and art open set W containing f(x 0 ) such 
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that f : V 	W is one-to-one and onto. Moreover, f -1  : W 	V 
is of class C'.  

Thus we see that the non-vanishing of the Jacobian (equivalently, 
the non-singularity of the differential) implies that the mapping is 
locally one-to-one. This is not a global result, however. For exam-
ple, f (x , y) = (ex  cosy,  ex sin y) is locally one-to-one since Jf  (x , y) = 

2x e 	0, but not globally one-to-one since f is periodic in y. 

Now let f :  U C Rn —p RP and g :  V C IR.' --> Rn  be mappings 
with g (V ) C  U.  Then the composition f o g is defined by (f o g) (x) = 
f (g (x)). If g is differentiable at xo and f is differentiable at yo  = 
g(x0 ), then f o g is differentiable at xo  and we have the chain rule 

d(f o g) xo  = dfg ( x0 ) o dgxo . 

In terms of matrices we have (setting y = g(x) and yo  = g(x0 )) 

( a( ..4?)1  (xo ) 

4 Cx"V P  ( X0) 	

a(4xorg) i ()co  

8C 	

) 

a(f°g )P  (x 0 ) ax- 

Yy4(Yo)
ag i  

ay n. a fl  (Yo) 	ax i 	 ag i  (x0 ) 

f Yo) .. 	2f1(Y 	
agn x 

) ayn o ) ( 	

(xo) 	• • • 

( ax'  (0) 	
ag  n 	\ 

a X r.  

a X T. ()CO  ) 

• 
• = 	
• 

If r =  ri  = p, then J(f og)(xo) = J1(yo)Jg (x0), in particular, if df3, 0  
and dgxo  are non-singular, so is d(f 0  .g)xo • 

Recall that if x(t) = (x l (t), 	, xn(t)) is a differentiable curve in 
Rn , then x / (t) = (x 1/ (t), 	, xn/(t)) is the velocity vector to the curve 
at the point x(t). If xl (t) 	0, then the curve is regular at x(t) and 
x' (t) is called the tangent vector to the curve (or a tangent vector, as 
appropriate). Suppose  f:  U C Rn  Rn  is differentiable and that 
dfx  is non-singular for every x E U. If x(t) E U for all t in some 
interval I, then y(t) = f (x(t)) is a curve in Rn  defined on I and its 
tangent is given by 

1 
y l (t) = 	x"(t),.. 	axi 	xil (t)) = dfx(t)(x / (t))- 

afn 

i=1 

• • • 



68 	 3. Advanced Calculus and Conformal Maps 

Thus the linear map dfx ( t)  maps the tangent vector of a curve at x(t) 
to the tangent vector of the image curve under the mapping f at the 
corresponding point. 

Also, if s denotes arc length along the curve from some point, 
then 

\ 
ds 

Tit = ix' WI  = 
(x '(t)) 2 . 

n 

i= 1 

In particular, for a regular curve, the length of the curve from x(t i ) 

to x(t2) is ftti2  lx 1 (t)Idt. 

Again suppose that f : U C Rn  -- Rm. We define the second 
order differential d2  f„,, : Ekn x Rn --- Rrn in terms of the component 
functions of f by 

d2  f„,„(v ,w) = ( 
n 

(
92». 

aXiaxi 
(X0)Viw3, .. 

i,j=i  
• 	7 

d2  f is d(df) in the following sense. For a fixed vector V E Rn  consider 
the map df (v) : U c Rn ---÷ Rin defined by df (v)(x) = df x (v), then 

d2 fx0  (v ,w) = d(df (v))xo(w)• 

Similarly, we define differentials of order 3, 4, ... ; e.g. 

d3 fx0  : Rri x Rn  x  

is defined by 

a3p. 
d3  fxo (u,v ,w) = ( 

axk axi axi
(x o )ui vi w k  

i,j,k=1 

Note in particular that if f is of class Ck , then 

d2  fx„(vi,v2),d 3  fx 0 (vi,v2,v3), • • • 7 dk fX0 (V17 • • • 7 V IC) 

are symmetric in the vi 's. 

Finally we state Taylor's theorem for functions of several vari-
ables. 

n 

i,j*=1 
n 

E
33m 

 axkaxiaxi  (xoUiViWk 



1 	 1 
77! z fx (Y — x) + —k! 

dk  fz  (y — x). 
i=1 

k- 

f (3r) = f (lc) + 
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Theorem 3.6. Suppose f : U c 1 11: —f  Rm is of class Ck  . Let x 
and y be points in U such that the line segment 1(x, y) joining x and 

y lies in U. Then there exists a point Z E 1(x, y) such that 

In the special case k = 1, this is just the mean value theorem. 
For example, if f : U C R2  —> R, then there is a point (, 77) E 

/((x )  Y), (xo, yo)) such that 

a f 
f (x 1 Y) — f (x0)Y0) = -----

a f 
(e, 77)(x — xo) +  ax 

EXERCISES 

1. Let U be an open set in Rn  and f an Rm-valued function defined on 

U. Show that f is continuous if and only if each component function 
fi : U ---- R is continuous. 

2. Let 

xy(x2  — y2 ) 
f (x 7 Y) = x2 + y2 

for (x, y) 	(0, 0), and let f (0, 0) = 0. Show that 

32 f 	a2 f  

ayax (0, 0) 	axay  (0, 0). 

3. Let g(x) = x2  sin 1 for x 0 and g(0) = 0; let f (x, y) = g(x) + 
g(y). Show that f has a differential at (0,0)  but is not of class C' 
there. 

4. Suppose f (x , y) = 0 for  (x,  y) in the first and third quadrants and 
on the axes. In the second quadrant suppose that f(x, y) = —x if 
y>  —x and f(x,y) = y if y < —x. In the fourth quadrant suppose 
f(x,y) = y if  y>  —x and f(x,y) = —x if y < —x. Show that both 
first partial derivatives exist at (0, 0), but that f does not have a 

differential at (0,0). 
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5. We noted in Example 3.2 that inversion in the unit circle is given 
by 

X  
f (x 7 Y) - ( x2  + y2 7  x2 _Fy 	y2 ) 7  

Find df( x , y ) and Jf(X7Y)• 

(x,y) 	(0, 0). 

6. Suppose f : R 2  --- R 2  is differentiable and df(x.y)  for all (x, y) is 
given by ( ab  —ab  ) 7  where a and b are constants such that a2  + b2  = 1. 
Find f,  and describe it geometrically. 

7. Prove the following extension of Exercise 2 of Section 2.7. Given 
two points z1 , z2  in the upper half plane, a unit vector u at z1  and a 
unit vector v at z2, show that there exists T E H such that T(zi ) = z2  
and dTzi  (u) = v. 

8. In Exercise 7, remove the hypothesis that u and v are unit vectors, 
but assume the conclusion that dTz , (u) =  y.  Show that u and -sr have 
the same length. 

9. Similarly to Exercise 7, prove the following two-point homogeneity 
property. Given points z1, wi, z2, tv2 in the upper half plane such that 
the distance between z1  and w 1  is equal to the distance between z2 
and w2 , show that there exists T E H such that  T(z1 ) = z2  and 

T(wi) -=- W 2 . 

3.2. Inner products 

For two points v, w E IV we define their inner product (y,  w) (often 
called scalar product or dot product, v.w) by 

n 

(V, W) = 	Vi Wi . 

i=1 

Clearly (v, v) = I vi 2 ) the square of the distance of v from the origin, 
and similarly Iv — wl = (v — w, v.  —  w)'! 2  is the distance between 
v and w. Note that the inner product is symmetric and bilinear, 
i.e. (v, w) = (w, v), (au ± bv, w) = a(u, w) ± b(v ,w), a, b E R, and 
similarly in the second variable. 

Now apply the law of cosines to the following triangle (Figure 
3.1). 
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V 

Figure 3.1 

Then iv — w1 2  = 1v1 2  + 1w1 2  — 21v11w1cos0, but 

Iv — wI 2  = (v — w, v — w) = v) — 2(v, w) (w, w), 

and hence the angle 0 between two vectors v, w is given by 

(v, w) 
cos 0 = 

iviiwi .  
In particular, if v and w are non-zero, then (v, w) = 0 if and only if 
v and w are orthogonal. 

As before, let U be an open set in Rn, and consider two differen-

tiable maps f, g:  U Rm. Then (f(x),g(x)) = f 3  (x)gi(x) 
defines a map (f, g) :  U  —> R. Note that 

a = 

 

rn  

( 3f3. 
 

(x)g3  (x) + f3  (x) aga.  (x)) . 
axi 	 axi 

  

 

i= 

Consequently 

n  a  

d( f , g) x (v) = E 	(f(x), g (x))vi 

= 	( aafx3i  (x)vig3 (x) f 3 (x) aag:.i  (x)vz) 
i.1 
= (dfx (v), g(x)) (f (x), dg x (v)). 

We shall also have occasion to differentiate inner products of dif-
ferentials, e.g., 

d(df (u) , dg(v)) x (w) 

= (d2  f x  (u, w) , dgx (v)) + (dfx (u), d2  gx (v , w)) 

Recall that in a vector space V of dimension n, n linearly in-
dependent vectors constitute a basis of V. Moreover, given a basis 
{e l , , er } , every vector v E V has a unique expression of the form 
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v.  = Ein , vi ei , vi  E R. Also, given p, p < n, linearly independent 
vectors v1 , ... , vp , we can find a basis of V such that v1 , ... , vp  be-
long to the basis. 

Let L be a linear functional on V, i.e., L is a linear map of V into 
R. Clearly if L vanishes on the elements of a basis, L = O. 

Regarding It  as a vector space, let B be a symmetric bilinear 
form on Rn  , i.e. B(v, w)  E R,  B(v, w) =- B(w, v), B(au ± bv,w) = 

aB (u, w) + bB(v , w), a, b E R, and hence, of course, B(u, av + bw) = 

aB (u, v) + bB(u, w). 

For later use we prove the following theorem. 

Theorem 3.7. Let B be a symmetric bilinear form on IV which van-

ishes on all orthogonal pairs of vectors. Then there exists a real num-

ber a such that 

B(v,w) = a(v,w). 

Proof. For fixed v E Rn  , V 0, let 

L(w) = B(v ,w) 
B(v ,v) 

(v ,w). 
(v, v) 

Then L(v) = 0 and L(w) =- 0 for every w orthogonal to v; thus L 

vanishes on a basis and hence L = O. Similarly, holding w fixed, 

B(w,  w) 
 B(w, v) 	 (w, v) = 0 

(w, w) 

for all v. Therefore 
B(v,v) B(w,w) 

(NI- , NI- ) 	(w, w) 

for all non-zero IT, w; calling this common value a, we have B(v, w) 
a (v, w). 

EXERCISES 

1. Let B be a symmetric bilinear form and define a quadratic form 
Q by Q(v) = B(v, v). Show that Q determines B. 

2. Let U be an open set in Rn  and f a 0-  function on U. Define the 
gradient of f at X E U to be the unique vector gradfx  such that 

(gradfx ,v) = dfx (v) 
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for all v. Let {e l , ... , en } be the standard basis on Rn, show that 
this definition of gradient is equivalent to 

n af  

gradfx  — 	. 
Oxi 

(x)e. 

3. Consider a level surface of a smooth function f in R3 , i.e. a surface 
given by the equation f (x,  y,  z) = c, c a constant. Show that grad f 
is normal to the surface. 

4. Note the dependence on the inner product in the definition of 
gradient in the Exercise 2. Let B be a positive definite symmetric 
bilinear form. Define the gradient of f with respect to the inner 
product given by B by B(gradB f, NO = df (v). Suppose that on R3  
with standard basis {e l , e2 , e3} an inner product is given by 

( 1+ y2  0 —y 
(B(ei,ei)) = 	0 	1 	0 

—
y 0 1 

If W = gradBf = w i ei  +w2e2+w3e3, find W l , W 2 , W3  in terms 
of the partial derivatives of f and the variable y. 

3.3. Conformal maps 

We have already used the notion of a conformal map as an angle-
preserving transformation. Let us now see how we may describe this 
notion analytically. 

Theorem 3.8. Let f be a one-to-one mapping of an open set U in 
Rn onto f(U) such that dfx  is non-singular for all x E U. Then f is 

conformal if and only if, for all vectors v,w E Rn , 

(dfx v , df„w) = e2a (x) (v, w) 

for some real-valued function a on U. 

Proof. Suppose (dfxv,  , dfxw) = e2a(v, w). If 0 is the angle between 
y and w and 0 the angle between dfxv and dfxw, then, since Idfxvi = 
elyl, 

(dfxv, dfxw) 	e 2a(v,w) 
cos 0 = 	= cos 9, 

Idfxylldfxwl 	elylealwl 

i= 

) 
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so that f is angle preserving. 

Conversely, suppose that f is angle preserving; then, at each point 
X E  U,  B(v, w) = (dfx v, dfxw) is a symmetric bilinear form which 
vanishes on orthogonal pairs v, w. Thus by Theorem 3.7 (dfxv, dfxw) 
is proportional to (v, w) at each point. Again since f is angle preserv-
ing, (dfxv, dfxw) and (v, w) have the same sign; thus, denoting the 
proportionality factor by e2 cr (x) ) we have (dfxv, dfxw) = e 2°-(x)  (Nr, NV) 

as desired. 0 

In the above theorem the function ecr is called the characteristic 
function of the conformal mapping f.  Note that e(x) = idfxviiivi 
for all v 0, and therefore we always regard a conformal map as 
being non-singular in its domain of conformality. 

EXERCISES 

1. Suppose that f : U C Rn —> Rn  and  g:  V C Rn  -- Rn with 
g (V) c U are both conformal with characteristic functions e`i and eP 
respectively. Show that f o g is conformal with characteristic function 
ea°g +P . 

2. If f : U C Rn --4 Rn  is conformal with characteristic function e' 7 , 
show that f -1  is conformal with characteristic function e-"f 1 . 

3. Show that the map f : R2  --4 R2  given by f (x , y) = (x2 _ y2 ,  2xy) 

is conformal except at the origin. Find the characteristic function. 



Chapter 4 

Conformal Maps in the 
Plane 

4.1. Complex function theory 

We have seen that the extended Möbius transformations (homogra-
phies and anti-homographies) are conformal mappings. However we 
shall see in this chapter that there are many more conformal maps 
in the plane. For this purpose we must first study a little complex 
function theory. 

Let f be a complex-valued function of a complex variable z = 
x + iy. We denote by u and y the real and imaginary parts of  f,  i.e., 
f (z) = u(x, y) + iv(x , y). In this way f is a map, f : U c 110 ---> 1112 , 
with component functions u and y, where U will always be an open, 
arcwise connected set. We say that f as a function of z is continuous 
if f as a map is continuous. However we will see that the notion of 
the derivative of f is stronger than its differentiablility as a map given 
in the last chapter. The derivative of f at zo  E U, f(z 0 ), is defined 
by 

f (z o ) = urn f (zo + h) — f (zo)  
h->0 	 h 

provided the limit exists (and, of course, the limit is defined in terms 
of h E C being in a neighborhood of 0 E C) . We say that f is 
holomorphic or analytic at zo  if f has a derivative at every point of 

75 
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some neighborhood of zo . In particular, if f has a derivative at every 
point of U, we say f is holomorphic on U. Note that since the limit 
is independent of how h tends to 0, the existence of f'(z o ) implies the 
continuity of f at zo. 

Since we will not have many applications of differentiation to 
special cases, we simply remark without proof that the usual rules for 
differentiation hold for complex differentiation. The reader is referred 
to any standard text for details, e.g. [8], [13]. 

Theorem 4.1. Let f be defined and continuous on an open set U, 
and let zo = xo  + iyo E U. Suppose f/(z o ) exists. Then 

Du 	av, au 	 Dv  
— (xo)Yo) = —ay (xo) Yo), — (

ay x()) Yo) = -- ( xo 7 Yo)• ax 	 ax 

Conversely, if u(x,y) and v(x,y) are of class 0-  on a neighborhood 

of zo  and their partial derivatives satisfy these equations at zo , then 

f(z) = u(x,y) + iv(x,y) has a derivative at 41 . 

Proof. Supposing f (zo ) exists and taking h real, we get 

f (zo  + h) — f (zo)  

h 

. 

	

(u(x0 ± h, yo) — u(xo, Yo) 	. v xo + h, yo) — v(xo) Yo)  
+ z 

h 	 h 
and hence 

.0v  
f ' 	

au 
( zo ) = — (xo, Yo) + z — (xo,Y0). ax 	ax 

Similarly, taking h imaginary, say h = ik, k real, 

f (zo + h) — f (zo)  
h 

= ( 1 u(xo)Yo+k) — u(xo,Y0)  ± v(xo,Yo + k) — v(xo) Yo)  
i ) 	 k 	 k 	 7 

and hence 

	

Ou 	av 
f' ( zo ) = — i —

ay (xo)Y0) ± —ay (xo) Yo)- 

Now comparing these two expressions for f (zo ) we see that 

au , 	, av 	, 	au 	 Dv  
— (xo , yo) = —,

ay
aco, Yo), — (

ay 
xo, Yo) = -- (xo, Yo); ax 	 ax 

these equations are called the Cauchy-Riemann equations. 
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Conversely, suppose that u and y are of class C1  on the disk 
Bf (zo) of radius € about z0 . Now h —> 0 corresponds to z —> zo , 
and it suffices to consider z E B E  (z0 ). Write h as a + ib. Then 
f (zo+h)— f (zo)  becomes h 

U(X0 ± a, yo  + b) — u(xo, yo) 
± i

v(xo + a, yo + b) — v(xo, yo) 
a + ib 	 a + ib 

a  (u(xo + a, yo + b) — u(xo, WI + b) 
a + ib 	 a 

+ ï 
.y(xo  + a, yo + b) — v(xo 5 Yo + b)) 

a 

4.. 	b 	(u(xo,  
a + ib 	b 	 b 

By the mean value theorem there are points (6, Yo+b) and (6, yo + b) 
on the line segment /((x 0  + a, yo  + b), (x0, yo + b)) and points (xo, 771) 

i) I-  and (xo, 772) on /((xo) Yo +b),  (x0 , 
 YO)) 

 such that f (zo +h f (zo)becomes 

	

a au ( c 	Dv  
a + ib

( 	
1Y° 4-  

h)  +z( 2) yo + b)) 

 + 	+ 2 -aVX0, 712)) • 

Now, since u and y are of class Cl , we can write 

Du 	 au 
— (6 5 Yo + b) = — (xo, Yo) + Ei ax 	 ax 

where € i  —> 0 as h —> 0, and similar expressions for the other 
partial derivatives, giving 

= 

f (zo + h) — f (zo) 	a  (au 

h 	a + ib ax(x° ' Y°)  ± 61  ± 

h (au 
+ a + ib ay (x°  ' Y°) 4- 63  ± 

Dv 
i— (xo' yo) + i€2) ax  
av 

i —ay 
(xo, yo) + i€4) . 

Thus, using the Cauchy-Riemann equations at (xo , yo ), we have 

f (zo  + h)  — f (z o )  

h 
.  au 	Dv 	ael + ia€2 b€3 ± ibezi 

= — (xo, Yo) + ï —
ax 

(xo
' Yo) + ax 	 a + ib 
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Now Lai _<_. la ± ibi and ibl < la + ibl, so that 

aci  + ia€2  + b€3 + ibe4  
< 1E1 + i€21 + 1€3 +  26417 

and hence, taking the limit as h  —p 0, we have 

au 	.0v  
f ' (zo) = — (xo, Yo) + z— (xo ) Yo) - ax 	ax 

0 

Using Theorem 4.1, we note that the function f (z) = .Z-.  = x — iy is 
not holomorphic. However, if g(z) =  (1)(x, y) ± ill)(x , y) is holomorphic, 
then f (z) u(x, y) + iv (x , y) = g(z) satisfies aa " .  = —P4 and t = -019i. 

Conversely, if f (z) = u(x, y) + iv(x , y) is of class C 1  and satisfies these 
equations, then f (z) is the conjugate of some holomorphic function. 
Indeed, setting 0(x, y) = u(x, y) and  '4'(x,  y) = —v(x, y), we find that 
6(1)  an — • — all) 	d a(/' 	(9 ' 	Thus g = 0 + ili) = f is holomorphic, ax — ay 	ay  — — ax   
and hence f = We say a function f is anti-holomorphic if f is the 
conjugate of a holomorphic function. 

EXERCISES 

1. Let f (z) = z 5  /141  for z 0 and  f(0) = O. Show that f satisfies 
the Cauchy-Riemann equations at (0, 0) but that f (0) does not exist; 
compare with Theorem 4.1. 

2. If f is holomorphic on  U,  show that, as a map of U C R2  —> R2 , 
its Jacobian is If '(z)I 2  . 

3. If f is anti-holomorphic on  U,  show that, as a map of U C R2  --- 
R2 , its Jacobian is non-positive. 

4. Find the Jacobian of a linear fractional transformation T, and 
show that it is identically 1 if and only if T(z) = eie z ± b. 

4.2. Abundance of conformal maps 

We now show the relation between conformality and holomorphy and 
anti-homorphy, and hence the abundance of conformal maps in the 
plane. Recall that we have taken conformality to mean the preserva-
tion of angle not including the sense or orientation of the angle. Many 
complex analysts require that conformality includes the preservation 
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of sense, and hence they would not include the anti-holomorphic case 
in the next theorem. 

Theorem 4.2. Let f : U C R2  —› R2  be of class C1  with non-
vanishing Jacobian. Then f as a map is conformal if and only if 
f, as a function of the complex variable z, is holomorphic or anti-
holomorphic. 

Proof. By the inverse function theorem f is locally one-to-one. We 
must show that f satisfies 

(df z AT , df,w) = e 2 a( z )  (v ,w) 

for some function o-  and for all vectors y and w if and only if the 
component functions u and y of f satisfy 

au ay au 	ay 
(4.1) 	

_i_ 
ax -L-  ay' ay + ax . 

Recall that df,v is given by 

( au au 
ax ay 
av av 

 8x 8y ) ( 

V i  
V 2  

) 

and (df,v,df,w) = e2a (v. 7  mr ■ ) becomes 

(au vi  ± auv2)  (au wi  ± ± w2 )  (ay vl  ± av v2  ( av wl+ w2) 

(4.2)

ax 	ay ) (9x 	ay ) 	ax 	ay ) ax 	ay ) 

(4.2) 	 = e 2 cr(v 1 w 1  + v2 w2 ). 

(IA If this holds for all y and w in R2 , then, choosing y = w  = w)  and 
y  =w  = ( i ), we have 

(4.3) 
( au) 2  ( aV ) 2  

aX ) ± ax ) 
2a-  = e,  

78u \ 2 	78v '\ 2  

ay ) ± ay ) 
2a =  e.  

Similarly, setting y = ( 01 ) and w = ( i ) yields 

au au 
+ —

av 
—
av 

= O. 
ax ay Ox ay 

(4.4) 



80 	 4. Conformal Maps in the Plane 

Equating the two expressions in (4.3), multiplying by  --(Tat' ) 2 , and using Y 
(4.4), we have 

(an 2  On 2  
ay ) ay) 

( 	a u y ( .92) 2  ( 
) 

av ) 2 ( av y 
ax) ay) + ax ay) 

ou\ 2 ov\ 2 ( auy ou\ 2 
== ax) ay ) ± ax) ay ) • 

Therefore Poi = ±t. If k = t, (4.4) gives t = —'Pg unless 
au 	av 

 — 	= 0, in which case (4.3) gives g . ±%. Similarly, if ax 	ay  
au _ av au — — av then au — av unless 	= 0 and then av = ± au ax — ay , 	ay — ax 	ax — ay 	7 	 aX 	aY • 

Consequently, conformality implies holomorphy or anti-holomorphy. 
Conversely, substitution of (4.1) into the left side of (4.2) yields the 

right side of (4.2) with e 2' = (M2  + (t)2* 	 Ill 

Thus we see that the plane is rich in conformal maps; in particu-
lar, every holomorphic function on an open set U with non-vanishing 
derivative is a conformal map. To note this abundance more dramat-
ically we state the celebrated Riemann Mapping Theorem. 

We say that a set U c R2  is simply-connected if every simple 
closed curve lying in U is contractible within U (or equivalently has 
its interior in U). 

Theorem 4.3. Let U be an open, connected, simply-connected set 

C  R 2  other than R 2  itself. Then there exists a one-to-one conformal 
map f of U onto the open unit disk (Figure 4.1). 

Figure 4.1 
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Of course f is a conformal map of the open unit disk onto U. 
Thus, if U and V are two open, connected and simply-connected sets 
in the plane, neither being the plane itself, let f and g be conformal 
maps of U and V respectively onto the unit disk. Then g -1-  o f is a 
conformal map of U onto V. 

The theorem says nothing about the extension of the mapping to 
the boundary of U. If the boundary of U is a piecewise differentiable 
curve, then such an extension is possible such that f is a continuous 
map, but it is not necessarily conformal on the boundary. For ex-
ample, if U is a square and V is a rectangle which is not a square, 
then g -1-  o f as above is a conformal map of U onto V obtained by 
mapping through the unit disk. While the boundary is mapped to 
the boundary, it is known that there does not exist a conformal map 
of a square onto a non-square rectangle which maps the vertices to 
the vertices ([21], pp.14-15). 

EXERCISES 

1. Show that w =  4(z+1)2 is a conformal map of the open unit disk 

onto the "exterior" of the parabola y2  = 4(1 - u) (Figure 4.2). Show 
also that the images of the four concircular points 1, ,  1,  V are 
non-concircular. 

2. A more dramatic example is given by w = 6 -1 /z as a locally 
conformal map defined on R2  - {(0, 0) } . Draw the images of circles 
centered at z = 0 with radii 1, , 1. (The reader with some knowl-
edge of complex function theory will recognize the point z = 0 as an 
"essential singularity" of the function.) 

3. Show that the Koebe function 

z  
f (z) 	(1 - z)2 	

41 [(11  + zz ) 2  - 1] 

defines a one-to-one mapping of the open unit disk onto the plane slit 
along the ray  (-oc,  -i]. 

4. Identitfying a vector y given in classical notation by y = y4 +v2i  
with the complex number y = yl + iy 2 , show that the inner product 
is given by (y, w) = Ryfo. 
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Figure 4.2 

5. Let f be a holomorphic function with non-vanishing derivative on 
U.  Using the identification of Exercise 4, show that df z v = f' (z)v , 
the multiplication on the right being complex multiplication. Then 
show that 

(df z v , df z w) = (f' (z)v , f' (z)w) = If (z)I 2  (v , w) , 

again proving that f is a conformal map. 



Chapter 5 

Conformal Maps in 
Euclidean Space 

5.1. Inversion in spheres 

Having seen the abundance of conformal maps in the plane, we ask 
if there are as many conformal maps in Rn for n > 3. We shall see 
that dimension 2 is indeed exceptional in its richness of conformal 
mappings, and that the only conformal maps in Euclidean space are 
those that generalize the Möbius transformations—that is, mappings 
that are generated by similarities and inversions in spheres. This was 
first proved in dimension 3 by Liouville in 1850 [22]. The standard 
proof of this requires that the mapping be at least of class C3  and 
requires some knowledge of differential geometry. In the next chapter 
we will briefly review some differential geometry and give the standard 
or classical proof. A more recent differential geometric proof was given 
by Huff [20]; it is also for C3  mappings. The result is known for 
mappings [19], but this is difficult. In 1960 R. Nevanlinna [26] gave 
an elementary proof for C4  mappings which we present here (see also 
[9], pp. 168-174, and [10], pp. 136-142). 

We begin with a study of inversion in a sphere. Let Sr (x0 ) be 
the sphere centered at xo  with radius r, i.e. 

Sr (X0) = {X E Rnlix —  x0  = 

83 
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Inversion in Sr (x0) is the mapping g : Rn — Ixo l —> Rn defined by 

g(x) = xo  + r 
ix — xo  

2  X — xo 
12 • 

Note that x and g(x) are on the same ray emmanating from xo , and 
that the product of the distances of x and g(x) from xo  is equal to 
r 2 

Since g maps Rn  — {X0} onto itself, gog is defined on IV —{x0 } and 
is the identity there. Thus by the chain rule the matrix of dgg (x ) 0  dgx  
is the identity there, and, taking determinants, we see that dg x  is 
non-singular, i.e. the Jacobian of g at x E I[In  — {Xo} is non-zero. 

Without loss of generality take xo  to be the origin and r = 1; 
this may be thought of as a choice of coordinates or the result of 
composition of g with similarites. g is now given by g(x) = x/Ix1 2 . 
The matrix of  dg x  is then 

1 	-2x2 x 1 	lx1 2  - 2(x2 ) 2  
1x1 2  - 2(x 1 ) 2 	-2x 1 x2  

2xn xn-1lx 1 2 _ I 	2(e) 2 

 

) 

Applying this to a vector v E Rn as a column vector we obtain 

f v l 1x1 2  — 2x1 (x,v) \ 
,v 2 1x12 — 2x 2  (x, v) 1 

• 
' 

\ vn ix1 2  — 2xn(c, v) l 
Therefore 

(dgx v , dgxv) = 
 1 n 	 1,12 

2xi(x, v\)2 , I" I  
Ix' 	

(v 	 ii 	*14 ) 

i.e., we have 
x E Rn  — { (0 1  . 
see that 

(dgx v,dgx v) = e 2a(v, v) for any v E Rn  and any 
.. , 0)1, where e2a = 1 /1x1 4 . Replacing y by y + w, we 

(clgo r, dgxw) = e2a (v, w), 

giving the following result. 

Theorem 5.1. Inversion in a sphere is a conformal map. 

i=1 
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In general the characteristic function ecr of inversion in the sphere 
of radius r and centered at xo is r 2  /1x — x0  1 2 . 

We shall now show that inversion maps hyperplanes and spheres 
in Rn to hyperplanes and spheres. By a hyperplane we mean an 
(n — 1)-dimensional linear subset of Rn; it is given by an equation of 
the form Ei7_ 1  Ax i  = D, Ai , D E R. The sphere Sr (x0) of radius r 
about xo  is given by 

x io )2 	r2 or  

If D = 0, then Ein  Ax' = 0 is a hyperplane through the origin, 
so, considering inversion in the unit sphere about the origin, every 
ray from the origin in the hyperplane remains in the hyperplane. 

If y =-- g(x) = 	then 1xI 2  
Ax i  = D into 

=13, so if D 	0, then g maps 1 2  ' 

Diy12 - E 	=0, 

which is a sphere passing through the origin. Similarly, a sphere 

passing through the origin (C = 0) is mapped to 

E 

 

By =  

which is a plane. Finally, the sphere A Eir,i_ 1  (xi)2+Elz_ 1  Bix i  +C = 0 
is mapped to the sphere 

ciyi2+EBiyi +A = O. 

Thus, as in the case of plane inversion (Theorem 1.1), we have the 

following theorem. 

Theorem 5.2. a) The inverse of a hyperplane through the center of 

inversion is the hyperplane itself. 

b) The inverse of a hyperplane not passing through the center of 

inversion is a sphere passing through the center of inversion. 

c) The inverse of a sphere through the center of inversion is a 

hyperplane not passing through the center of inversion. 
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d) The inverse of a sphere not passing through the center of in-
version is a sphere not passing through the center of inversion. 

Corollary 5.1. Inversion in a sphere maps lines and circles to lines 
and circles. 

Proof. A line in Rn  is the intersection of n — 1 hyperplanes, and a 
circle is the intersection of n— 1 hyperplanes and spheres with at least 
one sphere. In any case the inverse of these n — 1 hyperplanes and 
spheres is a collection of n — 1 intersecting hyperplanes and spheres. 

Theorem 5.3. If two inversions gi 

their composition is a homothety. 

and g2  have the same center, 

Proof. Suppose gi  (x) = r 2  1:12  and g2  (x) = R2  4-E ; then 

r
2 X 

R2  
(g2 o  gi )(X) = R2  IXI2  

1 2 	r2 
 X. 

 

1=1 

Theorem 5.4. If two inversions gi  and g2 have centers xo  and yo  
respectively and if 92  gi  is a similarity, then x0  = yo . 

Proof. Suppose xo  yo , and consider a hyperplane which does not 
pass through xo  and is such that its image under gi  is a sphere passing 
through xo  and not through yo . Then the image of the hyperplane 
under 92  og i  is a sphere, and hence, since similarities map hyperplanes 
to hyperplanes, g2 0 gi is not a similarity (Figure 5.1). 1=1 

EXERCISES 

1. For dimension n = 2 show that the mapping 

g(x) = xo  r2 (x — x0 )/lx — x0 1 2  

is the same as inversion in a circle. 

2. Find the image of the plane x3  = 0 under inversion in the sphere 
(x 1 ) 2  ± (x 2 ) 2  + (x3  — 1) 2  = 1. Give another proof that stereographic 
projection is a conformal map. 
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Figure 5.1 

3. Define and give coordinate formulas for stereographic projection 
of R'''' onto a sphere Sn C Rn+1 . 

4. Consider a torus (anchor ring) in R3  and an interior point 0 of the 
solid torus. Invert the exterior of the torus in a sphere with center O. 
In Exercise 3 we saw that 5 3  is the union of R3  with an ideal point 
oc. Show that S3  is the union of two solid tori with their boundaries 
identified. 

5. Generalize Exercise 4 of Section 1.3. 

6. We end with this exercise, which will be used in the next section. 
Let Ix — x0 1 = r, r G [r 1 , r2 ], be a family of concentric spheres and 
let x(t) be a C 1  curve intersecting the spheres such that xl(t) is 
orthogonal to the spheres. Show that x(t) is a segment of a ray from 
X0.  

5.2. Conformal maps in Euclidean space 

We now proceed to prove our main result that the only conformal 
maps in Rn are those generated by similarities and inversions. Let 
f : U —> Rn be a conformal map defined on an open set U C  R.  
Then, as we have seen in Section 3.3, 

(dfx v, dfx w) = e2°-(x )  (y, w) 
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for all vectors v, w E Rn and some real-valued function a on U. In 
particular, the characteristic function ea is related to f by 

 idfxvi/ivi for all v O. We begin with a difficult lemma giving 
a strong implication of the conformality of f on the function a. 

Throughout the remainder of this chapter we will assume that f is of 
class C4  and that the dimension  n>  3. 

Lemma 5.1. Let f be a conformal map with characteristic function 
ecf (x )  . If a is not a constant, then d2 (e - a)x (v,w) = a(v,w) for some 
constant a. 

Proof. Let v1, 	, vn  be n mutually orthogonal unit vectors in  R. 
Then (dfxvi , dfx vi) = e2a(vi ,vi ). Differentiating this, we have (see, 
e.g., Section 3.2) 

= 2e2a (v i , vi )do-x (vk). 

Cyclicly permuting the indices i, j, k, we also have 

(d2 fx (vk, vi ), dfx (vi )) 	(dfx (vk),d 2fx (v i , vi )) 

= 2e2a (vk,vi)clax(vi), 

(d2  f x (v ,v i ), dfx (vk)) 	(dfx (v i ), d2  fx (v k ,  v i ))  

= 2e2a(vi , vk)do-x (vi ). 

Adding the last two equations and subtracting the first gives 

(d2 fx  (v3  vi), dfx (vk)) 

= e2a((vk,vi )do-x(vi ) 	(vi , vk)do-x (vi ) - (vi,vi)do-x(vk))• 

Therefore, since {dfx (vk)} is an orthogonal basis of Rn , it follows that 

{e -adfx (vk)} is an orthonormal basis, and for i j we have 

(5.1) 	d2fx (vi ,vi ) = do-x (vi )dfx (vi ) do-x (v i )dfx (vi ), 

and for i=  j 

(5.2) 	d2 fx (vi ,vi ) = dcrx (v i )dfx (v i ) - 	crx (vk)df x (vk). 
kOi 

Note that so far we have not required that a be non-constant. 
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Suppose now that i 	j. Then, multiplying equation (5.1) by 
e', we have 

d2  (vi  , vi ) + d(e-a)„(vi )dfx (v i ) + d(e-a)x (v i )dfx (vi)=  O. 

Differentiating again gives 

d(e-  )„(v k)d2  f ,c (v , v i) + e'd3 fx(vi,vi,vk) 

+d2 (e-a)x (vi,vk)df x (vi) + d(e-a )x(vi)d2 fx(vi,vk) 

+d2 (e- ') x (vi ,vk)dfx (vi ) + d(e -a)„(vi )d2 fx (vi ,vk) = O. 

Now the second, fourth, fifth and the sum of the first and sixth terms 
are symmetric in i and k; therefore, since the right hand side (triv-
ially) is symmetric in i and k, the third term must also be symmetric 
in i and k. Thus, for distinct i,  j, k,  

d2 (e- ')„(vi ,vk)dfx (vi ) = d2 (e -a) x (vi,vi )dfx (vk). 

Since k i, it follows that dfx (vi ) and dfx (vk) are linearly indepen-
dent, and hence 

d2 (e - a) x (u,v) = 0 

for all orthogonal vectors u and v. Note that we have used n > 3 in 
our argument. Now, by Theorem 3.7, 

d2 (e - a) x (u,v) = a(u,v). 

Thus it remains only to show that a is a constant; but this is 
relatively easy. First, by differentiation, 

d3  (e' ) x  (u, v, w) = dax  (w)(u, v); 

notice that f must have derivatives of order 4. Interchanging u and 
w, we have 

(clax (w)u - da(u)w, = 0 

for any v. Therefore dax (w)u - dax (u)w = 0, but choosing u and 
w independent we see that  da(w) = 0 for any w, and hence that a 
is a constant. 	 1=1 

We now state and prove our main theorem. 

Theorem 5.5. Let f be a one-to-one C4  conformal map of an open 
set U C Rn  onto f(U), and suppose that n > 3. Then f is a compo-
sition of similarities and inversions. 
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Proof. By the preceeding lemma d2 (e -a).(v, w) = a(v, w), where 
a is a constant. Thinking of d2 (e- c7 )„(v, w) as d(d(e -a)(v))„(w), we 
see that 

n 	n 	 n a  (E ae-a  1 i  E  i i , w E a  i 	a 	= a 

for all v and w. Therefore 

D 
 n ae' 

 .1 
	

i) 	i 
axE 

axi  ,., ,-_- av 
i=1 

for every j, and hence 

  

ae-
.
a 

vi 
 axi 

  

vi (xi — xio ) 

for some constant vector xo and all v; that is, 

ae-a 
	 = a(xi  — x io ). 
axi 

Integrating a second time, we see that 

(5.3) 	 e- cr (x)  = Aix — x0 1 2  B, 

where A = `i and B are constants. 

Now, since f is a one-to-one mapping of U onto f(U) with dfx  
non-singular for every x E U, it follows that f -1  : f(U) U also 
satisfies dfy-1  non-singular, y = f(x), and 

(df37 1 v,df 37 1 w) = e -2a  (V 7  W) 

(see Exercise 2 in Section 3.3). Thus f -1  is a conformal map with 

characteristic function e° ' . the above argument to f -1  , 
we have e 0 (x) = e- 

(Aix — x0 1 2  + B)(Cly — y0 I 2  + D) = 1. 

Thus if A 0, f maps the sphere ix— x0 1 = r to the sphere IY — Yol = 
R, where (Ar2  B)(CR 2  + D)  =1.  

Consider a segment of some ray emanating from x0  and lying 

in U, say x(t) = ta + x0 , t E  [t1 , t2 ], where a is the unit vector 
in the direction of the ray. Since x(t) is orthogonal to the spheres 

— xo  I = r and f is conformal, the image curve y(t) is orthogonal 
to the concentric spheres IY — Yol = R and hence y(t) is a segment of 

(-"f-1)(Y)  =  Cy  3r012  + D, and hence 
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a ray from y0  (see Exercise 6, Section 5.1). From (5.3) the length of 
the image segment from t 1  to any 7 E  [t1 ,  t] is 

dt 
lyi  (t)1dt = f ecrix' (t)1dt = 	

At2  + B f l  

which for A 0 and B 0 is a transcendental function of T. On the 
other hand, 

(AtT, B)(ClY (ti) — Yo1 2  D) = 1 

and 

(AT 2  B) (Ciy (T) — y o i 2  D) = 1; 

thus we see that the length of the image segment, I y(r) — y(t i )I, is 
an algebraic function of T. Consequently either A = 0 or B = 0. 

Suppose A = 0; then ea = 1/B, which is a constant. Note from 
the proof of Lemma 5.1 that we still have equations (5.1) and (5.2), 
and hence that d2fx (y, w) = 0 for all y, w E  R. Therefore 

	

. 	vz =0  
axi 	axi 

for all y, and hence each a fk axi is a constant, say 	Integrating 
again gives f k  (x) = Ein Sx + Tk I  or, letting S be the matrix 
whose components are the Sli's (k, the row index), 

f (x) = Sx T, 

where T is the column vector of Tk's. Also S is the matrix of dfx, 
and hence (Sv, Sw) = -74-2-(y,w) for all y, w. Now, for any two points 
X 1 ,  x2 , 

1 f (xi) - f(x2)1 = Is (xi - x2)I = —B lx , 	— 3c21, 

and f is a similarity. 

If B = 0, let y = g(x) = x0  + (x — x0 )/Ix — x0 1 2  be inversion 

with respect to the unit sphere about x0  and consider the conformal 
map f* (y) = (f o g-1 )(y). Since the characteristic function of g is 

1 /Ix — x01 2 1 that of g-1  is 1/Iy y0 1 2  = Ix — x01 2 . Therefore the 
characteristic function of f* is ea (x) Ix — x0 I 2  = 1/A, and hence f* 
is a similarity. Finally, f = f* o  g,  so that f is a composition of an 
inversion and a similarity. 0 
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Note that we have also shown that any composition of similarities 
and inversions is either a similarity f,  an inversion g, or a composition 
f o g of one of each, where g is an inversion in a sphere of radius 1. 
Moreover, the form f o g is unique. For if f o g = fi  o gi , then 

gi 0 g — ' = f il l  0 f is a similarity, and hence by Theorem 5.4 g and 
gi  have the same center. Since both g and gi  are inversions in unit 
spheres, g = gi . Therefore fi-1  o f is the identity, giving f = fi . 

5.3. Sphere preserving transformations 

In Chapter 2 we read a paper of Carathéodory proving that transfor-
mations of the plane that map circles to circles are extended Möbius 
transformations, i.e. linear fractional transformations in z or .., and 
hence are compositions of inversions and similarities. In this spirit we 
prove the following theorem of Möbius, which assumes the continuity 
of the mapping. 

Theorem 5.6. Let f : U -- f(U) be a continuous 1-1 mapping 
defined on an open set in Rn , and suppose that f maps (pieces of) 

planes and spheres in U to (pieces of) planes and spheres in f(U) 
(not necessarily respectively). Then f is a composition of similarites 
and inversions. 

Proof. For any x E U choose xo  x in U and a ball Br (x0 ) such 
that the closed ball Br (x0 ) = Br (x0 ) U Sr (x0 ) c U but x 1% Br (x0 ). 
Let yo  = f(x0), and let Sr ,  (yo) be any sphere about yo . Let g and 
h be inversions in Sr (xo ) and Sr ,(yo ) respectively. Then hofog 

is defined on the exterior of Br (xo ), and the image of a hyperplane 
lying in this exterior is a hyperplane. Thus, considering intersections, 
hofog maps lines to lines. Also parallel lines / 1  and  12 are mapped 
to parallel lines, even if the plane of the lines meets Br (x 0 ), for there 
exist non-parallel planes ri  and 712  containing /1 and  1 2  respectively 
but not meeting Br  (x0), and 1 = 71  n72  is parallel to both /1 and  12. 

Now x 1% Br (x0 ); therefore x is in the domain of hof 0 g. Let 
Tx  : Rn  —> Rn be translation by x, i.e. the vector y E Rn is mapped 
to the vector y + x. Then, setting y = (h o f o g)(x), we see that 

(,0 = T_ y  o h of og 0 T„ 
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maps the origin to the origin, lines to lines, and preserves parallelism. 
Therefore ço maps parallelograms to parallelograms, and so, as a vec-
tor space transformation, cp(v w) = c,o(v)+ (p(w). Consequently for 
a positive integer m we have (p(mv) = mcp(v), and in turn, setting 
u = mv, yo(u) = iço(u). Therefore cp(qv) = qcp(v) for q a positive 
rational. Now c,o(0) = 0 implies yo(—v) = —cp(v), so (p(qv) = qcp(v) 
for q any rational; but cp is continuous and hence (p(cv) = op(v) for 
any c E R. Thus cp is linear, and since it is one-to-one on a neighbor-
hood of the origin, it is non-singular. Therefore cp may be given with 
respect to some basis by a non-singular matrix A. By polarization 
we can write A uniquely as FG, where F is an orthogonal matrix 
and G is a positive definite symmetric matrix. Viewing F and G as 
linear transformations, F leaves spheres about the origin invariant. 
Now A maps spheres to spheres; so, diagonalizing G, we see that the 
eigenvalues of G are all equal and hence that cp is a similarity, namely 
the isometry given by F composed with the homothety given by G. 
Thus 

f = hoTy oc,00T_x og 

is a composition of similarities and inversions. 	 LI 





Chapter 6 

The Classical Proof of 
Liouville's Theorem 

6.1. Surface theory 

In this chapter we give the standard or "classical" proof of Liouville's 
theorem that in dimension 3, the only conformal maps are those gen-
erated by similarities and inversions. This is not Liouville's proof [22] 
and requires some knowledge of the differential geometry of surfaces 
in Euclidean space. We develop it very briefly in this section; for 
more detail see any of [9], [23], [27]. Chapter 7 also requires this 
knowledge. 

We will begin, however, with a review of curve theory in the 
plane. Curve theory in the plane will be developed further in Section 
7.1. In classical notation, let x(t) = x l (t)i + x 2 (t)j be a curve in 
the plane given parametrically in terms of the position vector of each 
point, and suppose that x' (t) and x2 (t) are differentiable functions of 
t. In particular, we will assume that x 1  (t)  and  x 2  (t)  have continuous 
derivatives of sufficiently high order for our arguments; class C3  will 
be sufficient. We will often simply refer to the curve as being smooth. 

95 
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Recall that the derivative of a vector valued function is defined 
by the following limit, if it exists: 

xf(t) , lim  x(t ± h) — X(t) 

h—+0 	h 

A curve x(t) is said to be regular if  x' (t) 0 for all t in the domain of 
x. For a regular curve, x i (t) is said to be tangent to the curve, and, 
in general, xl(t) is called the velocity vector of x(t), regarded, from 
the dynamical point of view, as the trajectory of a moving particle. 

Letting s denote arc length along the curve from some point, 
recall that 

ds ix , (01 
=V 

  I ( dx 1 ) 2  ( dx 2 ) 2 
 dt — I 	)1 dt ) + dt ) ' 

Thus we may define the unit tangent field to a regular curve by T = 

x ' (t) B th h • rule, 	— ix , (01  . y e c am ru e, — c7scix  . Thus if arc length is chosen as the 
parameter, the derivative gives the unit tangent field along the curve. 

dda; \ - Since (T, T) = 1, differentiation yields (T, — ) = O. Thus 1̀4 is 
perpendicular to the curve. We define the principal normal N to a 
regular plane curve to be the unit vector at each point that advances 
the unit tangent by i (see Figure 6.1). Intuitively, curvature should 
mean the rate of change of direction as we move along the curve; thus 
we define the curvature k(s) of x(t) by 

dT 

W = KN;  

this equation is known as the Frenet equation of the plane curve. 
Many differential geometers define N to be the unit vector field in 
the direction of a and the curvature by K = lal for plane curves, 
and almost universally the principal normal and curvature of space 
curves are defined this way. For our purposes, especially in Chapter 
7, it will be essential to have the notion of a signed curvature (Figure 
6.1) 

Also from (N, N) = 1, we have that dc-z is perpendicular to N 
and hence collinear with T. Differentiating (N, T) = 0 then gives the 
second Frenet equation, cic-z , —KT. 
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K>0 k<0 

Figure 6.1 

Since T is a unit vector, we can write T = cos çbi ± sin 0j. Then 
N = - sin 0i + cos 0j and 

	

dT 	d0. 
ci  (sin 0) —ds1+  (cos 0)- -* (± 

	

ds 	 ds 
Thus from the Frenet equation we see that 

dçb 

K(s) —ds* 
For example, for the circle x = a cos Oi + a sin Oj of radius a, arc length 
is given by s = aO and 0 = 0 + Thus k(s) = = 

Turning now to surface theory, a piece of a regular surface or a 
coordinate patch is a smooth one-to-one map x of a neighborhood 

U c R2  into R3  given explicitly as a vector-valued function of two 
parameters: x(ul, u2) = (xl (ul 7 u2 ), x2 (ul u2 ) 7 x3 (ul u2 ) such that 
x is C2  (C3 , C4 , etc.) and 

x1  x x2  0 (the regularity), 

where x1  =  r , 
X2  = gux2 

A surface in R3  is a subset M C R3  such that for every point 

p E M there exists a coordinate patch x : U ---> R3  with x(U) C M, 
p  e  x(U), and if x : U M and y : V M are coordinate patches 

with images W and V' with W n V' 0, then the map 

y-1  o x : 	n vi) 	y-1 (//' n V') 

has non-vanishing Jacobian (see Figure 6.2). 

The regularity condition x1  x x2  0 enables us to define a local 

unit normal field n by 
Xi X X2 

11 =  , 	 
'x i  x x2 I .  
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Figure 6.2 

If a surface M is orientable, n may be taken globally (see e.g. [9]). 

Consider a curve x(ul  (t), u2 (t)) on the surface, where u l (t),u2 (t) 

define a regular curve in the parameter domain U c R2 . Then 

dx du i 	du2  
dt 	dt xl  + dt x2  °. 

Now x1  and x2 are tangents to the parameter curves, and hence 2- 
lies in the plane determined by x 1  and x2 . In particular, the tangents 
to all regular curves through a point of a surface M and lying in the 

surface are coplanar, and we call this plane the tangent plane to the 

surface at the point. We denote the tangent plane to M at p E M 
by TM.  Note that at each point of the surface the unit normal n is 

perpendicular to the tangent plane at the point. 

The length of a regular curve x(u l (t), u2  (t))  on the surface be-

tween the points given by t = to and t = t1  is given by fttc; Ix/1dt. 
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Thus, if we denote arc length by s, then 

(ds) 2 
 dt ) 

	

, 	) 2 	01 	du2 	, 	( du2  2  = \Xi , Xi) ( 	 h \-
dt 	xi, X2) 	 dt dt 	çx2 ' x2)  dt ) 

or ds 2  = E(dul ) 2  + 2Fdul du2  + G(du2 ) 2  , where E = (x i , x i ) F = 
(Xi, X2) and G = (x2, 3C2) • Now by the chain rule one shows that ds2  
is invariant under a change of coordinates, so ds2  may be regarded 
as globally defined on the surface. The expression ds2  = E(du 1 ) 2  + 
2Fdul du2 +G(du2 ) 2  is called the first fundamental form of the surface. 
Viewing ds2  as being given by the matrix ( ) , it follows that ds 2  
is a positive definite symmetric bilinear form. 

Note also that EG— F 2  = (x i 7  xi) (x2, x2) -  (3C1, x2) 2=  'xi X X21 2 *  
We define the area of a piece of a surface by if u  VEG — F2  dA, 
where U is the coordinate domain. Under a change of coordinates, 

EG — F 2  is multiplied by the absolute value of the Jacobian of the 
coordinate transformation, in agreement with the usual change of 
variables in a multiple integral, and so we may define the area of a 
surface by this integral. 

We now want to differentiate the unit normal field as we move 
around on the surface. For a regular curve x(ul  (t), u2 (t)) on the 
surface, restrict n to the curve. Then, since n is of unit length, n' is 
orthogonal to n and hence tangent to the surface. Now define a linear 
map A :  TM TM,  called the Weingarten map, as follows. For 
a unit tangent vector y E  TM  

dn 
Av = — 

 

ds 
where the derivative is taken along a curve on M through p and 
tangent to v; one then shows that this derivative at p is independent 
of the choice of the curve tangent to v. In particular, if y = 
then 

Ay 
dn 	1 an 

= 
ds 	ixi i Dui 

and hence Ax  i  = —OnlOui . Since (n, xi ) = 0, we have 

	

0 	 82x 
O  = 	(11 	= 	 + 

 Oui 	 OW Ole 
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and hence, by commutativity of the second partials, we see that A is 
a symmetric operator, i.e. (Av, w) = (y, Aw). 

Since A is a symmetric operator, its eigenvalues Ki  and K2 are 
real and are called the principal curvatures of the surface at the point 
p. The corresponding unit eigenvectors are called principal directions. 
We now give a geometric interpretation of these curvatures. 

Consider a plane in R3  containing the unit normal to M at p; this 
plane intersects the surface in a plane curve, called a normal section of 
the surface (Figure 6.3). Consider the signed curvature of this plane 
curve. 

Figure 6.3 

For each unit tangent vector w we have such a normal section. Now 
at the point p consider the curvatures of the normal sections for all 
directions w at the point. The maximum and minimum of these 
curvatures are the principal curvatures at the point. To see this, 
recall that the curvature K of a plane curve is given by the Frenet 
equation dc4; = KN , where T is the unit tangent and N the principal 
normal, which is defined to be the unit vector at each point that 
advances the unit tangent by i. Thus for normal sections at p we 
may identify the principal unit normal N and the surface normal n, 
the unit tangent at p being w. Then 
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If ki 	K2, let w1 , w2  be unit eigenvectors corresponding to the 
eigenvalues Ki K2 respectively. Writing a unit tangent vector w as 
w = cos Owl  ± sin Ow2 , we have 

K = (Aw, w) ic 1  cos2  0 ± k2 sin2  O.  

Differentiating gives te = 2(K2  — KO sin 9 cos 9. Thus the extrema 
of K occur for the directions of the eigenvectors of A. Moreover, if 

K2 = I  then all normal sections through p have the same curvature 
at p, and p is called an umbilical point of the surface. 

Theorem 6.1. If every point of a (piece of a) C3  surface is an um-
bilical point, then the surface is a (piece of a) sphere or a plane. 

Proof. We first show that if every point of a surface is an umbilical 
point, then K = Ki = K2 is constant on the surface, i.e. is independent 
of the point. Since ic is the same for all directions at a point, an _ 

aze,  
Differentiating this, we have 

a2n 	ak 	a2x 

Du3 Du 	9tt3 	Du3 Du  
Interchanging the order of differentiation yields 

aK 	a lç 

Du 	= au2 3C1'  
but x 1  and x2  are independent, so that 	= 0 and hence n is a 
constant. 

If K = 0, then 	= 0, giving that the field of unit normals is 
constant on the surface. Thus the surface is a plane perpendicular to 
n. 

If K 0, consider x 	Differentiating gives 

Di . + -
1
n) = xi  — —

1
KXi = 0 7  

O \'a 

and hence that x 	is a constant vector, say c. Therefore 

(x — c,x — c) = 
1
2 

the equation of the sphere of center c and radius 	 El 

A curve on a surface M is called a line of curvature if its unit 
tangent at each point is a principal direction. In particular, if x(s) is 
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a line of curvature on the surface parametrized by arc length and T 
is its unit tangent, then AT = K(s)T. 

Now for a curve x(s) on the surface, let y = n x T. We define 
the geodesic torsion T9  of the curve by 

/ dn 

\ds 

Thus a curve x(s) on a surface is a line of curvature if and only if 
Tg = 0 along the curve. 

The product of the prinicipal curvatures, K = ft 1 ft 2 , is called the 
Gaussian curvature of the surface. The Gaussian curvature has the 
following geometric interpretation. Let 8 2  be the unit sphere in R3  
centered at the origin. For a surface M C R3  we now define a map 
v : M —> 8 2 ,  called the Gauss map. For a point p E M, move the 
unit normal n(p) parallel to itself to the origin, and let v(p) be the 
point on the sphere with position vector n(p). Now let /4 be a small 
neighborhood of p on M; its image v(//1) is a neighborhood of v(p) on 
the sphere. Then, taking the limit as 1/1 shrinks to p, it can be shown 
that 

Area(v(U))  
K (p) = + lim 

14,p Area(U) . 
The most remarkable property of the Gaussian curvature is the fa-
mous "Theorema Ergregium" of Gauss that K is intrinsic to the 
surface; that is, despite its definition or the above geometric inter-
pretation, which depends on how the surface sits in R3 , K depends 
only on the functions E, F, G of the first fundamental form and their 
derivatives. 

If the surface M is a sphere of radius a, then every point is an um-
bilical point, and hence the two principal curvatures are everywhere 
equal to .-,. Thus the Gaussian curvature of a sphere of radius a is 

1 
a2  

EXERCISES 

1. Let x(t) be a plane curve and recall its velocity vector x'(t) = _ddst  T.  

Show that its acceleration x”(t) and its curvature are given by 

d2  s 	ds\ 2  
X"  (t) = 	T+K( )N 	d 	(x"(t) ' N)  an n = 

dt 2 	dt 	
(2)2 • 

T9  = —(AT,v). 



6.2. The classical proof 	 103 

2. As we noted in passing, for a space curve x(s) we also have the 
Frenet equation ` 1‘ = KN. If the curve lies on a surface and y = n x T, ds 
then 

KN = Kn n ± nor; 

Kn  and Kg are called the normal curvature and geodesic curvature of 
the curve on the surface. If x(s) is a normal section corresponding 
to a principal direction at a point p, show that ftn  is the principal 
curvature and  Kg  = 0 at p. 

3. If x(s) is a curve on a surface, show that x(s) is a line of curvature 
if and only if _dn 

ds + KnT = 0, where Kr" is the normal curvature of x(s) 
(Theorem of Rodrigues). 

4. If two surfaces intersect along a curve that is a line of curvature 
for both surfaces, prove that the angle between the (tangent planes of 
the) surfaces is a constant along the curve. Conversely, if two surfaces 
intersect along a curve that is a line of curvature of one of them and 
the angle between the surfaces is a constant along the curve, prove 
that the curve is a line of curvature of the other surface (Theorem of 
Joachimsthal). 

6.2. The classical proof 

To give the classical proof of Liouville's theorem, we need the idea 
of a triply orthogonal family of surfaces and a theorem of Dupin. A 
triply orthogonal system consists of three families of surfaces in an 
open set in R3  with one surface from each family passing through 
each point and such that the tangent planes at each point are mutu-
ally perpendicular, as, for example, the level surfaces of three smooth 
functions of three variables for which their gradient vectors are mu-
tually orthogonal. Two particular examples are the following: 

Example 6.1. In cartesian coordinates x1 , , x 2  , x 3 ,  the planes x i 
 = 

const., i = 1, 2, 3, form a triply orthogonal system. 

Example 6.2. The family of spheres concentric about the origin, the 
family of right circular cones with axes coinciding with the x 3  -axis, 

and the family of planes through the x 3  -axis, form a triply orthogonal 
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system; these are the level surfaces of the standard spherical coordi-
nate functions. 

We now prove the following theorem of Dupin. 

Theorem 6.2. The surfaces of a triply orthogonal system intersect 
each other in lines of curvature. 

Proof. Let M1, M2, M3 be three surfaces, one from each family, and 
let xi (s) = M2 n m3 , x2 (s) = M3 n /1/17  x3 (s) = A/1  n M2 be the 
curves of intersection parametrized by arc length with xl, , x/2  , x'3  a 
right-handed triple at p = M1 n M2 n M3. As in our discussion of 
geodesic torsion, set vab = nb x Ta ,  a,  b = 1,2,3. Consider x i  (s). 
Then as a curve on M2, Y12 = n2 X T1 = — n3=, as vancurve,   ds  on  , M3, 
V13 =  113 x T 1  ---- n2•  Now on M2, the geodesic torsion is given by 

	

( dn2 	( dn2 	

K 

dn3 	 ) 	dn3 

 ) 

1  V12 ) = 	 n3  = n2 , 

	

ds 	 ds ' 	 ds 

which is the geodesic torsion on M3; we denote this common value of 
the geodesic torsion by Tgl  • Also from this computation note that 

( dn3  
n2 7  

ds 
) 

= —(A3T1, n2). 

For the curve x2(s), 

/ dn3 
\ ds , 

V23) = ( 
dn3 

 , n1
) 

ds 	
= (A3T2, ni ). 

Therefore at the point p of intersection of the three surfaces we have 

_
g 	' 
1 1 

m
,,..

g 
 2 = _ (A3T1, n2) + (A3T2, ni)• '  

Noting that Ta  = na  and using the symmetry of the Weingaten map 
A3, we have 

_1 1  ,,,.2 = _i A s., 	s., \ 1  I A ...„ 	s., \ = 
 0. v3.3.1.2.1, .1.2.2 i 1 —  vi3.1.12, i..q .  1 

I g M i g 

Similarly Tg2  ± 7-: = 0 and 7-: ± Tgl  = 0, and therefore -rgl  = T g2  = Tg3  .= 

0. 	 El 

We can now give the following theorem of Liouville and its proof; 
recall that conformal maps are regarded as being non-singular. 

T2 = 
9 
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Theorem 6.3. Let f be a one-to-one C3  conformal map of an open 

set U c R 3  onto f(U). Then f is a composition of similarities and 
inversions. 

Proof. Let M c U be a piece of a plane or sphere, p E M and 
y E  TM.  By rotating and translating the triply orthogonal systems 
of Examples 6.1 or 6.2, as necessary, we obtain a triply orthogonal 
family of surfaces with M in one of the families and with y tangent 
to a curve of intersection. Now by the conformality f maps this 
triply orthogonal system to another triply orthogonal system. By 
the theorem of Dupin the curves of intersection on f(M) are lines 
of curvature. Therefore, since f is non-singular, there exists a line 
of curvature in any direction at any point of f(M). Therefore every 
point of f(M) is umbilic, and hence f maps (pieces of) planes and 
spheres to (pieces of) planes and spheres. The result now follows from 
Theorem 5.6 of Möbius. 1E1 





Chapter 7 

When Does Inversion 
Preserve Convexity? 

7.1. Curve theory and convexity 

In this chapter we pose and answer the following question: Given a 
smooth closed convex curve in the plane, what is the set of points 
in the plane as centers of inversion for which the image of the given 
curve will again be a convex curve? In this section we continue our 
treatment of curve theory from Section 6.1, and then in the next 
section we prove our result. Since the proof involves checking the 
convexity of the image curve, one of the main ideas of the present 
section is a test for convexity. 

In Section 6.1 we introduced the unit tangent and principal nor-
mal to a plane curve and the signed curvature tz (see Figure 6.1). 

Recall also the simple example, that, for the circle x = a cos Oi + 
a sin Oj of radius a, arc length is given by s = a8  and 0 = 0 + i. 
Thus n(s) = —dcfi's  = 1. The circle tangent to a curve at a point x(s), 
of radius 	1  and on the side of the tangent line determined by the Ik(s)1 
direction  of cg is called the osculating circle of the curve at x(s). If 
n is zero at x(s), the tangent line has "second order contact" at x(s), 
and we call this line the osculating circle; moreover, since we will be 

107 
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dealing with convex curves, the interior of the osculating circle will, 
in that case, be the open half plane containing the curve. 

Example 7.1. For example, x 4  ± y4  = 1 is a simple closed convex 
curve whose curvature at the points (+1, 0) and (0, +1) is zero and 

whose osculating circle is the tangent line. At all other points the os-
culating circle is indeed a circle; e.g. at (112 114 ,112 114 ) the osculating 
circle is 

2 2 

 ) ± (y 	2  3(2 1 /4 ) 	3(21/4)) 	.\/ 3(2 1 /4 ) 	9 ' 

It is well know that an arc of a smooth curve x(s) with increas-
ing positive curvature determined by an interval [so , s i ] lies within 
the osculating circle at x(s0 ). It is less well-known that the entire 
osculating circles at the points of the arc lie in the osculating circle 
at x(s0 ). This is a result of Kneser (1912) (see [17]) , which we give 

here as a lemma. 

Lemma 7.1. Any osculating circle of an arc of a smooth curve with 

monotonic curvature of constant sign contains every smaller osculat-
ing circle of the arc and is contained in every larger osculating circle 

of the arc. 

Proof. Let x(s) be a smooth curve and x(so ) a point on the curve. 
Suppose that k(s) is positive and increasing on [so , s i ]. We shall 
show that for every s E (so , S i ] the osculating circle at x(s) lies in 
the osculating circle at x(so ). Let c(s) .= x(s) ± ii-N be the curve 

of centers of the osculating circles, and denote differentiation with 
respect to s by '. Then c' = — ',--'-2- N, and hence, setting R = kts)  and 

Ro = 1  K(s) 

L 

 te (u) 
 du = Ro — R. lc(s) — 4 50)1 f so  k(u)2  

Thus, if y is in or on the osculating circle at x(s), then 

IY — 4501  E y — 

completing the proof. 	 El 

A set of points in the plane (or in Rn) is said to be convex if for 
any two points in the set, the line segment joining them is contained 

(x 

c(s)1+1c(s) — c(s 0 )1 <R  + R0  — R = R o , 
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in the set. A simple closed curve in the plane is said to be convex if 
its union with its interior is a convex set. 

In some differential geometry books where the emphasis is on 
smooth curves, we find the following definition. A regular curve in 
the plane is convex if it lies on one side of each tangent line. This is 
not unreasonable in view of the following basic theorem of convexity 
theory. A supporting line for a set in the plane with interior points is 
a line through a boundary point such that all points of the set are in 
the same closed half plane determined by the line. 

Theorem 7.1. A simple closed curve is convex if and only if through 
each of its points there is at least one supporting line for the interior. 

For our study of the problem of when inversion preserves convex-
ity we well need a test for convexity in differential geometric terms. 
Fortunately we have the following classical and natural theorem at 
our disposal (cf. [23], Section 3.3). 

Theorem 7.2. A simple closed regular smooth plane curve x(s) is 
convex if and only if K(s) does not change sign. 

Proof. Suppose K does not change sign and x(s) is not convex. Then 
there is a point A such that x(s) does not lie on one side of the tangent 
line 1 at A. Since x(s) is closed, there are points B and C on the curve 
on opposite sides of 1 which are farthest from 1. Now the tangent lines 
at A, B and C must be distinct and mutually parallel. Thus at two 
of A, B, C the tangent vectors point in the same direction. Therefore 
there exist s i  < s2  with T(s i ) = T(s 2 ) and 0(52) = 0(s i ) +  27m.  
Since K(s) =--- (:!-/-, does not change sign, 0 is a monotonic function of 
s. If n = 0, then 0 is constant on [Si,  5 2 ]. If 0 is non-decreasing and 
n 0, then n = 1, since x(s) is simple (this implication, as obvious 
as it seems, also requires proof and it is not entirely trivial; it is often 
refered to as the Rotation Index Theorem, see e.g. [23], Section 3.2). 
Therefore 0 is constant on [0, S i ] and [32 , L], where L is the length of 
the closed curve. Therefore one of the segments between x(s i ) and 
x(s 2 ) is a straight line, contradicting the distinctness of the tangent 
lines at A, B and C. 

Conversely, suppose that x(s) is convex but that 0 is not mono-
tonic. Then there exist s i  < so < s2 in [0, L] with 0(s i ) = 0(.92) 
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0(s o ). We shall contradict this by showing that 0 is constant on 
[s i , s2]. Now T(s i ) = T(s2), but since x(s) is a simple closed curve, T 
points in every direction. Thus there exists 8 3  with T(s3 ) = — T(si)• 
If the tangent lines at 81, s2, 83 are distinct, then one is between 
the other two, contradicting the convexity. Therefore two of these 
lines coincide and there are points A and B of x(s) lying on the same 
tangent line 1. If C E AB and C is not on x(s), let 1' be the perpen-
dicular to 1 at C. Again by convexity, /' is not tangent to x(s), and 
hence it meets x(s) at two points on the same side of 1, say D and E, 
with D closer to 1. Then at least one of A, B and E is on each side of 
the tangent at D, again contradicting convexity. Thus C must lie on 
x(s), and hence 0 is constant on [s i , 52 ], completing the proof. El 

7.2. Inversion and convexity 

We now turn to the question raised at the beginning of this chapter, 
namely: Given a smooth closed convex curve in the plane, what is the 
set of points in the plane for which, when taken as centers of inversion, 
the image of the give curve will again be a convex curve? The question 
was first prompted by a question in fluid mechanics where the given 
curve was an ellipse, and this special case of the result was obtained 
by J. B. Wilker [28]. The general question was answered by Wilker 
and the author in [5]. 

Theorem 7.3. Let C be a smooth simple closed convex curve. A 
point interior to C is a center of inversion preserving convexity if 
and only if it lies in the intersection of the interiors and boundaries 
of the osculating circles at the maxima of the curvature (C traversed 
counterclockwise). A point exterior to C is such a center if and only 
if it lies in the intersection of the exteriors and boundaries of the 
osculating circles at the minima of the curvature. If C is not a circle, 
inversion with center on C does not preserve convexity. 

Proof. The main part of the proof will be to show that a point 
serving as a center of inversion preserving the convexity of the curve 
lies in the intersection of the interiors (resp. exteriors) and boundaries 
of all the osculating circles. The fact that it is enough to take the 
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osculating circles at the maxima and minima of the curvature is then 
a consequence of the lemma of Kneser. 

Since the composition of two inversions with the same center is 
a homothety (Theorem 5.3), which preserves convexity, the radius of 
the circle of inversion is immaterial in our problem and we take it to 
be 1. If the vector xo  denotes a center of inversion and x* the inverse 
of a point x, then inversion in the unit circle about xo  is given by 

x — X0 
X*  = Xo + 	 

IX — X0I 2 ' 

As x traverses C we have the following computations: 

1 
X*t =  	

2(T, x — x0) 
(x — x0 ), I x —  x0 12 

T 	  
Ix — x0 1 4  

ds* 	1 
If' I= — =  	T* = T 

2(T, x — x0) 
(x — xo ), 

ds 	ix — x 0 1 2  ' 	 ix — X01 2  

Also 

(dT* ,, 	) 
— ,x — x0  
ds* 

= 
Ix — x01 2  • 

(N*, x* — x 0 ) 	( N, x — xo ) 

1x*  — xol 	Ix — x0 1 
and 

( (T, x — xo)  ) 2 + (  (N,  x — xo ) \ 2  
IX — X0 1 	 I X — Xo I ) 

Thus from dT* I ds* = k*N* we have 

re =- —klx — x0 1 2  — 2(N, x — x 0 ). 

1. 

We now regard C as being traversed counterclockwise, so that 
,c> O. If xo  is interior to C, the inverted curve will also be traversed 
counterclockwise, and hence, if it is also convex, then K, *  > 0 (see 
Figure 7.1). Therefore —K1x — x0 1 2  — 2(N, x — x0) > O. Writing in 

standard cartesian coordinates N = ai + bj, x =  (x,  y) and setting 
R = 1  for K 0, this inequality becomes 

k 

(x0  — (x + Ra)) 2  + (Yo — (y + Rb)) 2  < R2 . 

Therefore xo  = (xo , yo ) lies in or on the osculating circle at x E C. 
For n = 0 the inequality becomes 

a(x0 — x) + b(yo — y) ? 0, 
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Figure 7.1 

and xo  is in the desired half plane. 

If xo  is exterior to C (see Figure 7.1), the above inequalities are 
reversed. Thus a point serving as a center of inversion preserving the 
convexity of the curve lies in the intersection of the interiors (resp. 
exteriors) and boundaries of all the osculating circles. Now by Lemma 
7.1 we see that it is enough to take the osculating circles at the max-
ima and minima of the curvature. Conversely, one can reverse our 
argument. 

Finally, if C is a circle, the set of centers of inversion preserving 
convexity is the entire plane. If C is not a circle, inversion about 
any point xo  E C destroys the convexity. For consider the osculating 
circle at xo  and invert both it and the curve with center x0 ; the circle 
inverts to a line and C inverts to a curve which is asymptotic to the 
line in both directions and is therefore not convex. O 

We remark that for some convex curves there may be no inver-
sions that will preserve convexity, e.g. the curve of Example 7.1. 
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Our proof was given in the context of real geometry, but it is 
interesting to relate some geometric ideas to complex analysis, as we 
do in the following exercises. In the exercises below we suppose that 

1(z)  is holomorphic and one-to-one on the unit disk, and consider the 
image of a circle r = const. < 1. Typically one also assumes that 

f(0) = O. For further study along these lines, see e.g. [15]. Recall 
that in Exercise 4 of Section 4.2 we identified a vector v = y l i y2j 
with the complex number y = y 1 +iy2  and saw that the inner product 
of two vectors was given by (y, w)  = 

EXERCISES 

1. For the curve w = f (rei°) , r = const. < 1, with 0 as increasing 
parameter, show that the velocity vector, the principal normal and 
the acceleration are given by 

dw 	, 
cT9-  = iz f (z)  7 N 	

z (z) 	d2  w 

(z)1' 	d02 	z 	(z) 	z J." (z)). 

2. Using Exercise 1 of Section 6.1, show that the curvature of the 
above curve is 

I zf 1;(z) 	(1 	zff:(i z)(z)  ' 

and hence that w = f (reiû) is convex if and only if 

R(
z  f " (z) 

1 	f ,  (z) 	0 

(E. Study, 1913). 

3. In Exercise 3 of Section 4.2 we saw that the Koebe function f (z) = 

( 1 	z  z )2 maps the unit disk onto a slit plane. Show that for 2 — 	< 

r < 1, the curvature of the curve w = f (rei°) at the point f (—r) is 

negative. 

4. A smooth simple closed curve C is said to be strongly star-shaped 
with respect to a point P if no tangent line passes through P.  Show 

that the curve w = f (ree ), r = const. < 1, with  f(0) = 0 is strongly 

star-shaped with respect to the origin if and only if 

R(zfi(z)
) 

> 0. 
 

f (z)  

= 
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7.3. The problem for convex bodies 

In this section we state without proof the corresponding result in 
Euclidean 3-space. That is, given a smooth convex surface in space, 
what is the set of points as centers of inversion for which the image of 
the surface will again be convex? The main ingredient in the above 
proof for convex curves was Theorem 7.2, giving a test for convexity. 
For surfaces in 3-space we do have such a test. The following theorem 
is due to Hadamard [18] for positive Gaussian curvature and to Chern 
and Lashof [7] for non-negative Gaussian curvature. See Section 6.1 
for a discussion of the Gaussian curvature. 

Theorem 7.4. A smooth closed surface M in R 3  is convex if and 
only if K > O. 

The initial difficulty with this problem is that, given a surface, 
one does not in general have an osculating sphere. One could define 
a sphere at each point of the surface, tangent to the surface, on the 
appropriate side of the tangent plane and whose Gaussian curvature 
equals the Gaussian curvature of the surface at the point. Such a 
sphere has second order contact with the surface only at an umbilical 
point. Recall, however, that we do have two principal curvatures K 1  
and K2, which for  K>  0 have the same sign (again see Section 6.1). 
Thus we define the principal spheres at p E M to be the spheres of 
radius 1/n, i = 1, 2, n i  0, tangent to M at p and on the side of 
the tangent plane containing the surface (our surfaces being convex). 
If one (or both) of the n i  vanish, define the corresponding principal 
sphere to be the tangent plane and its "interior" to be the half space 
containing the surface. 

We can now state the result given by J. B. Wilker and the author 
in [5]. 

Theorem 7.5. Let M be a smooth closed convex surface in R3 . A 
point interior to M is a center of inversion preserving convexity if 
and only if it lies in the intersection of the interiors and boundaries 

of all the (small) principal spheres. A point exterior to M is such 
a center if and only if it lies in the intersection of the exteriors and 
boundaries of all the (large) principal spheres. If M is not a sphere, 
inversion with center on M does not preserve convexity. 
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